
A Supplementary Material: Formal Proofs

Proof of Corollary 2.5. The hypothesis [Y ] 7→ [0] implies that for some α0 ≤ α2 and ε0 ≤ ε2, there
exist chains Y ∈ Pα1,ε1 and Z ∈ Pα2,ε2 and W ∈ Pα0,ε0 such that ∂Z = Y −W in Pα2,ε2 . By
Lemma 2.4, these chain can be included to their respective levels in R, giving Y ∈ Rα1

, Z ∈ Rα2
,

and W ∈ Rα0
, still satisfying ∂Z = Y −W in Rα2

. Hence, applying ι∗, either ι∗([Y ]) is trivial in
HRα1

, or the transition map HRα1
→ HRα2

takes ι∗([Y ]) 7→ [0].

Proof of Lemma 2.6. If ε ≥ α, then the second condition in Definition 2.2 becomes ρK(Y ) −
ρV (Y ) ≤ α, which is a trivial condition for 0 ≤ ρV (Y ) ≤ ρK(Y ) ≤ α. Thus, the sets Pα,ε are
identical for all ε ≥ α.

Proof of Lemma 3.4. Suppose an edge e = (xi, xj) lies in Pα,ε, meaning that e is represented by a
V -geodesic of length 2ρV (e) satisfying ρV (e) ≤ α and a K-geodesic of length 2ρK(e) satisfying
ρV (e) ≤ ρK(e) ≤ min{α, ρV (e) + ε}. By Lemma 3.3, the corresponding edge e′ = f](e) =
(f(xi), f(xj)) satisfies ρV (e)−κ ≤ ρV (e′) ≤ ρV (e)+κ. Moreover, by the data perturbation lemma
onK, we know e′ is represented by aK-geodesic with length 2ρK(e′) satisfying ρK(e′) ≤ ρK(e)+κ.
Combining these overall, we have the parallax bounds

ρV (e′) ≤ ρK(e′) ≤ min{α, ρV (e) + ε}+ κ

which implies both ρK(e′) ≤ ρV (e′) + ε+ 2κ and ρK(e′) ≤ α+ κ.

Proof of Lemma 4.6. Fix λ′ = 1
2λball,X(K)− κ. We aim to show that X ′ and K are λ′-LSM. Fix

any edge e′ = (x′, y′) in R′ satisfying ρV (e′) ≤ λ′. (The set of such edges might be empty, which is
allowed by Definition 4.1.) For any such e′, there is a corresponding e = (x, y) ∈ R with f(x) = x′,
f(y) = y′, and f](e) = e′. The triangle inequality provides ‖y − x‖ ≤ ‖y − y′‖ + ‖y′ − x′‖ +
‖x′ − x‖ = 2λ′ + 2κ ≤ λball,X(K). We are assuming V is Euclidean, so all balls in V are convex.
Since x′, y, y′ are all within the ball of radius λball,X(K) around x, all their pairwise geodesics are
included in K. Hence, e′ ∈ P ′λ′,0.

Proof of Lemma 5.2. The relationship c ≤ d follows from Lemma 2.5. The relationship d ≤ e
follows from Lemma 2.3 and the observations that Pα,α = Pα,∞ = R(X,K). Suppose L is
parameterized as Lα = Pα,ε(α). Suppose that c < e, so either c < d or d < e.

If c < d, then we can conclude that the edge that killed [Y ] inHR(X,V ) is not present inHR(X,K),
so that edge intersected Kc, which is an open set. Hence, that killing edge intersects a void in the
sense of Defn 1.2. Let Br be an open ball in Kc centered on some point on the V -geodesic of length
2c. If Br = Kc, then the shortest K-geodesic replaces the diameter 2r with the half-circumference
πr. Therefore, πr − 2r ≤ 2d− 2c.

If d < e, then [Y ] 7→ [0] via HPb,b → HPd,d and via HPb,b → HPe,ε(e), but not for any
HPb,b → HPα,ε(α) with α < e. Therefore, there is a K-geodesic of length 2d and a different
K-geodesic of length 2e, either of which could kill [Y ]. The former edge is not allowed in L because
0 ≤ ε(d) < d− c. Hence, c < d, returning us to the first case.

