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Figure 4: Two other cuts of Figure 1.
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Figure 5: Effective dimensions N1 (left) and N2 (right) as a function of (λ,σ) in one dimension (top) and
two dimension (bottom) when ρX is uniform on X = [−1, 1]d, and k is the Gaussian kernel.

A Generic proofs and discussions336

A.1 What do we mean by transitory regimes?337

In essence, by transitory regimes we mean any finite-time behavior that does not match an expected338

long-time horizon “stationary” behavior. More precisely, let Γ = {(n,EDn [E(fn)]) |n ∈ N} be339

the graph of the expected excess risk. Theorem 2 provides a lower-upper bound of the form340

Γ ⊂ {(n, cn−γ(1 + ah(n))) |n ∈ N, a ∈ [−1, 1]} with c, γ two constants and h a function that goes341

to zero when its argument goes to infinity. This shows that, as n grows large, EDn [E(fn)] will behave342

as cn−γ . However, this stationary behavior in cn−γ might take time to kick in, and when only343

accessing a small number of samples n, our bound does not lead to strong constraints on EDn
[E(fn)],344

which might arguably exhibit a very different profile. We illustrate this idea on Figure 6.345

A.2 Regularization is a change of kernel346

Kernel ridge regression (6) with a kernel k1 and a regularization parameter λ1 is equivalent to kernel347

ridge regression with a kernel k2 = λ−1
1 k1 and a regularization parameter λ2 = 1. Indeed, In the348

definition of the regularized risk (6), the regularization parameter λ and the kernel k only appear in349
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Figure 6: Illustration of transitory regimes. In essence, Theorem 2 states that En := EDn [E(fn,λ)] =
A(n,λ)(1 + h(n,λ)) for h = O(N∞(λ)/n). We illustrate our upper-lower bound when A(n,λn) =

n−1/2 and nh(n,λn) is known to be in [−102, 102]. The upper-lower bound forces En to behave in n−1/2

when n goes to infinity, yet when n is small, it can showcase quite different “transitory” behaviors.

one term λ ∥f∥F . This term can be written as350

λ


f,K−1f

�
L2(ρ)

=


f, (λ−1K)−1f

�
L2(ρ)

.

Because K depends linearly on k, λ−1K is the integral operator linked with the kernel λ−1k when k351

is the kernel associated with the operator K.352

The interpolation setting where λ1 = 0 but f is searched in F = imK1/2 corresponds to the barrier353

regularization χF , where χA(x) = 0 in x ∈ A and +∞ otherwise. In other terms, the limiting case354

where λ1 = 0 corresponds to kernel ridge regression with λ2 = 1, ∥f∥F2
= +∞ if f /∈ F2 and zero355

otherwise.356

A.3 Excess risk bounds - Proof of Theorem 2 and corollaries357

For ease of notation, we will use the finite-dimensional notation u⊤w also to denote the inner product358

⟨u, v⟩ in (infinite-dimensional) Hilbert spaces. Moreover, we will simply write ∥·∥ for both ∥·∥H359

and the operator norm on H (depending on context), L2 for L2(ρX ), and ∥·∥2 for both ∥·∥L2 and the360

operator norm on L2. While in our statements, for the sake of clarity, we have expressed everything361

in terms of operators on L2, for the proofs it is more convenient to work on H. Let us introduce the362

embedding363

S : H → L2, θ 7→ (x 7→ θ⊤φ(x)).

From S, one can take its adjoint S∗ and check that K = SS∗. K is isometric to the (non-centered)364

covariance operator365

Σ = S∗S = E[φ(X)⊗ φ(X)].

Note that366

∥Sθ∥22 = E[(φ(X)⊤θ)2] ≤ E[∥φ(X)∥2 ∥θ∥2] = ∥φ∥22 ∥θ∥
2
,

which implies that K is a continuous operator as soon as φ ∈ L2. The kernel ridge regression367

estimator (6) is characterized as368

fn = S(Σn + λ)−1S∗
nY,

where369

Sn : H → Rn, θ 7→ (θ⊤φ(Xi))i∈[n], Σn = S∗
nSn, Y = (Yi)i∈[n] ∈ Rn.

