
A Limitation, future work, and societal impact452

A.1 Limitation and future work453

There are several limitations to this work that future research can further explore. First, we focus454

our scope on compositionality benchmarks formulated as image-to-text retrieval task. While this is455

currently the most prevailing evaluation framework, future research can characterize compositionality456

evaluation as text-to-image retrieval problem, as in the initial efforts considered by [32, 39]. More im-457

portantly, we hope our work can guide future efforts in creating and ensuring faithful compositionality458

benchmarks in text-to-image form. Second, in this work, we identify two human interpretable dataset459

biases, the nonsensical and non-fluent biases, which may not cover all dataset artifacts that could460

possibly be exploited by a model. Future work may utilize more sophisticated techniques to remove461

spurious dataset artifacts beyond human comprehension [20]. Finally, we focus our evaluations on462

contrastively learned vision-language models [30]. Future work should include and characterize the463

compositionality of modern generative vision-language models [1, 5, 21].464

A.2 Societal impact465

As vision-language models such as CLIP [30] are becoming the foundation models for many down-466

stream applications [34, 31], it is imperative to understand the limitations of these models to avoid467

misuses and undesirable outcomes [6, 2]. Compositionality benchmarks probe a model’s understand-468

ing of finer-grained concepts, and hence allow us to identify blind spots [42, 45, 26] of seemingly469

powerful models deemed by standard classification and retrieval benchmarks [9, 23]. Our work fur-470

ther alleviates common artifacts in existing compositionality benchmarks that result in overestimation471

of a model’s capability. We hope our proposed benchmark SUGARCREPE leads to more faithful472

assessment of a vision-language model’s compositionality, and can hence guide more accurate usages473

of the models. Nevertheless, we note that strong performances on SUGARCREPE do not imply perfect474

models. We envision SUGARCREPE being one of the many benchmarks used to comprehensively475

understand the abilities of vision-language models from various aspects.476

B Implementation details477

B.1 Hardware information478

All experiments are run on a machine with an Intel(R) Xeon(R) CPU E5-2678 v3 with a 512G479

memory and two 48G NVIDIA RTX A6000 GPUs.480

B.2 Dataset sources481

We obtain all existing datasets from their original sources released by the authors. We refer readers to482

these sources for the dataset licenses. To the best of our knowledge, the data we use does not contain483

personally identifiable information or offensive content.484

• CREPE [26]: We obtain CREPE dataset from its official repository 4.485

• ARO [42]: We obtain ARO dataset from its official repository 5.486

• VL-CheckList [45]: We obtain VL-CheckList dataset from its official repository 6.487

• COCO [23]: We obtain COCO from its official project website 7.488

4https://github.com/RAIVNLab/CREPE
5https://github.com/mertyg/vision-language-models-are-bows
6https://github.com/om-ai-lab/VL-CheckList
7https://cocodataset.org/
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B.3 Software configuration489

Models. We detail the sources of the pretrained models we use in the paper, and the hyper-parameters490

used in training our own models.491

• Vera model [24]: We obtain pretrained Vera model released by its author 8.492

• Grammar model [27]: We obtain the Grammar model released by the authors 9.493

• All pretrained CLIP models: We obtain all pretrained CLIP models’ weights from Open-494

CLIP 10.495

• NEGCLIP [42]: We obtain weights for pretrained NEGCLIP released by the authors 11.496

• Models trained from scratch: We train RN50 based on OpenCLIP codebase and set hype-497

rparameters as following: number of warmup steps is 1000, batch size is 256, learning rate498

is 1e-4, weight decay is 0.1, number of epochs is 30. We augment the original CLIP loss499

with hard negative captions following NEGCLIP [42].500

Evaluations. We base our evaluation framework on OpenCLIP [16]. We follow all default hyper-501

parameters used for evaluating models.502

C Vision-language compositionality benchmarks503

We provide an overview of existing vision-language compositionality benchmarks below, with Table 7504

summarizing the dataset comparisons.505

C.1 Image-to-text formulation506

A majority of current benchmarks formulate the evaluation task as image-to-text retrieval problem.507

