
A Limitations and Broader Impacts491

Our study was conducted with a group of 108 workers, all recruited from English-majority locales,492

due to the complexity of recruiting and training workers given the complexity of the task. The group493

size limits the variation in language use we observe. Its composition restricts our ability to evaluate494

generalization to other languages, an important direction for future work. Another question for further495

study is the dynamics created when completely new users join the community in later stages.496

Because of the complexity of our studies we kept our architecture close to previous work on CE-497

REALBAR, and did not study more contemporary architectures or using pre-trained models. We498

hypothesize using both could lead to better performance, and more consistent improvement trends.499

This is an important direction for future work.500

We do not vary the settings of CEREALBAR. Effenberger et al. [10] find that the interaction design501

and incentives influence the process of language change. Studying the impact of the scenario design502

decisions would have significantly complicate our experiments, and increase our costs. We decided503

not to focus on this research question in this work, but treat these parameters as fixed. Although504

the analysis of Effenberger et al. [10] shows that CEREALBAR creates interesting and complex505

language dynamics, further study of the impact of interaction design decisions on continual learning506

is important, and currently under-studied. Our work does not answer these questions, but we hope it507

will stimulate further research into them.508

The data and models we release are not designed to be directly deployed beyond the CEREALBAR509

scenario. In general, deployment of continually learning systems requires guardrails and monitoring510

to avoid various undesired outcomes, including acquiring behaviors that may harm users.511

B Model512

We implement our policy as a neural network based on the design of Suhr et al. [35]. The inputs513

are an instruction x and observation o, and the output is a distribution over actions. The policy514

architecture is composed of several modules that combine to a single network.515

Embedding Instructions We embed the instruction x = hx1, . . . , xni of length n with a bidirectional516

recurrent LSTM [13]. This results in a sequence of hidden states hh1, . . . ,hni. The embedding of x517

is the final hidden state of the sequence hn.518

Embedding Observations Each agent observation o includes information about the observable519

environment and the instruction execution so far. The follower agent in CEREALBAR has partial520

observability. We use a representation similar to that of Suhr et al. [35], but without making the521

simplifying assumption of full observability. The environment state W is a tensor representing the522

properties of each position in the environment as embedding indices. The properties represented523

in W also encode information about the follower’s trajectory so far, the presence of obstacles in524

the environment, and the follower’s observability. Due to partial observability, each position’s525

representation is derived from its most recent observation; any information that changes about the526

world may be outdated in W. We embed W into a dense tensor W0.527

Fusing Embeddings After independently embedding the instruction and observation into hn and W0,528

we compute a joint representation of both inputs using text-conditioned (i.e., via hn) convolutions529

over W0.530

Transforming the Coordinate System Predicting actions requires interactions between represen-531

tations of multiple positions. W0 represents the environment using offset coordinates, which do532

not precisely represent the structure of hexagonal grid in CEREALBAR. We transform W0 to axial533

coordinates [14], and translate and rotate the tensor such that the center position represents the agent’s534

current location, and the agent is facing in a consistent direction. These transformations are not535

parameterized.536

LINGUNET We use LINGUNET [6] to predict the policy distribution over actions ⇡(· | x, o; ✓),537

with slight modifications to the design of Suhr et al. [35]. For all convolutions, we apply hex-based538

convolutions with kernels that operate only on voxels within a hex diameter of d around the center539

voxel, for a kernel size of d. We apply instance normalization to the last LINGUNET layer of the input540

14

and text-based convolutions. Finally, we do not perform the final transposed convolution. Instead, we541

directly predict a distribution over the action space given the output of the transposed convolution.542

B.1 Inference543

We use ensemble-based inference. Given sets of model parameters ✓ = h✓1, . . . , ✓mi, we construct a544

policy ⇡ over executable actions using voting:11545

⇡(a | x, o; ✓) / (3)

exp

0

@
X

1im

a=argmax⇡(·|x,o;✓i)

1

A .

