
Appendices1

In this supplementary material, we discuss the broader impact (Section A), report experiment details2

including dataset, model, and training details (Section B), provide more details of Invariant Slot3

Attention, as mentioned in the main paper (Section C), perform extra ablation studies on input4

resolution and generalization performance of our model (Section D), and finally present extra5

visualizations (Section E). In the last section, we provide a visual comparison between models in our6

ablation studies as well as previous work. Moreover, we provide an analysis of our failure cases. We7

attached the code to the supplementary material, and we will share it publicly upon acceptance. We8

also prepared an HTML file containing the GIFs of our matched segmentation results.9

A Broader Impact10

We proposed an object-oriented approach that can be applied to videos of real-world environments.11

We trained our model on the Youtube-VIS 2019 dataset that includes videos of humans. The proposed12

work can be used to locate and segment multiple instances of a wide variety of objects including all13

kinds of animals and humans from videos. While progress in this area can be used to improve not14

only human life but also, for example, wildlife, we acknowledge that it could also inadvertently assist15

in the creation of computer vision applications that could potentially harm society.16

B Experiment Details17

B.1 Dataset Details18

We eliminated the black borders for all videos in YTVIS19 dataset. Since we propose a self-supervised19

model, we merge the available splits on datasets for training. For all datasets except YTVIS, we20

use the available validation splits for evaluation. The annotations for the validation split are missing21

on the YTVIS, therefore, we use a subset of 300 videos from the train split for evaluation. We will22

share the indices of selected videos for future comparisons together with the code. For evaluation,23

we upsample the segmentation masks to match the resolution of the original input frames by using24

bilinear interpolation25

B.2 Model Details26

Feature Extractor (ϕDINO): We use the ViT-B/14 architecture with DINOv2 pretraining [5] as our27

default feature extractor. Our feature vector is the output of the last block without the CLS token. We28

add positional embeddings to the patches and then drop the tokens.29

Spatial Binding(ψs-bind): We project the feature tokens from ϕDINO to slot dimension Dslot = 128,30

with a 2-layer-MLP, followed by layer normalization. Then the slots and the projected tokens are31

passed to the Invariant Slot Attention (ISA) (as detailed in Section C) as input. After slot attention,32

slots are updated with a GRU cell. Following the sequential update, slots are passed to a residual33

MLP with a hidden size of 4×Dslot. All projection layers (p, q, k, v, g) have the same size as slots,34

i.e. Dslot. We repeat the binding operation 3 times. We multiply the scale parameter Ss by δ = 5 to35

prevent relative grid Grel from containing large numbers.36

We use the following initializations for the learnable parameters: Gabs, a coordinate grid in the range37

[−1, 1]; slots z, Xavier initialization [3]; slot scale Ss and slot position Sp, a normal distribution.38

Temporal Binding (ψt-bind): We use a transformer encoder with 3 layers and 8 heads [8] for temporal39

binding. The hidden dimension of encoder layers is set to 4 × Dslot. We initialize the temporal40

positional embedding with a normal distribution. We masked the slots of not available frames, i.e.41

frames with indices that are either less than 0 or exceed the frame number, in transformer layers.42

Slot Merging (ψmerge): We use the implementation of Agglomerative Clustering in the sklearn43

library [6] with complete linkage. For each cluster, we compute the mean slot and the sum of attention44

matrices, i.e. matrix A in (1), for the associated slots. We determine the scale Ss and position Sp45

parameters for the merged attention values to calculate the relative grid Grel of the new slots. Then,46

Grel is projected onto Dslot using a linear layer h and added to the broadcasted slots before decoding.47
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Decoder Mapper (ψmapper): The mapper ψmapper consists of 5 linear layers with ReLU activations48

and a hidden size of 1024. The final layer maps the activations to the dimension of ViT-B tokens with49

an extra alpha value i.e. 768 + 1.50

B.3 Training Details51

In all our experiments, unless otherwise specified, we employ DINOv2 [5] with the ViT-B/1452

architecture. We set the number of consecutive frame range n to 2 and drop half of the tokens53

before the slot attention step. We train our models on 2×V100 GPUs using the Adam [4] optimizer54

with a batch size of 48. We clip the gradient norms at 1 to stabilize the training. We match mask55

indices of consecutive frames by applying Hungarian Matching on slot similarity to provide temporal56