These benchmarks generate hard negative texts procedurally through rule-based templates, where508

each benchmark considers different types of hard negatives.509

VL-Checklist [45]. VL-CheckList aims at evaluating vision-language models’ understanding of510

different objects, attributes, and relationships. It contains REPLACE hard negatives generated by511

replacing atomic parts of the positive texts with other foils. VL-CheckList further breaks the hard512

negatives down into more granular categories based on the type of the replaced atomic part, i.e.,513

object, attribute, or relationship.514

ARO [42]. ARO focuses on models’ understanding of different relationships, attributes, and order515

information. It considers SWAP and SHUFFLE hard negatives. SWAP hard negatives are generated by516

swapping two words in the positive texts; on the other hand, SHUFFLE hard negatives are generated517

by shuffling words in the positive texts. ARO further divides SWAP hard negatives into attribute or518

relationship type.519

CREPE [26]. CREPE is a large-scale evaluation benchmark that includes three types of hard520

negatives: REPLACE, SWAP and NEGATE. REPLACE and SWAP hard negatives are generated as521

in VL-CheckList and ARO. In addition, NEGATE hard negatives are generated by adding negation522

keywords (i.e., not or no) to the original positive texts. The hard negatives are not further divided into523

fine-grained types (object, attribute, or relations).524

C.2 Text-to-image formulation525

Complementary to image-to-text formulation, compositionality can as well be evaluated by probing526

a model to select an image that best matches a given text description, against other hard negative527

8https://huggingface.co/liujch1998/vera
9https://huggingface.co/textattack/distilbert-base-uncased-CoLA

10https://github.com/mlfoundations/open_clip
11https://github.com/mertyg/vision-language-models-are-bows
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Table 7: Summary on vision-language compositionality benchmarks. SUGARCREPE considers
image-to-text formulation to enable larger scale evaluation set. In addition, SUGARCREPE considers
a wide range of hard negative types. SHUFFLE and NEGATE are omitted as they introduce inevitable
biases discussed in Sec. 4.2.

Hard Negative Text Type
Benchmark Task Formulation Scale SHUFFLE REPLACE SWAP NEGATE ADD

VL-CheckList [45] Image-to-Text > 1000 X
ARO [42] Image-to-Text > 1000 X X
CREPE [26] Image-to-Text > 1000 X X X
Winoground [39] Image-to-Text / Text-to-Image 400 X
Cola [32] Text-to-Image 210 N/A

SUGARCREPE Image-to-Text > 1000 X X X

images as distractors. Unlike hard negative texts, hard negative images are more difficult to obtain528

and thus current text-to-image compositionality benchmarks are smaller at scale.529

Winoground [39]. Winoground is a small dataset manually curated by human annotators. Each530

example in the dataset contains two images and two matching captions, where both captions contain531

identical words that appear in different orders. Note that Winoground can be used for either image-532

to-text or text-to-image retrieval. While the original intention for Winoground is to evaluate vision-533

language compositionality, recent work [10] has pointed out that solving the tasks in Winoground534

requires not just compositional vision-language understanding, but additionally a suite of other535

abilities such as commonsense reasoning, or distinguishing visually difficult images.536

Cola [32]. Cola tests a vision-language model’s ability to select an image that correctly matches a537

given caption, against another distractor image with the same objects and attributes but in the wrong538

composition. The image pairs are mined from existing datasets. As a result, the final evaluation set is539

relatively small in size (210 examples in total).540

We deem text-to-image evaluation as important as image-to-text evaluation. Future work can explore541

approaches to generate or mine compositional hard negative images at scale, as preliminarily explored542

in [32, 42].543

D SUGARCREPE544

D.1 Taxonomy545

Figure 6 shows the taxonomy of SUGARCREPE. We first categorize the hard negatives based on546

their forms: REPLACE, SWAP, and ADD. We then further divide each type of hard negatives into547

finer-grained sub-categories based on the type (object, attribute, or relation) of the atomic concept548

altered. SUGARCREPE covers a total of 7 fine-graind hard negative types.549

SUGARCREPE

REPLACE

REPLACE-OBJ REPLACE-ATT REPLACE-REL

SWAP

SWAP-OBJ SWAP-ATT

ADD

ADD-OBJ ADD-ATT

Figure 6: Taxonomy of hard negatives considered in SUGARCREPE.
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Given an input sentence describing a scene, your task 
is to:
1. Locate the noun words in the sentence.
2. Randomly pick one noun word.
3. Replace the selected noun word with a new noun word 
to make a new sentence.