Endowing Rn with the scalar product ⟨a, b⟩ = 1
n

P
i∈[n] aibi, we have370

S∗
nY =

1

n

X

i∈[n]

Yiφ(Xi), Σn =
1

n

nX

i=1

φ(Xi)⊗ φ(Xi).

It is useful to define εi as the difference between Yi and f∗(Xi) = E[Yi |X = Xi], which can be371

seen as the labeling noise and average to zero. We have, with E = (εi)i∈[n] ∈ Rn,372

Yi = f∗(Xi) + εi = φ(Xi)
⊤θ∗ + εi, Y = Snθ∗ + E.
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As a consequence,373

fn = S(Σn + λ)−1Σnθ∗ + S(Σn + λ)−1S∗
nE.

Let X = (Xi)i∈[n]. When our model is well specified so that f∗ = Sθ∗, we have374

EDn
[E(fn) |X] = EDn

h
∥fn − f∗∥22 | X

i

=


S(Σn + λ)−1Σnθ∗ − Sθ∗



2
2

+ EDn

h

S(Σn + λ)−1S∗
nE



2
2
| X
i

+ 2EDn

h
S(Σn + λ)−1Σnθ∗ − Sθ∗

�⊤
S(Σn + λ)−1S∗

nE | X
i

= λ2


S(Σn + λ)−1θ∗



2
2

+ EDn

h

S(Σn + λ)−1S∗
nE



2
2
| X
i

+ 2

Sn(Σn + λ)−1Σ(Σn + λ)−1θ∗

�⊤ EDn
[E | X]

= λ2


S(Σn + λ)−1θ∗



2
2
+ EDn

h

S(Σn + λ)−1S∗
nE



2
2
| X
i
,

where in the third equality we used I − (Σn + λ)−1Σn = λ(Σn + λ)−1, and in the last one375

EDn
[E |X] = 0. Assuming for simplicity that the noise is homoscedastic so that E[EE⊤] = ε2I for376

ε > 0, we obtain377

EDn

h

S(Σn + λ)−1S∗
nE



2
2
| X
i
=

1

n
Tr


Sn(Σn + λ)−1Σ(Σn + λ)−1S∗

nEDn

�
EE⊤ | X

��

=
ε2

n
Tr


Σ(Σn + λ)−2Σn

�
,

where the 1/n factor arises from the fact that E∗ = E⊤/n in the geometry we have considered on378

Rn. Finally we have retrieved the following standard bias-variance decomposition result.379

Lemma 4 (Bias-Variance decomposition). When our model is well-specified so that f∗ = Sθ∗ with380

θ∗ ∈ H, and when the noise in the label is homoscedastic with variance ε2, the estimator (6) verifies381

EDn [E(fn) |X] = λ2


S(Σn + λ)−1θ∗



2
2| {z }

Bn

+
ε2

n
Tr


Σ(Σn + λ)−2Σn

�
| {z }

Vn

. (15)

We would like to get the limit when n goes to infinity in equation (15). We expect the first term to382

concentrate towards λ2


S(Σ+ λ)−1θ∗



2
2
, and the second term to Tr(Σ2(Σ+ λ)−2).383

A.3.1 Bounding the bias term384

Let us begin by working out the term Bn =


S(Σn + λ)−1θ∗



2
2
. We first introduce some notation to385

make derivations shorter. Let En = Σn − Σ, Σλ = Σ+ λ and Fn = −Σ
−1/2
λ EnΣ

−1/2
λ . As long as386

∥Fn∥ < 1, we have387

Bn = θ⊤∗ (Σn + λ)−1Σ(Σn + λ)−1θ∗

= θ⊤∗ (Σλ + En)
−1Σ(Σλ + En)

−1θ∗

= θ⊤∗ Σ
−1/2
λ (I − Fn)

−1Σ−1
λ Σ(I − Fn)

−1Σ
−1/2
λ θ∗

=
X

i,j∈N
θ⊤∗ Σ

−1/2
λ F i

nΣ
−1
λ ΣF j

nΣ
−1/2
λ θ∗.

