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1 Organization1

In Section 2, we describe the settings of all the tasks and datasets that we have tested our models on.2

In Section 3, we provide additional results on logical inference and sentiment classification. Then, in3

Section 4, we present an extended survey of related works. In Section 5, we detail our architecture4

setup including the sequence-interaction models. In Section 6, we provide our hyperparameters. Last,5

further details on BT-RvNN (if necessary) can be found in the document titled “Beam Tree Recursive6

Cells" provided in the supplementary (however, we described the salient aspects of the model in the7

main paper).8

2 Task Details9

ListOps: ListOps was introduced by Nangia and Bowman [36] and is a task for solving nested lists10

of mathematical operations. It is a 10-way classification task. Similar to Chowdhury and Caragea [6],11

we train our models on the original training set with all samples ≥ 100 sequence lengths filtered out.12

We use the original development set for validation. We test on the following sets: the original test13

set (near-IID split); the length generalization splits from Havrylov et al. [20] that include samples14

of much higher lengths; the argument generalization splits from Anonymous [1] that involve an15

unseen number of maximum arguments for each operator; and the LRA split (which has both higher16

sequence length and higher argument number) from Tay et al. [52].17

Logical Inference: Logical Inference was introduced by Bowman et al. [3] and is a task that involves18

classifying fine-grained inferential relations between two given sequences in a form similar to that of19

formal sentences of propositional logic. Similar to Tran et al. [54], our models were trained on splits20

with logical connectives ≤ 6. We show the results in OOD test sets with logical connections 10-12.21

We use the same splits as Shen et al. [44], Tran et al. [54], Chowdhury and Caragea [6].22

SST5: SST5 is a fine-grained 5-way sentiment classification task introduced by Socher et al. [50].23

We use the original splits.24

IMDB: IMDB is a binary sentiment classification task from Maas et al. [31]. We use the same train,25

validation, and IID test sets as created in Anonymous [1]. We also use the contrast set Gardner et al.26

[15] and counterfactual set Kaushik et al. [26] as additional test splits.27

QQP: QQP1 [25] is a task of classifying whether two given sequences in a pair are paraphrases of28

each other or not. As standard Wang et al. [56], we randomly sample 10, 000 samples for validation29

and IID test set such that for each split 5, 000 samples are maintained to be paraphrases and the other30

5, 000 are maintained to be not paraphrases. We also use the adversarial test sets PAWSQQP and31

PAWSWIKI form Zhang et al. [62].32

SNLI: SNLI [2] is a natural language inference (NLI) task. It is a 3-way classification task to classify33

the inferential relation between two given sequences. We use the same train, development, and IID34

test set splits as in Chowdhury and Caragea [6]. Any data with a sequence of length ≥ 150 is filtered35
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Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

https://data.quora.com/First-Quora-Dataset-Release-QuestionPairs


Table 1: Mean accuracy and standard deviation on the Logical Inference [3] for ≥ 10 number of
operations after training on samples with ≤ 6 operations, and on SST5 [50] and IMDB [31]. Count.
represents counterfactual test split from Kaushik et al. [26] and Cont. represents contrast test split
from Gardner et al. [15] The best results are shown in bold. Our models were run 3 times on different
seeds. Subscript represents standard deviation. As an example, 901 = 90± 0.1

Logical Inference SST5 IMDB
Model Number of Operations

10 11 12 IID IID Cont. Count.
GT-GRC 90.3322 88.4318 85.7024 51.678.8 85.1110 70.6321 81.975
EGT-GRC 75.7961 73.3868 69.687.8 51.6314 86.582.7 729.2 81.7614
CRvNN 94.512.9 94.485.6 92.7315 51.7511 91.471.2 76.985.8 83.687.8
OM 94.952 93.92.2 93.366.2 52.302.7 91.690.5 77.8015 85.383.5