Actions are sampled and executed from ⇡(· | x, o; ✓). Executing an action in the environment results546

in a observation according to the transition function T . We continue to sample actions until the stop547

action STOP is sampled, or until the leader manually reboots the follower. The STOP action marks548

the current instruction as complete, which either results in the follower’s turn ending, or it receiving549

the next instruction to follow.550

C Implementation Details551

We lowercase and tokenize instructions using BPE [31] with a maximum vocabulary size of 4,096552

and a minimum wordtype occurrence of 2.12 We learn size-64 word embeddings from scratch. We553

encode instructions with a single-layer LSTM RNN [13] with 128 hidden units. We embed each554

position’s properties into vectors of size 16. We use the same LINGUNET hyperparameters as Suhr555

et al. [35], and did not perform an additional hyperparameter search.556

We use an ensemble size of m = 10. We do not train in ensemble, but train ten separate models557

and apply ensemble-based inference during deployment. When using reward propagation, we use a558

maximum distance of 8 for propagating to previous actions that received no feedback. For training,559

we use a batch size of 16 agent steps, a learning rate of 0.001, and ADAM [17] for optimization. We560

re-initialize model parameters from scratch at the beginning of each round of parameter optimization.561

We use a held-out subset of the original CEREALBAR training set as a validation set for early stopping,562

comprising 5% of the original split. After each epoch, we evaluate model performance using SWSD563

(Appendix D) on the validation set. We use patience for stopping; if ten epochs have passed since the564

last epoch where the validation SWSD surpassed the previous global maximum, we terminate the565

training process and choose the model parameters that maximize validation SWSD. We use a single566

GeForce RTX 2080 Ti for training each model. Training a single model takes about 28.9 hours on567

average. We run inference on CPU during deployment.568

Comparison of Learning Design Choices In our second experiment comparing different learning569

design choices, we deploy for five rounds. This number of rounds was chosen because after five570

rounds in the long-term experiment (Section 5.1), learning trends were clear; this choice balances571

experiment cost and insight. If we acquire more than 200 interactions per round because of the572

crowdsourcing process, we select exactly 200 games for training and analysis by preferring earlier573

games played by each worker. We discard the other games.574

D Evaluation575

Instruction Execution Accuracy For each deployed agent, we randomly sample instruction execution576

traces Ee ✓ Ec ✓ E for manual evaluation. Ec contains all instructions marked as complete by the577

agent, and E contains instructions that were either marked as complete or rebooted.13 Excluding578

rebooted instructions from this evaluation creates a biased sample, as reboots nearly always reflect579

11We assign zero probability to inexecutable actions, i.e., one that would result in an intersection with an
obstacle.

12We use the implementation provided by HuggingFace at https://huggingface.co/docs/
tokenizers/.

13In this evaluation, we ignore all instructions that were not completed due to the game ending.

15

https://huggingface.co/docs/tokenizers/
https://huggingface.co/docs/tokenizers/

incorrect instruction execution, so we re-adjust accuracy estimates based on reboot rates. We assume580

all rebooted instructions are incorrect executions. The adjusted correctness rate is:581

correctness =
P

e2Ee correct(x,e)

| Ee |
| Ec |
| E | ,

where correct(x, e) is user judgment of execution e = h(oi, ai, wa
i)im

i=1 for instruction x.582

Static Evaluation Data We also evaluate on the development split from Suhr et al. [35], with success583

weighted by stopping distance (SWSD). SWSD is computed per instruction execution:584

SWSD(e0, e⇤) =
e0�1⌘e⇤�1

1+ || e0�1 � e⇤�1 || ,

where e0 is the trace of the agent’s execution of an instruction and e⇤ is the human demonstration.585

e0�1 ⌘ e⇤�1 only if e0 results in the same set of cards selected as in e⇤. || e0�1 � e⇤�1 || is the hex586

distance between stopping positions. SWSD is stricter than simple card-state accuracy [35], as it587

gives only partial credit to instructions where an execution stops in an incorrect position.588

E Crowdsourcing and Data Details589

This study received an exemption from the Institutional Review Board of the institution where the590

research was conducted. Worker identities are anonymized in the data we release.591

We qualify workers through a tutorial and a short quiz about the game rules. Workers are also required592

to reside in an English-majority locale and have a HIT approval rate of over 90% with at least 100593

approved HITs during their time on MTurk. The base pay for completing the qualification task is594