The new sentence must meet the following three 
requirements:
1. The new sentence must be describing a scene that is 
as different as possible from the original scene.
2. The new sentence must be fluent and grammatically 
correct.
3. The new sentence must make logical sense.

Here are some examples:

Original sentence: A man is in a kitchen making pizzas.
Nouns: ["man", "kitchen", "pizzas"]
Selected noun: man
New noun: woman
New sentence: A woman is in a kitchen making pizzas.

Original sentence: a woman seated on wall and birds 
besides her
Nouns: ['woman', 'wall', 'birds']
Selected noun: wall
New noun: bench
New sentence: A woman seated on a bench and birds 
besides her.

(a) REPLACE-OBJ.

Given an input sentence describing a scene, your task 
is to:
1. Locate the adjective words describing objects in the 
sentence. If there are no adjective words, return an 
empty list.
2. Randomly pick one adjective word.
3. Replace the selected adjective word with a new 
adjective word to make a new sentence.

The new sentence must meet the following three 
requirements:
1. The new sentence must be describing a scene that is 
as different as possible from the original scene.
2. The new sentence must be fluent and grammatically 
correct.
3. The new sentence must make logical sense.

Here are some examples:

Original sentence: a blue bike parked on a side walk.
Adjectives: ["blue"]
Selected adjective: blue
New adjective: red
New sentence: a red bike parked on a side walk.

Original sentence: The kitchen is clean and ready for 
us to see.
Adjectives: ["clean", "ready"]
Selected adjective: clean
New adjective: dirty
New sentence: The kitchen is dirty and ready for us to 
see.

(b) REPLACE-ATT.
Given an input sentence describing a scene, your task 
is to:
1. Find any action or spatial relationships between two 
objects in the sentence. If there are no such 
relationships, return an empty list.
2. Randomly pick one relationship.
3. Replace the selected relationship with a new 
relationship to make a new sentence.

The new sentence must meet the following three 
requirements:
1. The new sentence must be describing a scene that is 
as different as possible from the original scene.
2. The new sentence must be fluent and grammatically 
correct.
3. The new sentence must make logical sense.

Here are some examples:

Original sentence: The dining table near the kitchen 
has a bowl of fruit on it.
Relationships: ["near", "on"]
Selected relationship: near
New relationship: far from
New sentence: The dining table far from the kitchen has 
a bowl of fruit on it.

Original sentence: A couple of buckets in a white room.
Relationships: ['in']
Selected relationship: in
New relationship: outside
New sentence: A couple of buckets outside a white room.

(c) REPLACE-REL.

Figure 7: Example prompt templates (black) and outputs (green) from ChatGPT for REPLACE hard
negatives.

D.2 Hard negative generation procedure and templates550

To generate hard negatives in SUGARCREPE, we come up with three different prompt templates for551

the three hard negative types considered: REPLACE, SWAP, and ADD. Each template consists of task552

instruction for generating the corresponding type of hard negatives and several (7 or more) few-shot553

demonstrations. We describe the general generation procedure and example prompt templates below554

and refer readers to our dataset repository for the full prompts used 12 .555

Generating REPLACE hard negatives. To best leverage ChatGPT’s capabilities, we devise a three-556

step workflow to generate REPLACE hard negatives: (1) We prompt ChatGPT in locating the desired557

atomic concepts (e.g., objects) in the sentence; (2) We prompt ChatGPT to generate a new concept to558

replace a randomly selected old concept; (3) We let ChatGPT compose a new sentence by replacing559

the old concept with the new one. For steps (1) and (3), we prompt ChatGPT with a temperature560

of 0.0 to get stable outputs. For step (2), however, we diversify the outputs by prompting ChatGPT561

with a higher temperature of 1.5. With this design, we are able to generate diverse REPLACE hard562

negatives. Figure 7 shows the example templates and outputs for REPLACE hard negatives.563

12https://github.com/RAIVNLab/sugar-crepe
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Given an input sentence describing a scene, your task 
is to first locate two swappable noun phrases in the 
sentence, and then swap them to make a new sentence.
The new sentence must meet the following three 
requirements:
1. The new sentence must be describing a different 
scene from the input sentence.
2. The new sentence must be fluent and grammatically 
correct.
3. The new sentence must make logical sense.