Let us assume for a moment that388




(ΣΣ−1
λ )−1/2Fn(ΣΣ

−1
λ )1/2




 ≤ ∥Fn∥ . (16)
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If equation (16) holds, then389

��Bn − θ⊤∗ Σ
−2
λ Σθ∗

�� =

������
X

i,j∈N;i+j ̸=0

θ⊤∗ Σ
−1/2
λ F i

nΣ
−1
λ ΣF j

nΣ
−1/2
λ θ∗

������

≤
X

i+j ̸=0

���θ⊤∗ Σ−1/2
λ F i

nΣ
−1
λ ΣF j

nΣ
−1/2
λ θ∗

���

=
X

i+j ̸=0

���
D
Σ

−1/2
λ (Σ−1

λ Σ)1/2θ∗,
�
(Σ−1

λ Σ)−1/2F i
nΣ

−1
λ ΣF j

n(Σ
−1
λ Σ)−1/2

�
(Σ−1

λ Σ)1/2Σ
−1/2
λ θ∗

E���

≤
X

i+j ̸=0




Σ−1/2
λ (Σ−1

λ Σ)1/2θ∗




2 


(Σ−1

λ Σ)−1/2F i
nΣ

−1
λ ΣF j

n(Σ
−1
λ Σ)−1/2






= θ⊤∗ Σ
−2
λ Σθ∗

X

i+j ̸=0




((ΣΣ−1
λ )−1/2Fn(ΣΣ

−1
λ )1/2)i+j






≤ θ⊤∗ Σ
−2
λ Σθ∗

X

i,j∈N;i+j ̸=0




(ΣΣ−1
λ )−1/2Fn(ΣΣ

−1
λ )1/2





i+j

= θ⊤∗ Σ
−2
λ Σθ∗

X

i∈N
(i+ 2)




(ΣΣ−1
λ )−1/2Fn(ΣΣ

−1
λ )1/2





i+1

≤ θ⊤∗ Σ
−2
λ Σθ∗

X

i∈N
(i+ 2) ∥Fn∥i+1

= θ⊤∗ Σ
−2
λ Σθ∗

Z ∞

0

(⌊x⌋+ 2) ∥Fn∥⌈x⌉ dx

≤ θ⊤∗ Σ
−2
λ Σθ∗

Z ∞

0

(x+ 2) ∥Fn∥x dx

= θ⊤∗ Σ
−2
λ Σθ∗

1− 2 log(∥Fn∥)
log2(∥Fn∥)

.

This inequality is useful as long as ∥Fn∥ is small enough, which is not always true. When ∥Fn∥ is390

large, we can instead proceed with the simpler bound391

��Bn − θ⊤∗ Σ
−2
λ Σθ∗

�� ≤ Bn + θ⊤∗ Σ
−2
λ Σθ∗ ≤ 2θ⊤∗ Σθ∗λ

−2 = 2 ∥f∗∥22 λ−2.

Therefore, rewriting the limit as392

λ2θ⊤∗ (Σ+ λ)−2Σθ∗ = λ2(Σ1/2θ∗)
⊤(Σ+ λ)−2Σ1/2θ∗ = λ2(Sθ∗)

⊤(K + λ)−2Sθ∗

= λ2(f∗)⊤(K + λ)−2f∗ =


λ(K + λ)−1f∗

2

2
= B(λ),

we split the bias error as393

��λ2Bn − λ2θ⊤∗ Σ
−2
λ Σθ∗

�� ≤ 2 ∥f∗∥22 1∥Fn∥>1/2 + B(λ)1− 2 log(∥Fn∥)
log2(∥Fn∥)

1∥Fn∥≤1/2

≤ 2 ∥f∗∥22 1∥Fn∥>1/2 −
3B(λ)

log(∥Fn∥)
1∥Fn∥≤1/2.

