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1 Overview1

The supplementary material is organized as follows:2

• Sec. 2: Broader impacts and limitations.3

• Sec. 3: A simple temporal extension of our method.4

• Sec. 4: Implementation details.5

• Sec. 5: More details and visualization for Deformable Context Extraction.6

• Sec. 6: Ablation on pre-training tasks for backbones.7

• Sec. 7: More visualization (two standard benchmarks & in-the-wild videos).8

2 Broader impacts and limitations9

Broader impacts. In this paper, we propose a new framework to address the time-intensive issue10

of existing lifting-based 3D human pose estimation methods. This is done by discovering the long11

overlooked “free lunch” in the overall lifting-based pipeline – the intermediate visual representations12

(i.e., multi-scale feature maps) learned by off-the-shelf 2D pose detectors. We show that such13

representations easily boost pose estimation accuracy (e.g., our single-frame model outperforms 351-14

frame MHFormer [4]) while bringing no extra costs (no finetuning on 2D detectors is required). We15

expect our framework to generalize to more research topics, especially other skeleton-sequence-based16

tasks where long-term temporal modeling may also bring issues (e.g., performance saturation, heavy17

computation, and the non-causal problem [9]). Retrieving the readily available visual representations18

from the upstream backbones (that produce the input skeleton) is a promising direction to reduce19

the temporal reliance of models and further push the performance boundary. Moreover, we hope20

that our work inspires a wider scope of research – multi-stage tasks in general. Unlike previous21

lifting-based methods that split the whole lifting pipeline into two independent stages, we engage the22

intermediate representations from the first stage into the second stage, i.e., two consecutive stages23

work closer instead of being simply cascaded. Seeking wise collaborations between different stages24

(in multi-stage tasks) is also a promising research direction.25

Limitations. Our single-frame method effectively utilizes the spatial context from 2D pose detectors,26

achieving comparable or superior precision to multi-frame methods that rely on hundreds of video27

frames. Furthermore, as demonstrated in Sec. 4.4 of the main paper, we observe that incorporating28

spatial contextual information improves temporal stability, enhancing consistency and smoothness in29

the estimated results, even without access to explicit temporal clues. However, for all single-frame30

methods, including ours, mitigating jitters remains a challenge compared to multi-frame methods that31

leverage temporal clues. This is primarily due to the non-temporal nature of single-frame methods.32

To address this limitation, we naively extend our single-frame approach to a multi-frame variant,33

allowing capturing temporal dependencies. We present preliminary results in Sec. 3, where we34

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



demonstrate that our multi-frame version effectively uses temporal clues to reduce jitters while35

improving precision. This reveals the potential of our work to further benefit multi-frame approaches.36

Exploring this direction is part of our future work.37

3 A Simple Temporal Extension of Our Method38
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Figure 1: Architecture of the simple temporal extension (3 frames as input) of our method.

In this section, we show that our single-frame method can naturally extend to model temporal39

dependencies (an overview is in Fig. 1). As illustrated in Sec. 3.2 of the main paper, the Spatial40

Inter-joint Modeling module outputs a feature vector of dimension (L + 1) ×C for each joint, where41

L is the number of multi-scale feature maps and C is a shared projection dimension of the model. We42

use a Temporal Transformer to model temporal correlations of each joint independently. Specifically,43

for Temporal Transformer, the input token number is the total frame number, and each token is of44

dimension (L + 1) ×C. Using transformers to build up temporal dependencies is straightforward, and45

this approach has been adopted by PoseFormer [15], MixSTE [14], etc. The output of the temporal46

transformer encoder can be denoted by ZTemp ∈ R
J×F×[(L+1)·C], where J is the joint number and F is47

the frame number. Following PoseFormer, we use 1D convolution to reduce its temporal dimension48

(gather temporal information) and a linear layer to obtain the final estimated 3D pose y ∈ RJ×3.49

Table 1: We compare the (short-term) temporal extension of our small model (CA-PF-S) with
PoseFormer. MPJPE: Mean Per Joint Position Error, the precision metric. MPJVE: Velocity Error,
the temporal smoothness metric. The results are reported on Human3.6M (in millimeters).