To complete the task, you should:
1. Answer the question of whether generating such a new 
sentence is possible using Yes or No.
2. Output the swappable noun phrases.
3. Swap them to make a new sentence.

Here are some examples:

Input: A cat resting on a laptop next to a person.
Is it possible to swap noun phrases in the input 
sentence to generate a new sentence that is different 
from the input sentence and makes logical sense? Yes
Swappable noun phrases: laptop, person 
Output: A cat resting on a person next to a laptop.

Input: A plate of donuts with a person in the 
background.
Is it possible to swap noun phrases in the input 
sentence to generate a new sentence that is different 
from the input sentence and makes logical sense? Yes
Swappable noun phrases: a plate of donuts, a person 
Output: A person with a plate of donuts in the 
background.

(a) SWAP-OBJ.

Given an input sentence describing a scene, your task 
is to first locate two swappable adjectives in the 
sentence describing different objects, and then swap 
them to make a new sentence.
The new sentence must meet the following three 
requirements:
1. The new sentence must be describing a different 
scene from the input sentence.
2. The new sentence must be fluent and grammatically 
correct.
3. The new sentence must make logical sense.

To complete the task, you should:
1. Answer the question of whether generating such a new 
sentence is possible using Yes or No.
2. Output the swappable adjectives.
3. Swap them to make a new sentence.

Here are some examples:

Input: A girl in a pink shirt holding a blue umbrella.
Is it possible to swap attributes in the input sentence 
to generate a new sentence that is different from the 
input sentence and makes logical sense? Yes
Swappable attributes: pink, blue 
Output: A girl in a blue shirt holding a pink umbrella.

Input: A girl with a green shirt brushing her teeth 
with a blue toothbrush.
Is it possible to swap attributes in the input sentence 
to generate a new sentence that is different from the 
input sentence and makes logical sense? Yes
Swappable attributes: green, blue
Output: A girl with a blue shirt brushing her teeth 
with a green toothbrush.

(b) SWAP-ATT.

Figure 8: Example prompt templates (black) and outputs (green) from ChatGPT for SWAP hard
negatives.

Given an input sentence describing a scene, your task 
is:
1. Find the objects in the sentence.
2. Randomly pick one object.
3. Generate a new object that's not in the sentence.
4. Add the new object next to the selected object to 
make a new sentence.

The new sentence must meet the following three 
requirements:
1. The new sentence must describe a clearly new and 
different scene.
2. The new sentence must be fluent and grammatically 
correct.
3. The new sentence must make logical sense.

Here are some examples:

Original sentence: An elephant standing under the shade 
of a tree.
Objects: ["elephant", "shade of a tree"]
Selected object: elephant
New object: squirrel
New sentence: An elephant and a squirrel standing under 
the shade of a tree.

Original sentence: A bench at the beach next to the sea
Objects: ['bench', 'beach', 'sea']
Selected object: bench
New object: umbrella
New sentence: An umbrella and a bench at the beach next 
to the sea.

(a) ADD-OBJ.

Given an input sentence describing a scene, your task 
is:
1. Find the objects in the sentence.
2. Randomly pick one object.
3. Generate a new plausible but uncommon attribute for 
this object that's not in the sentence.
4. Add the new attribute next to the selected object to 
make a new sentence.

The new sentence must meet the following three 
requirements:
1. The new sentence must describe a clearly new and 
different scene.
2. The new sentence must be fluent and grammatically 
correct.
3. The new sentence must make logical sense.

Here are some examples:

Original sentence: A large white airplane and a person 
on a lot.
Objects: ["airplane", "person"]
Selected object: airplane
New attribute: blue
New sentence: A large white and blue airplane and a 
person on a lot.

Original sentence: three people riding horses on a 
beach 
Objects: ['three people', 'horses', 'beach']
Selected object: three people
New attribute: elderly
New sentence: Three elderly people riding horses on a 
beach.

(b) ADD-ATT.

Figure 9: Example prompt templates (black) and outputs (green) from ChatGPT for ADD hard
negatives.