Taking the expectation and using the convexity of the absolute value, we obtain394

��EDn
[λ2Bn]− λ2θ⊤∗ Σ

−2
λ Σθ∗

�� ≤ 2 ∥f∗∥22 P(∥Fn∥ > 1/2)− B(λ)
Z 1/2

0

3P (∥Fn∥ > x)

log(x)
dx.

We now proceed with an exponential concentration inequality on ∥Fn∥. We will use the one of395

Cabannes et al. [5], Eq. (25). As long as λ ≤ ∥Σ∥, we have396

P(∥Fn∥ > t) ≤ 28N1(λ) exp

�
− nt2

N∞(λ)(1 + t)

�
.
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This inequality shows the restrictive notion of effective dimension, which is useful to ensure the good397

conditioning of the linear system implicitly encoded in (6), and, in essence, bound all moments of398

φ(X). As long as N∞(λ) ≤ 3n/2, we can compute the integral as399

−
Z 1/2

0

P (∥Fn∥ > x)

log(x)
dx ≤ −28N1(λ)

Z 1/2

0

exp(−3nx2/2N∞(λ))

log(x)
dx

= −28N1(λ)
N 1/2

∞ (λ)

1.51/2n1/2

Z 1/2

0

exp(−u2)

log(u) + log(3n/2N 2∞(λ))
du

≤ −28
N1(λ)N 1/2

∞ (λ)

1.51/2n1/2

Z 1/2

0

exp(−u2)

log(u)
du ≤ 8N1(λ)N 1/2

∞ (λ)

n1/2
.

We recall that the bounds above were derived under condition (16), which is rather strong. However,400

the attentive reader would remark that a much laxer assumption is sufficient, which we introduce401

thereafter.402

Assumption 1. There exists a constant c such that, for all i, j ∈ N,403

E
�

(ΣΣ−1

λ )−.5F i
nΣΣ

−1
λ F j

n(ΣΣ
−1
λ )−.5



 �� ∥Fn∥ ≤ 1/2
�
≤ c2E

h
∥Fn∥i+j

��� ∥Fn∥ ≤ 1/2
i
. (17)

Assumption 1 notably holds when F is finite dimensional with c2 =


K−1



−1

2
(∥K∥2+λ). As such404

all our lower-bound results can be cast with finite-dimensional approximation of infinite-dimensional405

RKHS. Under Assumption 1, we get406

E
���Bn − θ⊤∗ Σ

−2
λ Σθ∗

�� �� ∥Fn∥ ≤ 1/2
�

≤
X

i+j ̸=0




Σ−1/2
λ (Σ−1

λ Σ)1/2θ∗




2

E
h


(Σ−1

λ Σ)−1/2F i
nΣ

−1
λ ΣF j

n(Σ
−1
λ Σ)−1/2





��� ∥Fn∥ ≤ 1/2

i

≤ c2
X

i,j∈N;i+j ̸=0




Σ−1/2
λ (Σ−1

λ Σ)1/2θ∗




2

E
h
∥Fn∥i+j

��� ∥Fn∥ ≤ 1/2
i
,

which allows us to proceed with the precedent derivations without assuming that (16) holds.407

While the previous results were achieved for f∗ ∈ F , they can be extended by density to any f∗ in408

the closure of F in L2(ρX ), i.e. f ∈ (kerK)⊥, leading to the following result.409

Proposition 5. When f∗ ∈ (kerK)⊥ and λ ≤ ∥Σ∥, under the technical Assumption 1, the bias term410

can be bounded from above and below by411

|EDn [Bn]− S(λ)| ≤ c2N1(λ)

 
56 ∥f∗∥22

λ2
exp

�
− n

6N∞(λ)

�
+

8S(λ)N 1/2
∞ (λ)

n1/2

!
. (18)