Proof of Lemma 5.3. Let L be a Rips-like path given by Definition 5.1. Because X and K are
λ-locally simplicially matched, the filtrations levels of R and L are identical up to λ. Therefore, there
is a bijection between the persistence diagrams of R and L for all dots born by λ.

Suppose that (b, d) is a dot in the persistence diagram of L with b ≤ λ < ω < d. This dot represents
a class [Y ] born in HLb that dies in HLd. The class [Y ] ∈ HRb is born at b must die at some
value c, so [Y ] ∈ kerHRb→c. It cannot be that c ≤ δ, because that would imply [Y ] ∈ kerHLb→ω ,
contradicting ω < d. Therefore, δ < c.

Proof of Theorem 5.4. Let f∗ : HP → HP ′ denote the map induced by f and similarly, let f−1∗ :
HR′ → HR denote the map induced by f−1. Consider the following commutative diagram in which
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the unlabeled morphisms are transition maps of the respective persistence modules.

HR′δ−κ HRδ

N ′ HR′λ−κ HRλ = HPλ,ε1 HPω,ε2

HP ′λ−κ,ε1+2κ HP ′λ+κ,ε1+2κ HP ′ω+κ,ε2+2κ

f−1
∗

⊂ f−1
∗

= f∗ f∗

Note that the bi-degrees in the diagram are determined by Lemma 3.3 and Corollary 3.5. Set N ′ =
kerHR′λ−κ→δ−κ ⊂ HR′λ−κ. Commutativity of the top left square implies that f−1∗ (N ′) ⊂ HRλ
maps vertically to 0 in HRδ and hence, f−1∗ (N ′) lies in kerHRλ→δ. The homologically matched
assumption on (X,K) implies f−1∗ (N ′) ⊂ kerHP(λ,ε1)→(ω,ε2). By commutativity of the bottom
right square, f∗(f−1∗ (N ′)) maps horizontally to 0 ∈ HP ′ω+κ,ε2+2κ. Finally, the locally simplicially
matched assumption means we can instead think of N ′ as a subset of HP ′λ−κ,ε1+2κ which maps to 0

in HP ′ω+κ,ε2+2κ by commutativity. Thus,

N ′ = kerHR′λ−κ→δ−κ ⊂ kerHR′(λ−κ,ε1+2κ)→(ω+κ,ε2+2κ) ,

completing the proof.

B Supplementary Material: Code

The code supporting this article is an initial proof-of-concept. It is available publicly at

https://gitlab.com/geomdata/topological-parallax

It is designed as a simple Python package, following community best-practices for tooling and layout.
Documentation is provided there. We recommend that the reader go to the repository for issue
tracking, improvements, bug fixes, testing pipelines, etc.

Because this package relies on GUDHI The GUDHI Project [34], the filtration values are by diameter
(not radius). This is important to note, because the theory in the paper is written using radius (not
diameter) as the filtration value.

Topological parallax has the same computational complexity as the computation of Rips complexes
and their persistence diagrams—albeit with a larger constant. This is because parallax merely inserts
a model-evaluation step upon the examination of each edge. The constant therefore is tN2 for
N points and a model that takes time t to evaluate. There are very interesting dimension- and
structure-dependendent estimates for the real-life/expected timing of Rips computations, such as
Bauer et al. [4]. Distributed persistence can parallelize this process, as in Solomon et al. [31]. See
https://gitlab.com/geomdata/dispers.

• Figure 1 was produced with the Jupyter notebook notebooks/Winky Example.ipynb.
Compare and contrast the Python scripts runners/run_winky_nn.py versus
runners/run_winky_tree.py

• Figure 3 was produced with the Python script runners/run_cyclooctane_balls.py.
Compare and contrast that script with runners/run_cyclooctane_nnfar.py and
run_cyclooctane_nnhull.py. These examples may take 100-500 GB of RAM to com-
pute the persistence diagrams as currently implemented.