Model Frame MPJPE ↓ MPJVE ↓

PoseFormer

1 53.2 13.7
3 51.0 7.1
9 49.9 4.8

81 44.3 3.1

CA-PF-S
1 44.7 8.5
3 44.2↓0.5 4.8↓3.7
9 43.4↓1.3 3.4↓5.1

Quantitative results. Due to limited computational resources, the experiments in this section are50

conducted with a small variant of our model, referred to as “CA-PF-S”, which has fewer FLOPs51

compared to our full model “CA-PF” presented in Sec. 4.1 of the main paper. To show the gains52

in precision and temporal smoothness from temporal modeling, we report two metrics, MPJPE53
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(Position Error, the precision metric) and MPJVE (Velocity Error, the temporal smoothness metric),54

on Human3.6M [3]. We compare it with PoseFormer [15] and the results are in Table 1: First,55

increasing the number of input frames brings consistent improvements in both precision and temporal56

smoothness. For example, by using only 3 video frames, the MPJVE of our method decreases from57

8.5 to 4.8mm (a 43.5% reduction), and the MPJPE is reduced by 1.1%. This indicates that even short-58

term temporal modeling largely mitigates jitters in estimated results and further improves precision59

upper bound. Second, considering the same number of input frames, our CA-PF-S consistently60

outperforms PoseFormer in terms of both MPJPE and MPJVE. Moreover, our 3-frame CA-PF-S61

has already achieved superior MPJPE to 81-frame PoseFormer, and our 9-frame CA-PF-S achieves62

comparable MPJVE with 81-frame PoseFormer. The results verify the two-fold benefits of spatial63

contextual clues from 2D pose detectors – accuracy and temporal stability.64

Based on the results above, we expect that our method can be successfully extended to model even65

longer-term temporal dependencies (e.g., 81 video frames) to further boost precision and temporal66

smoothness. We provide visualization of in-the-wild videos in Sec. 7 to show the advantage of our67

method in temporal consistency (stability).68

4 Implementation Details69

2D pose detector settings. The overall pipeline of our method includes two parts: an off-the-self 2D70

pose detector and a lifting model. For the first stage, the 2D pose detector is pre-trained on the COCO71

[6] dataset, without finetuning on the 2D poses from 3D pose estimation datasets, i.e., Human3.6M72

[3] and MPI-INF-3DHP [8]. We use 256 × 192 resolution for input images. For 2D-to-3D lifting,73

the weights of pre-trained 2D detectors are frozen, i.e., no finetuning on the 3D task is needed either.74

This approach makes our method preferably flexible – our method is compatible with a wide range of75

off-the-shelf (pre-trained) 2D pose detectors. We show in Sec. 4.1 of the main paper that our method76

gains consistent improvements by increasing the capability of 2D pose detectors. In the future, we77

may leverage more advanced 2D pose detectors to further improve the performance upper bound.78

Lifting model settings. Our lifting model includes three basic modules: Deformable Context79

Extraction, Pose-Context Feature Fusion and Spatial Inter-joint Modeling. The layer number of each80

module is set to 4, following PoseFormer [15]. The hidden dimension (a shared projection dimension81

C) of the model is 128. We use 8 heads in self-attention for transformer layers.82

Training details. The experiments are conducted on a single NVIDIA RTX 3090 GPU. Our lifting83

model is trained using the AdamW optimizer [7] for 50 epochs with a batch size of 512. The initial84

learning rate is 6.4e-3 with an exponential learning rate decay schedule, and the decay factor is 0.99.85

We will release the source code and the trained models of our method upon acceptance of the paper.86

5 More Details and Visualization for Deformable Context Extraction87

More details. The Deformable Context Extraction module extracts informative joint-centric context88

features from feature maps using deformable attention [16]. The sampling points of each attention89

head are initialized in different directions (w.r.t. the reference joint) to promote learning diverse90

contextual clues from images. To prevent overly aggressive updates on sampling offsets (e.g., they91

may go outside the image), the learning rate of linear layers that generate sampling offsets is set to92

6.4e-4 (1/10 of that for other layers in the lifting model). We use 4 heads for deformable attention.93

Visualization of learned sampling points on consecutive video frames. In Fig. 2, a subject in the94

Human3.6M test set raises his right arm where severe self-occlusion occurs, and the 2D pose detector95

fails to localize the right wrist (blue dots are detected results, and green dots are ground truth). We96

find that most sampling points (gray dots) are concentrated on the upper body of the subject. More97

interestingly, despite the unreliable 2D joint detection (reference points), some learned sampling98

points attempt to approach the ground truth. We indicate the sampling points that gain larger attention99

weights with higher brightness (we decrease the brightness of images for better visual effects). Note100

that we do not train sampling points using ground truth. This indicates that our adaptive context101

extraction strategy can learn informative contextual features based on the visual cues of images102

despite bad sampling references (i.e., false joint detection), which helps reduce uncertainty brought103

by imperfect 2D pose detectors.104
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Figure 2: Visualization of consecutive frames on the Human3.6M test set where severe self-occlusion
occurs. Deformable Context Extraction learns sampling points that attempt to discover ground truth
joints given false 2D joint detection as reference.