A.3.2 Discussion on the bias bound412

More direct upper bound. The precedent derivations can be made more direct with the following413

series of implications, with A ⪯ B meaning that x⊤Ax ≤ x⊤Bx for every x:414

∥Fn∥ ≤ 1/2 ⇒ −1/2I ⪯ Fn ⪯ 1/2I

⇒ 1/2I ⪯ I − Fn ⪯ 3/2I

⇒ 4/9I ⪯ (I − Fn)
−2 ⪯ 4I

⇒ 4/9B(λ) ⪯ θ⊤∗ Σ
1/2Σ−1

λ (I − Fn)
−2Σ−1

λ Σ1/2θ∗ ⪯ 4B(λ).

Let us assume that415

E
�
(I − Fn)

−1ΣΣ−1
λ (I − Fn)

−1
�� ∥Fn∥ ≤ 1/2

�

⪯ c2E
h
Σ1/2Σ

−1/2
λ (I − Fn)

−2Σ1/2Σ
−1/2
λ

��� ∥Fn∥ ≤ 1/2
i
,

(19)

14



which is always verified for c2 = min(λ−1, ∥K−1∥−1
2 ) ∥K∥2 (although taking c2 ∝ λ would slow416

down our upper bound by a factor of λ). This leads to the simple upper bound417

Bn = θ⊤∗ Σ
−1/2
λ (I − Fn)

−1Σ−1
λ Σ(I − Fn)

−1Σ
−1/2
λ θ∗

≤ c2θ⊤∗ Σ
−1/2
λ (Σ−1

λ )1/2(I − Fn)
−2(Σ−1

λ )1/2Σ
−1/2
λ θ∗ + ∥f∗∥2L2 P(∥Fn∥ > 1/2)

≤ 4c2S(λ) + ∥f∗∥22 N1(λ) exp

�
− n

6N∞(λ)

�
.

Improvement directions. In essence, we expect the bias upper-lower bound to behave as418

S(λ)(I − Fn)
−2 − I ≃ S(λ)Fn.

Getting this linear dependency in Fn explicitly would allow to improve the bound since419

EDn
[∥Fn∥ | ∥Fn∥ ≤ 1/2] ≲ N (λ)N∞(λ)n−1.

Moreover, going back to the definition of Fn,420

EDn
θ⊤∗ ΣΣ

−1
λ FnΣΣ

−1
λ θ∗ = EDn

"� 1

n

nX

i=1

θ⊤∗ ΣΣ
−3/2
λ φ(Xi)

�2
#
− EX

h
θ⊤∗ ΣΣ

−3/2
λ φ(X)

i2

= EDn

"� 1

n

nX

i=1

θ⊤∗ ΣΣ
−3/2
λ φ(Xi)− EX

h
θ⊤∗ ΣΣ

−3/2
λ φ(X)

i�2
#
,

which suggests possible improvements of the bound in S(λ)n−1.421

A.3.3 Bounding the variance term422

Let us now work on the term Vn = TrΣ(Σn + λ)−2Σn. It works similarly to the bias term,423

concentrating towards N2(λ). With Σn,λ = Σn + λI , we have424

Tr
�
ΣΣnΣ

−2
n,λ − Σ2Σ−2

λ

�
= Tr

�
ΣΣ−1

λ ΣnΣ
−1
n,λ(Σ

−1
n,λΣλ − I) + ΣΣ−1

λ (ΣnΣ
−1
n,λ − ΣΣ−1

λ )
�
.

Using that, for any A positive semi-definite and any B, Tr(AB) ≤ ∥B∥Tr(A), it follows that425

|Vn −N2(λ)| ≤ N1(λ)



ΣnΣ

−1
n,λ








Σ−1

n,λΣλ − I



+N1(λ)




ΣnΣ
−1
n,λ − ΣΣ−1

λ






≤ N1(λ)



Σ−1

n,λΣλ − I



+N1(λ)




ΣnΣ
−1
n,λ − ΣΣ−1

λ




 .