Generating SWAP hard negatives. To generate SWAP hard negatives, which do not require any564

new concepts, we simply prompt ChatGPT once with a temperature of 0.0. Unlike REPLACE, SWAP565

hard negatives are only possible when there are at least two atomic concepts of the same category,566

i.e., either object or attribute. Thus, our prompt first queries ChatGPT whether it is possible to swap567

two atomic concepts in the input sentence to generate a new description. Only if the answer is yes,568

will ChatGPT then proceed to identify two swappable concepts and compose the corresponding new569

sentence by swapping the two concepts. Figure 8 shows the example templates and outputs for SWAP570

hard negatives.571

Generating ADD hard negatives. Similar to the REPLACE, we also employ a three-step prompting572

procedure to generate ADD hard negatives. The only difference in the procedure is that we prompt573
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ChatGPT to add the generated new concept to the original caption, instead of using it to replace an574

old concept. Figure 9 shows the example templates and outputs for ADD hard negatives.575

D.3 Adversarial refinement576

We detail the adversarial refinement procedure below. Given a text model M , we denote its output577

score for the positive and negative caption of i-th image as M(pi) and M(ni). If M(pi) > M(ni),578

then the model could identify the correct caption for the i-th image without referring to it. For a test579

set to be unattackable given the text model M , the expectation of M ’s identifying the correct caption580

should be as close to random guess as possible; in particular, we hope that Ei[M(pi) > M(ni)] = 0.5.581

To achieve this for both the grammar model M1 and plausibility model M2, we first calculate the score582

difference g(1)i = M1(pi)�M1(ni) and g(2)i = M2(pi)�M2(ni), where the range of both g(1) and583

g(2) is [�1, 1]. Then we split the 2D space of the joint range of g(1) and g(2) into 100⇥100 equal grids,584

and for each pair of symmetric grids, e.g., {(g(1), g(2))|g(1) 2 (0.02, 0.04], g(2) 2 (�0.04, 0.06]}585

and {(g(1), g(2))|g(1) 2 (�0.02,�0.04], g(2) 2 (0.04,�0.06]}, we preserve the same number of586

data for both grids, therefore we ensure that for the resultant set, Ei[M1(pi) > M1(ni)] = 0.5 and587

Ei[M2(pi) > M2(ni)] = 0.5.588

D.4 Dataset information589

We host SUGARCREPE on Github 13. The data card [29] for SUGARCREPE, containing detailed590

dataset documentation, is available at the dataset repository 14. We provide a summary below.591

Dataset documentation. SUGARCREPE is a benchmark for faithful vision-language compositionality592

evaluation. Given an image, a model is required to select the positive text that correctly describes the593

image, against another hard negative text distractor that differs from the positive text only by small594

compositional changes. Each example consists of three fields:595

• filename: The id to an image596

• caption: Positive text correctly describing the image597

• negative_caption: Hard negative text incorrectly describing the image598

Maintenance plan. We are committed to maintain the dataset to address any technical issues. We599

actively monitor issues in the repository.600

Licensing. We license our work using MIT License 15. All the source data we use is publicly released601

by prior work [23].602

Author statement. We the authors will bear all responsibility in case of violation of rights.603

E Detailed evaluation results604

E.1 Full evaluation results on existing benchmarks605

We provide the full evaluation results over 17 pretrained CLIP models as well as 2 text-only models,606

Vera [24] and the Grammar model [27], on existing compositionality benchmarks in Table 8. We see607

that the text-only models, arguably without any vision-language compositionality, outperform most of608

the pretrained CLIP models, achieving state-of-the-art performances on many benchmark tasks. This609

implies that current benchmarks fail to faithfully reflect a model’s vision-language compositionality.610

13https://github.com/RAIVNLab/sugar-crepe
14https://github.com/RAIVNLab/sugar-crepe/blob/main/data_card.pdf
15https://github.com/RAIVNLab/sugar-crepe/blob/main/LICENSE
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Table 8: Blind models (i.e., Vera and Grammar model) outperform all 17 existing pretrained CLIP
models on nearly all existing benchmark tasks. This implies that current benchmarks fail to faithfully
measure a model’s vision-language compositionality.