BT-GRC 95.042.3 94.293.8 93.362.4 52.324.7 91.291.2 75.0729 82.8623
BT-GRC OS 95.434.5 94.216.6 93.391.5 51.927.2 90.869.3 75.6821 84.7711
EBT-GRC 94.951.5 93.877.4 93.046.7 52.221 91.471.2 76.1617 84.2912

out from the training set for efficiency. We use also additional test set splits for stress tests. We use36

the hard test set split from Gururangan et al. [19], the break test set from Glockner et al. [16], and the37

counterfactual test set from Kaushik et al. [26].38

MNLI: MNLI [57] is another NLI dataset, which is similar to SNLI in format. We use the original39

development sets (match and mismatch) as test sets. We filter out all data with any sequence40

length ≥ 150 from the training set. Our actual development set is a random sample of 10, 00041

data-points from the filtered training set. As additional testing sets, we use the development set of42

Conjunctive NLI (ConjNLI) [41] and a few of the stress sets from Naik et al. [35]. These stress test43

sets include - Negation Match (NegM), Negation Mismatch (NegMM), Length Match (LenM), and44

Length Mismatch (LenMM). NegM and NegMM add tautologies containing “not" terms - this can45

bias the models to classify contradiction as the inferential relation because the training set contains46

spurious correlations between existence of “not" related terms and the class of contradiction. LenM47

and LenMM add tautologies to artificially increase the lengths of the samples without changing the48

inferential relation class.49

3 Additional Results50

In Table 1, we show that our EBT-GRC model can keep up fairly well with BT-GRC and BT-GRC51

OS on logical inference [3] and sentiment classification tasks like SST5 [50], and IMDB [15] while52

being much more computationally efficient as demonstrated in the main paper.53

4 Extended Related Works54

RvNN History: Recursive Neural Networks (RvNNs) in the more specified sense of building55

representations through trees and directed acyclic graphs were proposed in [40, 18]. Socher et al.56

[48, 49, 50] extended the use of RvNNs in Natural Language Processing (NLP) by considering57

constituency trees and dependency trees. A few works [63, 51, 28, 64] started adapting Long58

Shot-term Memory Networks [21] as a cell function for recursive processing. Le and Zuidema59

[29], Maillard et al. [33] proposed a chart-based method for simulating bottom-up Recursive Neural60

Networks through dynamic programming. Shi et al. [47], Munkhdalai and Yu [34] explored heuristics-61

based tree-structured RvNNs.62

RvNNs can also be simulated by stack-augmented recurrent neural networks (RNNs) to an extent63

(similar to how pushdown automata can model context-free grammar [42, 27]). There are multiple64

works on stack-augmented RNNs [4, 60, 32]. Ordered Memory [44] is one of the more modern such65

examples. More recently, DuSell and Chiang [12, 13] explored non-deterministic stack augmented66

RNNs and [9] explored other expressive models. Wu [58] presented a survey of latent structure67

models.68
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Choi et al. [5] proposed a greedy search strategy based on easy-first algorithm [17, 30] for auto-69

parsing structures for recursion utilizing STE gumbel softmax for gradient signals. Peng et al. [38]70

extended the framework with SPIGOT and Havrylov et al. [20] extended it with reinforcement71

learning (RL). Anonymous [1] extended it with beam search and soft top-k. Chowdhury and Caragea72

[6], Zhang et al. [61] introduced different forms of soft-recursion.73

Top-down Signal: Similar to us, Teng and Zhang [53] explored bidirectional signal propagation74

(bottom-up and top-down). However, they sent top-down signal in a sequential manner which75

can be expensive - either it can get slow without parallelization or memory-wise expensive with76

parallelization of contextualization of nodes in the same height. Our approach in EBT-GAU also77

has some kinship with BP-Transformer [59]. BP-Transformer allows message passing between a78

fixed subset of parent nodes and terminal nodes created using a heuristics-based balanced binary tree.79

Chart-based models can also create sequence contextualized representations [10, 11] but they can be80

quite expensive by default [1] needing their own separate techniques [22, 23].81

Transformers + RvNNs: There have been several approaches to incorporating RvNN-like inductive82

biases to Transformers. For instance, Universal Transformer [8] introduced weight-sharing and83

dynamic halt to Transformers. Csordás et al. [7] extended on universal transformer with geometric84

attention for locality bias and gating. Shen et al. [46] built on weight-shared transformers with high85

layer depth and group self-attention. Wang et al. [55], Nguyen et al. [37], Shen et al. [45] added86

hierarchical structural biases to self-attention. Fei et al. [14] biased pre-trained Transformers to have87

constituent information in intermediate representations. Hu et al. [22] used Transformer as binary88

recursive cells in chart-based encoders.89

5 Architecture details90

5.1 Sentence Encoder Models91

For the sentence encoder models the architectural framework we use is the same siamese dual-encoder92

setup as Anonymous [1].93

5.2 Sentence Interaction Models94

GAU-Block: Our specific implementation of a GAU-block [24] is detailed below. Our GAU-95