Let us focus on the first term. Using a−1 − b−1 = a−1(b− a)b−1, we get426




ΣλΣ
−1
n,λ − I




 =



ΣλΣ

−1
n,λ(Σ− Σn)Σ

−1
λ






≤



ΣλΣ

−1
n,λ








Σ1/2

λ FnΣ
−1/2
λ






≤
�
∥I∥+




ΣλΣ
−1
n,λ − I





�


Σ1/2

λ FnΣ
−1/2
λ






≤
X

i>0




Σ1/2
λ FnΣ

−1/2
λ





i

.

For the second term,427




ΣnΣ
−1
n,λ − ΣΣ−1

λ




 ≤



Σn(Σ

−1
n,λ − Σ−1

λ




+


(Σn − Σ)Σ−1

λ





≤



ΣnΣ

−1
n,λ(Σ− Σn)Σ

−1
λ




+


(Σn − Σ)Σ−1

λ





≤ 2


(Σn − Σ)Σ−1

λ





= 2



Σ1/2

λ FnΣ
−1/2
λ




 .
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Similarly as for (16), if we assume that428 


Σ1/2
λ FnΣ

−1/2
λ




 ≤ c ∥Fn∥ , (20)

then we have, as long as ∥Fn∥ ≤ 1/2c,429

|Vn −N2(λ)| ≤
X

i>0




Σ1/2
λ FnΣ

−1/2
λ





i

+ 2



Σ1/2

λ FnΣ
−1/2
λ






≤ c ∥Fn∥
1− c ∥Fn∥

+ 2c ∥Fn∥ ≤ 4c ∥Fn∥ .

For the case when ∥Fn∥ is large, we can again proceed with a simple bound:430

|Vn −N2(λ)| ≤
��Tr


ΣΣn(Σn + λ)−2

���+Tr

Σ2Σ−2

λ

�
≤ 2Tr(Σ)λ−1.

Splitting the full expectation as we did for the bias we thus obtain431

|EDn [Vn]−N2(λ)| ≤ EDn [|Vn −N2(λ)|]
≤ 2Tr(Σ)λ−1P(∥Fn∥ > 1/2c) + 4cE [∥Fn∥ | ∥Fn∥ ≤ 1/2c]P(∥Fn∥ ≤ 1/2c).

We are left with the computation of two integrals. As long as λ ≤ ∥Σ∥, with a the coefficient432

appearing in the exponential433

P(∥Fn∥ ≤ 1/2c)E [∥Fn∥ | ∥Fn∥ ≤ 1/2c] ≤ 28N1(λ)

Z 1/2c

0

x exp(−3nx2/2N∞(λ)) dx

= 28N1(λ)a
−1

Z a1/2c/2

0

x exp(−x2) dx ≤ 10N1(λ)N∞(λ)

n
.

Once again, the condition (20) can be relaxed with the following assumption.434

Assumption 2. There exists a constant c such that, for all i ∈ N,435

E
�


Σ1/2

λ FnΣ
−1/2
λ





i
���� ∥Fn∥ ≤ 1/2c

�
≤ ciE

h
∥Fn∥i

��� ∥Fn∥ ≤ 1/2c
i
. (21)

As for Assumption 1, Assumption 2 holds when F is finite-dimensional with c2 =


K−1



 (∥K∥+λ).436

It holds in general with c2 = λ−1(∥Σ∥+ λ), although this would deteriorate the bound by a factor of437

λ.438

We are finally ready to collect the different pieces.439

Proposition 6. When f∗ ∈ (kerK)⊥ and λ ≤ ∥Σ∥, under the technical Assumption 2, the variance440

term can be bounded from above and below by441

ε2

n
|EDn

[Vn]−N2(λ)| ≤ ε2N 2
1 (λ)

�
28Tr(Σ)

nλ
exp

�
− c2n

(4 + 2c)N∞(λ)

�
+

40cN∞(λ)

n2

�
. (22)