6 Ablation on pre-training tasks for backbones105

Table 2: Ablation study on pre-training tasks
with different backbones. MPJPE (mm) is re-
ported on Human3.6M.

Backbone Pre-training MPJPE ↓

ResNet-50 2D Pose 45.0
Image Class. 51.4↑6.4

HRNet-32 2D Pose 41.4
Image Class. 45.8↑4.4

HRNet-48 2D Pose 39.8
Image Class. 43.9↑4.1

ImageNet [10] pre-trained backbones (e.g., ResNet106

[2]) profit a series of downstream tasks, including107

object detection [5], segmentation [1], and 2D hu-108

man pose estimation [12, 13], yet this seems not109

applicable to 3D human pose estimation. In Ta-110

ble 2, we replace COCO pre-trained backbones111

in our method with ImageNet classification pre-112

trained ones, showing a remarkable performance113

drop. This should be attributed to the large gap114

between the pre-training task (image classification)115

and the downstream task (3D human pose estima-116

tion). Our method provides a starting point to lever-117

age visual representations from (pre-trained) 2D human pose detectors, while challenges still remain:118

First, is there any better way to use visual representations from pre-trained backbone networks?119

Second, as the 2D computer vision community has gained a lot from emerging pre-training methods120

(from supervised to unsupervised), can we design pre-training tasks that are more appropriate for 3D121

human pose estimation (more generally, 3D perception)? They are also potential research topics in122

the future.123

7 More Visualization124

Static results on two standard benchmarks. We provide more qualitative results on Human3.6M125

(Fig. 3) and MPI-INF-3DHP (Fig. 4). Our single-frame method obtains reliable estimated results126

in hard cases, e.g., self-occlusion, and rare poses, compared to state-of-the-art multi-frame methods127

such as 351-frame MHFormer [4] and 81-frame P-STMO [11].128

Temporal results on in-the-wild videos. To show the advantage in temporal stability of our method,129

we provide visualization of in-the-wild videos in Fig. 5. We compare the 9-frame temporal extension130

of our model (more details are in Sec. 3) with PoseFormer [15]. We choose two sets of consecutive131

video frames where the 2D joint detection fails due to confusing clothing (the left column) or self-132

occlusion (the right column). Since PoseFormer only accepts 2D joints as input, its estimated 3D133

poses are sensitive to the noise of input 2D poses. Therefore, it infers unreliable 3D poses given134
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Input MHFormer OursContext-agnostic Ground Truth Input MHFormer OursContext-agnostic Ground Truth

Figure 3: Qualitative comparison with MHFormer (351 frames) [4] and our context-agnostic counter-
part (please refer to Sec. 4.3 in the main paper for more details) on Human3.6M. Our method obtains
reliable results despite severe self-occlusion, which may cause false 2D joint detection. Notable parts
are indicated by arrows.

Input P-STMO Ours Ground Truth Input P-STMO Ours Ground Truth

Figure 4: Qualitative comparison with P-STMO (81 frames) [11] on MPI-INF-3DHP. Our method
infers correct results given rare poses (e.g., the subject is lying on the ground and relaxing on the
couch). Notable parts are indicated by arrows or circles.
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Input PoseFormer Ours Input PoseFormer Ours

This is a hat, 
not an arm!

The right arm is 
missed by the 
pose detector.

Figure 5: Comparison between PoseFormer and our small model variant on in-the-wild videos. The
2D pose detector fails to localize 2D joints, given confusing clothing (left) and severe self-occlusion
(right). In such hard cases, our method is more robust and enjoys better temporal consistency. False
joint detection is indicated by yellow arrows, and the corresponding 3D joint estimation is indicated
by orange arrows.

false 2D detection. On the contrary, in addition to the positional information provided by 2D joint135

locations, we also leverage spatial contextual clues from images to localize joints in 3D. Thus our136

method shows more robust (stable) and smooth results despite noisy input 2D joints. We provide the137

source mp4 file of both video clips in the supplementary material.138
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