• Figure 4 was produced with the Python script runners/bond_lengths.py
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C Supplementary Material: Utah Jar Example

This example demonstrates a situation where a classifier appears to be 100% correct on a semanti-
cally meaningful dataset, but the resulting model is too strict for interpolation within a data class,
Topological parallax detects this phenomenon, as discussed in Section 6.

We applied parallax to an imagery dataset inspired by the “Utah teapot.” The dataset consists of
14000 images—4000 images of a rotated teapot and 10000 images of a rotated teapot with no spout
or handle (referred to as the “Utah jar”). See Figure 5a. All images were rendered with PoV-Ray.

We constructed a bespoke classifier on this dataset of images which accepts any image within a
distance of 1.0 to the set of jar images using the Euclidean metric on flattened images. Our classifier
rejects all other inputs. We applied parallax to this model and found very small values for both λlo
and λsup, with λlo ∼ λsup < 2. See Figure 5b.

Given the hard cut-off distance of 1.0 in the classifier and these λ values, we expect the model to
prohibit reasonable interpolations of images. Indeed, we found numerous interpolations rejected by
the model which seem valid to the human eye. See Figure 5c.

(a) Examples from the modified Utah Teapot dataset.

(b) The persistence diagram of the dataset
marked by parallax.

(c) Interpolative images that are visually similar to true
dataset samples but are rejected by the overly sensitive
model.

Figure 5: Using parallax to detect a dataset-model geometry mismatch. (a) The images consist of
the Utah teapot (rendered with PoV-Ray) with spouts and handles removed for simplification. (b)
We construct a simple classifier which accepts any images within a Euclidean distance of 1.0 of the
(flattened) image and rejects all others, and apply parallax to it. (c) Six interpolated images are shown,
all of which look very similar to the original dataset but are rejected by the model (corresponding to
the X marks in (b)).
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D Supplementary Material: Understanding the Bi-Complex

The parallax complex P (X,K, V ) is bi-filtered by the parameters α (the length of a geodesic) and
ε (the distortion of geodesic length between K and V ). Figure 6 provides some visualizations that
may help the reader interpret traditional barcodes of Rips-like paths, and how these bi-filtration
parameters may be estimated. These parameters are related to the size of voids in the model, as seen
in Lemma 5.2.
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Figure 6: Left: Births and deaths are bi-filtered in HP , and are observed by barcodes on Rips-like
paths. Cor 3.5 means this picture is stable within ±(κ, 2κ). Center: An edge (x, y) ∈ Pα,ε can be
estimated by sampling tubular neighborhoods. Right: Algorithm 7.5 underestimates α, ε.
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E Supplementary Material: Table of Symbols

Notation Plain Meaning First Appearance Term
V A geodesic space, such as Rn p.2 Ambient Space
X A finite set in V p.2 Dataset
k A perception function on V p.2 Model (as function)
K Support set of k p.2 Model (as set)
M(X) Models compatible with dataset X p.2
M∗(K) Datasets compatible with model K p.2
K◦ Interior of set K in topological space V p.2
K Closure of set K in topological V p.2
Kc Complement of set K in V p.2
Ω Bounded open set in Kc p.2 Void
R(X,K) Rips complex of X in geodesic space K p.4
α a filtration level or radius p.4
Bα(x) Geodesic ball of radius α about x p.4
Y Chain in a Rips complex p.4
ρK(Y ) Minimal filtration radius for Y in R(X,K) p.4
ε Gap in filtration radius between V and K p.4
P Parallax bi-complex for X,K, V p.4 Parallax
HP Homology of P p.4
L A 1-parameter path through P p.4 Rips-like Path
HL Homology of L p.4
κ
≈ Pointwise perturbation of X in V p.5 Perturbation
κ
≈K Pointwise perturbation of X in K p.5 K-Perturbation
f] Induced map on a simplicial complex p.5
f∗ Push-forward map on homology p.5
λ• A meaningful filtration value. See subscript. p.6
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