Block can be defined as GAUBlock(x, p,G). The function arguments are of the following forms:96

x ∈ IRn×d, p ∈ IRl×d and G ∈ {0, 1}n×l. x accepts the main sequence of vectors that is to serve as97

attention queries; p accepts either the sequence of intermediate node representations created from our98

RvNN (for parent attention) or it accepts the same input as x (for usual cases); p serves as keys and99

values for attention; G accepts either the adjacency matrix in case of parent attention (where Gij = 1100

iff pj is a parent of xi else Gij = 0), otherwise, it accepts just the usual attention mask; either way,101

G serves as an attention mask.102

x′ = LN(xWinit + binit); p′ = LN(pWinit + binit) (1)
103

u = SiLU(x′Wu + bu); v = SiLU(p′Wv + bv) (2)
104

q = zq ⊙ SiLU(x′Wz + bz) + zbq; k = zk ⊙ SiLU(p′Wz + bz) + zbk (3)
105

A = Softmax(
qkT + pos√

2d
,mask = G) (4)

106
v′ = Av (5)

107
o = (u⊙ v′)Wo + bo (6)

108
g = Sigmoid([o;x]Wgate + bgate) (7)

109
out = g ⊙ o+ (1− g)⊙ x (8)

Here, Winit ∈ IRd×d;Wz ∈ IRd×dh ,Wu,Wv ∈ IRd×2d, binit, bz, bo ∈ IRd; zq, zbq, zk, zbk ∈110

IRdh ; bu, bv ∈ IR2d,Wo,Wgate ∈ IR2d×d. [; ] represents concatenation.111

LN is layer normalization. pos is calculated using the technique of Shaw et al. [43] using relative112

tree height distance for parent attention, or relative positional distance for usual cases.113

3



GAU Sequence Interaction Setup: Let GAUStack represent some arbitrary number of compositions114

of GAUBlocks (multilayered GAU block). GAUStack has the same function arguments as GAUBlock.115

Given two sequences (x1, x2) and their corresponding attention masks (M1,M2) as inputs where116

x1 ∈ IRn1×d, x2 ∈ IRn2×d,M1 ∈ {0, 1}n1×n1 ,M1 ∈ {0, 1}n2×n2 , the GAU setup can be expressed117

as:118

inp = [CLS + seg1;x1 + seg1;SEP ;CLS + seg2, x2 + seg2] (9)
119

r = GAUStack(x = inp, p = inp,G = [M1;M2]) (10)
120

α = Softmax(GELU(rW1 + b1)W2 + b2) (11)
121

cls′ =
∑
i

αir (12)

122

logits = GELU(cls′W logits
1 + blogits1 )W logits

2 + blogits2 (13)

Here, CLS, SEP, seg1, seg2 ∈ IR1×d are randomly initialized trainable vectors; seg1, seg2 are123

segment embeddings. W1 ∈ IRd×d,W2 ∈ IRd×1; b1, b2, b
logits
1 ∈ IRd; blogits2 ∈ IRc;W logits

1 ∈124

IRd×d, W logits
2 ∈ IRd×c. c is the number of classes for the task.125

EGT-GAU Sequence Interaction Setup: EGT-GAU starts from the same input as above. Let us126

also assume we have the EGT-GRC(x) module which takes a sequence of vectors x ∈ IRn×d as127

the input to recursively process and outputs (cls, p,G) where cls ∈ IR1×d is the root representation,128

p ∈ IRl×d is the sequence of non-terminal representations from the tree, and G ∈ {0, 1}n×l is the129

adjacency matrix for parent attention (i.e., Gij = 1 iff pj is a parent of xi, else Gij = 0). Technically,130

tree height information is also extracted for relative position but we do not express that explicitly for131