CREPE ARO VL-Checklist
Source Model Atomic Swap Negate VG-Relation VG-Attribution COCO-Order Flickr30K-Order Object Attribute Relation

Text-only model Vera [24] 43.70 70.80 66.15 61.71 82.59 59.81 63.52 82.48 73.99 85.72
Grammar [27] 18.15 50.88 9.77 59.55 58.38 74.33 76.26 57.95 52.35 68.50

OpenAI [30]

RN50 26.47 28.32 31.25 53.87 63.37 44.89 52.46 86.85 68.30 75.95
RN101 27.63 32.74 12.50 52.43 62.93 29.86 39.34 86.44 67.93 71.75
RN50x4 26.24 28.32 9.51 51.59 62.27 29.39 34.56 87.23 68.74 73.81
ViT-B-32 22.31 26.55 28.78 51.12 61.33 37.14 47.18 87.00 68.80 77.04
RN50x16 26.36 29.65 9.38 52.13 62.71 29.95 34.26 86.95 69.34 76.83
RN50x64 26.82 30.09 23.57 51.00 62.56 40.54 46.74 87.71 68.61 74.97
ViT-L-14 26.36 25.66 24.74 53.34 61.50 36.11 45.08 87.86 68.27 75.89

LAION [36]

ViT-H-14 23.70 25.22 16.54 50.33 62.93 25.79 30.96 85.39 68.46 71.13
ViT-g-14 23.70 24.78 20.70 51.60 61.20 25.59 30.10 86.07 69.43 71.03
ViT-bigG-14 23.58 24.78 17.97 51.61 61.89 25.24 30.22 84.66 67.80 66.48
roberta-ViT-B-32 22.66 21.24 20.31 47.46 62.00 24.77 30.76 85.71 68.82 65.90
xlm-roberta-base-ViT-B-32 21.16 20.80 12.76 47.93 59.73 23.85 30.32 86.06 70.41 63.01
xlm-roberta-large-ViT-H-14 24.16 23.89 20.05 46.14 57.84 26.05 31.00 87.89 70.25 63.89

DataComp [12]

small:ViT-B-32 13.64 27.88 14.84 50.83 50.17 13.35 14.02 68.72 58.80 57.00
medium:ViT-B-32 16.42 20.35 11.33 50.45 54.04 16.44 16.26 78.43 63.53 62.94
large:ViT-B-16 18.15 17.26 17.06 48.82 53.21 21.49 26.44 84.73 65.72 64.81
x-large:ViT-L-14 21.62 22.57 16.28 48.54 60.03 23.19 29.52 86.66 67.01 67.93

E.2 SUGARCREPE human evaluation611

To compare the quality of the hard negatives generated in SUGARCREPE to those in current bench-612

marks (i.e., ARO+CREPE), we randomly sample 100 examples for each of the hard negative types:613

REPLACE, SWAP, and NEGATE / ADD. Each example is organized to consist of (1) the original posi-614

tive text, (2) its hard negative in ARO+CREPE, and (3) its hard negative in SUGARCREPE. For each615

example, a human user rates whether the hard negative in ARO+CREPE or that in SUGARCREPE616

is better (or tie) in terms of commonsense and grammatical correctness, respectively. Note that we617

compare NEGATE in ARO+CREPE to ADD in SUGARCREPE, as both hard negatives are intended to618

probe a model’s understanding of the existence or not of an atomic concept. Table 9 shows that hard619

negatives in SUGARCREPE are much more sensical and fluent than that in ARO+CREPE across all620

three different types. For instance, SUGARCREPE has 68% more sensical and 46% more fluent hard621

negatives than ARO+CREPE on SWAP.622

Table 9: Human evaluation results on the comparisons between hard negatives in ARO+CREPE and
SUGARCREPE. We report the counts (out of 100 sampled examples) that the human user considers
better or tie, w.r.t. both commonsense and grammatical correctness.

Human counts of better examples

Hard-negative Type Evaluation ARO+CREPE SUGARCREPE Tie

REPLACE
Commonsense 11 29 60
Grammar 4 33 63

SWAP
Commonsense 4 68 28
Grammar 4 46 50

NEGATE / ADD
Commonsense 1 26 73
Grammar 1 35 64
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