consistency. To prevent immature slots in slot merging, we apply merging with a probability that is57

logarithmically increasing through epochs.58

MOVi-E: We train our model from scratch for a total of 60 epochs, which is equivalent to approx-59

imately 300K iterations. We use a maximum learning rate of 4 × 10−4 and an exponential decay60

schedule with linear warmup steps constituting 5% of the overall training period. The model is trained61

using 18 slots and the input frames are adjusted to a size of 336× 336, leading to 576 feature tokens62

for each frame. The slot merge coefficient in ψmerge is configured to 0.12.63

YTVIS19: Similar to MOVi-E, we train the model from scratch for 180 epochs, corresponding to64

approximately 300K iterations with a peak learning rate of 4× 10−4 and decay it with an exponential65

schedule. Linear warmup steps are introduced for 5% of the training timeline. The model training66

involves 8 slots, and the input frames are resized to dimensions of 336× 504, resulting in 864 feature67

tokens for each frame. The slot merge coefficient in ψmerge is set to be 0.12.68

DAVIS17: Due to the small size of DAVIS17, we fine-tune the model pretrained on the YTVIS1969

dataset explained above. We finetune on DAVIS17 for 300 epochs, corresponding to approximately70

40K iterations with a reduced learning rate of 1× 10−4. We use the same learning rate scheduling71

strategy as in YTVIS19. During the fine-tuning process, we achieve the best result without slot72

merging, likely due to the fewer number of objects, typically one object at the center, on DAVIS1773

compared to YTVIS19.74

C Invariant Slot Attention75

In this section, we provide the details of invariant slot attention (ISA), initially proposed by Biza76

et al. [1]. We use ISA in our Spatial Binding module ψs-bind with shared initialization as explained77

in the main paper. Given the shared initialization Zτ =
{(

zj ,Sj
s,S

j
p,Gabs,τ

)}K

j=1
, our goal is to78

update the K slots: {zj}Kj=1. For clarification, in the following, we focus on the computation of79

single-step slot attention for time step τ :80

Aj := softmax
K

(
Mj

)
∈ RN ′

, Mj :=
1√
Dslot

p

(
k (fτ ) + g

(
Gj

rel,τ

))
q
(
zj
)T ∈ RN ′

(1)

where p, g, k, and q are linear projections while the relative grid of each slot is defined as:81

Gj
rel,τ :=

Gabs,τ − Sj
p

Sj
s

∈ RN ′×2 (2)

The slot attention matrix A from (1) is used to compute the scale Ss and the positions Sp of slots82

following Biza et al. [1]:83

Sj
s :=

√√√√ sum
(
A⊙

(
Gabs,τ − Sj

p

)2)
sum (Aj)

∈ R2, Sj
p :=

sum
(
Aj ⊙Gabs,τ

)
sum (Aj)

∈ R2 (3)

After this step, following the original slot attention, input features are aggregated to slots using the84

weighted mean with another linear projection v:85

U := WT p

(
v (fτ ) + g

(
Gj

rel,τ

))
∈ RK×Dslot , Wj :=

Aj

sum (Aj)
∈ RN ′

(4)
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Then, U from (4) is used to update slots {zj}Kj=1 with GRU followed by an additional MLP as86

residual connection as shown in (5). This operation is repeated 3 times.87

z := z+MLP ((norm(z)) , z := GRU (z,U) ∈ RK×Dslot (5)

D Additional Ablation Studies88

In this section, we provide additional experiments to show the effect of resolution on the segmentation89

quality. We also report the results by varying the evaluation split on the YTVIS to confirm the90

generalization capability of our model.91

Effect of Resolution: We conducted experiments to investigate the effect of the input frame92

resolution, i.e. the number of input tokens, in Fig. 8. Specifically, we experimented with resolutions93

of 168× 252, 224× 336, and our default resolution 336× 506, corresponding to 216, 384, and 86494

input feature tokens, respectively. These experiments show that the input resolution is crucial for95

segmentation performance.96

Varying The Evaluation Split: As stated before, we cannot use the validation split of YTVIS1997

due to manual annotations that are not publicly available. For evaluation, we only choose a subset of98

300 videos. Here, we perform an experiment to examine the effect of varying the set of evaluation99

videos on performance.100

We repeat the experiment in Table 3 by choosing mutually exclusive subsets of 300 videos, 3 times.101