$0.50 USD, and qualified workers receive a $2.00 bonus. We qualify 108 workers. Following Suhr595

et al. [35], we pay workers bonuses per point earned in each game, increasing the compensation per596

point as the game score increases. On average across all experiments, each game costs $2.91 and597

workers are paid an average of $21.85 per hour.598

We split workers into two pools: expert and novice. Expert workers earn a 50% higher bonus per599

game than novice workers. Workers are moved to the expert pool after playing at least two games with600

a score greater than zero, as long as their rate of giving feedback is greater than 75% of instructions.14601

Workers return to the novice pool if they play for two rounds with a feedback rate of less than 75%602

of instructions. 65 workers achieve and maintain expert status throughout the experiments. Only603

expert workers are qualified to provide post-hoc instruction execution judgments, where they are604

paid $0.07 per judgment of instruction execution. Worker IDs are anonymized in the distribution of605

interaction data. Figure 5 shows the instructions provided to workers in MTurk, and Figure 6 shows606

the CEREALBAR interface during interaction.607

Agreement For about 20% of instruction execution receiving post-hoc judgments, we acquire608

judgments from three workers; we find that for only 3.6% of these no consensus is achieved among609

the three workers, which indicates very high overall agreement.610

F Additional Results611

F.1 User Perception of Agents for Comparison of Learning Design Choices612

Figure 7 shows the Likert distribution for the three post-interaction statements users are asked about613

for the experiments comparing learning design choices, where we concurrently deployed five systems614

for five rounds.615

F.2 Evaluation on Static Data616

Evaluation through human-agent interaction is the main focus of our work. However, we also evaluate617

instruction-following agents against held-out, static data from Suhr et al. [35]. This evaluation does618

14The rate of feedback per instruction measures the proportion of instructions where at least one action in the
follower’s instruction execution is given positive or negative feedback, including a reboot.

16

Figure 5: Instructions provided to workers for the main task on MTurk. Detailed instructions about
gameplay were provided on a separate set of webpages, and will be available alongside our code
when released.

Figure 6: The CEREALBAR interaction interface. Users provide instructions in the command box, and
feedback via either buttons in the GUI or keypresses. The follower’s partial view of the environment
is visible in the bottom righthand corner of the interface.

not take into account how the actual data distribution shifts over the agent’s lifetime, because of the619

dynamics between the agent and human users. Figure 8 shows average SWSD for the models deployed620

in each round. SWSD begins at 39.7 for the initial model, and peaks at 46.4. This improvement is621

due entirely to adding training data acquired from human-agent interactions.622

17

0 20 40 60 80 100

1

5
REWARDPROP

The follower completed all the tasks

I instructed them to do.

0 20 40 60 80 100

1

5
SIMPLEREWARD

0 20 40 60 80 100

1

5
NONEGATIVE

0 20 40 60 80 100

1

5
FEWERDEMO

0 20 40 60 80 100

1

5
SUPONLY

0 20 40 60 80 100

1

5
REWARDPROP

The follower only did things that I asked them

to do, and no more than that.

0 20 40 60 80 100

1

5
SIMPLEREWARD

0 20 40 60 80 100

1

5
NONEGATIVE

0 20 40 60 80 100

1

5
FEWERDEMO

0 20 40 60 80 100

1

5
SUPONLY

0 20 40 60 80 100

1

5
REWARDPROP

The follower executed my instructions efficiently,

using the minimum number of steps required.

0 20 40 60 80 100

1

5
SIMPLEREWARD

0 20 40 60 80 100

1

5
NONEGATIVE

0 20 40 60 80 100

1

5
FEWERDEMO

0 20 40 60 80 100

1

5
SUPONLY

Figure 7: Distribution of post-interaction user agreement with three statements about the follower’s
performance for our approach comparison experiment.

18

1 2 3 4 5

·104

40

42

44

46

Number of Training Instructions

D
ev

el
op

m
en

tS
et

SW
SD

Figure 8: SWSD on the held-out development data, averaged over five runs of sampling-based
inference.

19

	Introduction
	Technical Overview
	Continual Learning
	Deployment Interactions
	Dataset Construction
	Parameter Optimization

	Experimental Setup
	Results and Analysis
	Long-Term Experiment
	Comparison of Learning Design Choices

	Related Work
	Discussion
	Limitations and Broader Impacts
	Model
	Inference

	Implementation Details
	Evaluation
	Crowdsourcing and Data Details
	Additional Results
	User Perception of Agents for Comparison of Learning Design Choices
	Evaluation on Static Data