the sake of brevity. With these elements, EGT-GAU can be expressed as below:132

cls1, p1, G1 = EGT-GRC(x = x1); cls2, p2, G2 = EGT-GRC(x = x2) (14)
133

x′
1 = GAUStack1(x = x1, p = p1, G = G1); x′

2 = GAUStack1(x = x2, p = p2, G = G2) (15)
134

cls′1 = GELU(cls1W
cls
1 + bcls1 )W cls

2 + bcls2 ; cls′2 = GELU(cls2W
cls
1 + bcls1 )W cls

2 + bcls2 (16)
135

inp = [cls′1 + seg1;x
′
1 + seg1;SEP ; cls′2 + seg2, x

′
2 + seg2] (17)

136

r = GAUStack2(x = inp, p = inp,G = [M1;M2]) (18)

Everything else after eqn. 18 is the same as eqn. 11 to 13. SEP, seg1, seg2 ∈ IR1×d; seg1, seg2 are137

segment embeddings as before. W cls
1 ,W cls

2 ∈ IRd×d; bcls1 , bcls2 ∈ IRd.138

EBT-GAU Sequence Interaction Setup: This setup is similar to that of EGT-GAU but with a few139

changes. EBT-GAU uses EBT-GRC as a module instead of EGT-GRC. EBT-GAU returns outputs of140

the form (cls, bp, bG, s) where cls ∈ IR1×d is the beam-score-weighted-averaged root representation,141

bp ∈ IRb×l×d are the beams (beam size b) of sequences of non-terminal representations from the142

tree, bG ∈ {0, 1}b×n×l are the beams of adjacency matrices for parent attention, and s ∈ IRb are the143

softmax-normalized beam scores. Let NGAUStack represent the same function as GAUStack but144

formalized for batched processing of multiple beams of sequences. With these elements, EBT-GAU145

can be expressed as:146

cls1, bp1, bG1, s1 = EBT-GRC(x = x1); cls2, bp2, bG2, s2 = EBT-GRC(x = x2) (19)
147

bx1 = repeat(x1, b); bx2 = repeat(x2, b) (20)
148

bx′
1 = NGAUStack1(bx1, bp1, bG1); bx′

2 = NGAUStack1(bx2, bp2, bG2) (21)
149

x′
1 =

∑
i

s[i] · bx′
1[i]; x′

2 =
∑
i

s[i] · bx′
2[i] (22)

Everything else after eqn. 22 is the same as the equations 16-18 followed by the equations 11 to 13.150

repeat(x, b) changes x ∈ IRn×d to bx ∈ IRb×n×d by batching the same x for b times.151
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6 Hyperparameter details152

For sentence encoder models, we use the same hyperparameters as [1] (the preprint of the paper153

is available in the supplementary in anonymized form) for all the datasets. The only new hyper-154

parameter for EBT-GRC is ds which we set as 64; otherwise the hyperparameters are the same155

as that of BT-GRC or BT-GRC OS. We discuss the hyperparameters of the sequence interaction156

models next. For EBT-GAU/EGT-GAU, we used a two-layered weight-shared GAU-Blocks for157

NGAUStack1/GAUStack1 and a three-layered weight-shared GAU-Blocks for GAUStack2 (for pa-158

rameter efficiency and regularization). GAU uses a five-layered GAU-Blocks (weights unshared) for159

GAUStack so that the parameters are similar to that of EBT-GAU or EGT-GAU. We use a dropout160

of 0.1 after the multiplation with Wo in each GAUBlock layer and a head size dh of 128 (similar161

to Hua et al. [24]). For relative position, we set k = 5 (k here corresponds the receptive field for162

relative attention in Shaw et al. [43]) for normal GAUBlocks and k = 10 for parent attention (since163

parent attention is only applied to higher heights, we do not need to initialize weights for negative164

relative distances). Other hyperparameters are kept same as the sentence encoder models. The165

hyperparameters of MNLI, SNLI, and QQP are shared. Note that all the natural language tasks are166

trained with fixed 840B Glove Embeddings [39] as in Anonymous [1]. All models were trained in a167

single Nvidia RTX A6000. The code is available in the supplementary.168
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