We report mean and standard deviation (µ±σ) of experiments for each model in Table 6. These results102

are coherent with the reported result on the fixed subset, showing that segmentation performance103

peaks when all of our components are combined, i.e. model E. Similarly, removing our components104

ψt-bind (model D) and ψs-bind (model C) one at a time leads to a performance drop, as shown in Table105

3.Removing both (model B), results in the worst performance, even falling behind its counterpart106

without slot merging (model A). Overall, the results of varying the evaluation set agree with the107

reported performance on the selected subset in the main paper. This shows that the performance of108

our model generalizes over different evaluation subsets.109

Table 6: Varying evaluation splits. The effect
of changing evaluation sets for models in the
component ablation.

Model mIoU ↑ FG-ARI ↑
A 37.72 ± 0.82 29.06 ± 2.24
B 37.20 ± 1.53 30.15 ± 1.90
C 42.76 ± 2.09 30.03 ± 1.67
D 42.98 ± 2.01 29.69 ± 2.02
E 43.28 ± 2.57 31.33 ± 1.51
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Figure 8: Input resolution. The effect of input
resolution, i.e. the number of tokens, on perfor-
mance (mIoU).

E Additional Visualizations110

We provide additional qualitative results in Fig. 9. Our model can recognize not only the most salient111

object in the middle but also small, subtle objects in the background. Furthermore, it can handle a112

varying number of objects in the scene with slot merging.113

Feature Extractor: In Fig. 10, we provide visualizations of different feature extractors, corre-114

sponding to the quantitative evaluation in Table 5, including DINOv2 [5], DINO [2], and Supervised.115

Self-supervised models performs better than the supervised one, also qualitatively. In particular,116

DINOv2 stands out for its exceptional capability to learn object representations across a diverse range117

of categories. It also effectively identifies and segments intricate details that are missed by other118

feature extractors such as tree branches on the left and the bag on the table on the right.119

Components: In Fig. 11, we visually compare the segmentation results of the models corresponding120

to the component ablation study in the main paper (Table 3). First of all, model A, which corresponds121
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Figure 9: Qualitative results of multi-object video segmentation on YTVIS19

to the temporally consistent DINOSAUR [7], struggles to cluster the instances as a whole and also122

fails to track all objects, for instance, the human on the right, due to discrepancies in mask index123

across three frames. With the help of slot merging, model B effectively addresses the over-clustering124

issue, as observed in the mask of the calf on the left. Integrating our binding modules ψt-bind and125

ψs-bind, resulting in model C and D, respectively, leads to a marked improvement in both segmentation126

and tracking quality. On the other hand, both models C and D have shortcomings in detecting the127

human in certain frames of the right video. Finally, combining them, our full model, i.e. model E,128

excels at segmenting and tracking not only labeled objects but also other objects, such as the car129

visible in the first frame of the second video.130

Comparison: We provide a visual comparison between OCLR [9] and our model in Fig. 12 after131

matching the ground-truth and predictions. OCLR fails to detect static objects (top-left, middle-left,132

bottom-left) and deformable objects (middle-right) due to failures of optical flow in these cases.133

Moreover, it considers moving regions as different objects such as the water waves (top-right). On134

the other hand, SOLV can accurately detect all objects as a whole.135

Failure Cases: Although our model can detect in-the-wild objects in different scales, segmentation136

boundaries are not perfectly aligned with the object due to patch-wise segmentation, as has been137

pointed out in the Discussion (Section 5). In addition to these observations, we identify three types138

of commonly occurring failure cases: (i) The over-clustering issue that remains unresolved in some139

cases even with slot merging. (ii) The tendency to cluster nearby instances of the same class into a140

single slot. (iii) Failure to detect small objects, particularly when they are situated near large objects.141

We provide visual examples of these cases in Fig. 13.142
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Figure 10: Qualitative comparison of different pretraining methods for visual encoder.
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Figure 11: Qualitative results of different models in the component ablation study (Table 3).
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Figure 12: Qualitative results of multi-object video segmentation on YTVIS19 after Hungarian
Matching is applied. Segmentation results of OCLR [9] are provided in third row.
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(a) Failure cases due to over-clustering.
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(b) Failure cases due to grouping nearby instances of the same class into one cluster.
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(c) Failure cases due to missing relatively small objects.

Figure 13: Failure cases of our model with potential reasons, grouped into three.
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