A.3.4 Discussion to the variance bound442

Once again, the bound presented here is somewhat unsatisfying, as it will not necessarily decrease443

faster than N (λ)/n if one considers target functions that are far away from F and requires a large444

search space (i.e. B(λ) decreases slowly with λ, and given a fixed number of samples n the optimal445

λn is found for N (λn) quite large compared to n), so that N∞(λ)N (λ)/n does not go to zero.446

Several directions can be taken to improve the bound. For example, when Y is bounded by M , the447

noise ε2 can be replaced by M2, and it is possible to get an upper bound of the form448

EDn [E(f (thres.)
λ,n )] ≤ 8M2

n
N1(λ) + inf

f∈F

�
∥f − f∗∥2L2 + λ ∥f∥2F

�
,

for a truncated version f
(thres.)
λ,n of the estimator (6) as proved by Mourtada et al. [17] for ridge-less449

regression and extended to ridge regression in Mourtada et al. [18]. Moreover, retaking the analysis450

of Mourtada and Rosasco [16], one can get a lower bound of the form451

EDnVn ≥ n

n+ 1
EDn+1 Tr

�
ΣnΣ

−1
n,λΣn+1Σ

−1
n+1,λ(n+1)/n

�

≥ n

n+ 1
EDn

Tr
�
ΣnΣ

−1
n,λ

�
− λEDn+1

Tr
�
ΣnΣ

−1
n,λΣ

−1
n+1,λ(n+1)/n

�
,
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which might lead to some lower bound with452

EDn+1 Tr
�
ΣnΣ

−1
n,λΣ

−1
n+1,λ(n+1)/n

�
=

n+ 1

n
EDn,X Tr

�
ΣnΣ

−1
n,λ(Σn,λ + φ(X)⊗ φ(X))−1

�

≤ n+ 1

n
EDn Tr

�
ΣnΣ

−1
n,λ

�
EX

�

(Σn,λ + φ(X)⊗ φ(X))−1


� .

We also note that it should not be too hard to replace Fn by Σ1/2Σ−1
λ EnΣ

1/2Σ−1
λ , which would lead453

to ε2N2(λ)/n instead of ε2N1(λ)/n in the right-hand side of (10).454

A.4 Full theorem455

Collecting the precedent results leads to the following theorem.456

Theorem 3. Under the technical Assumptions 1 and 2, as long as λ ≤ ∥Σ∥, when f∗ belongs to the457

closure of F in L2(ρX ), the estimator (6) verifies458

����EDn
[E(fλ,n)]−

ε2N2(λ)

n
− λ2S(λ)

���� ≤ N1(λ)

�
an · ε

2N1(λ)

n
+ a1/2n λ2S(λ)

�

+N1(λ)

�
Tr(Σ)ε2

n
+ ∥f∗∥2L2

�
exp(−can),

(23)

where an = N∞(λ)/n.459

As long as its right-hand side decreases faster then EDn [E(fn)], Theorem 3 states that EDn [E(fn)]460

behaves like461

EDn
[E(fn)] ≃

ε2N2(λ)

n
+ λ2S(λ).

When optimizing for λ, assuming that N1 ≃ N2, the right-hand side of Theorem 3 decreases faster462

than EDn
[E(fn)] if and only if N1(λ)a

−1/2
n goes to zero with n. This implies N (λ)3 ≤ n, which is463

a much stronger condition than the high-sample regime condition N (λ) ≤ n.464

A.4.1 Upper bound application to local polynomials465

The following recalls a proof of convergence rates for local polynomial estimation. Consider the case466

where X = [0, 1) with uniform distribution, and f = f∗ is assumed to be (α, L)-Hölder,467

���f (⌊α⌋)(x)− f (⌊α⌋)(y)
��� ≤ L |x− y|α−⌊α⌋

.

Then, by fitting Taylor expansions on intervals [(i − 1)/m, i/m) for i ∈ [m] and m ∈ Z+ with468

polynomials469

φ(x) =

 �
x− 2i− 1

2m

�j

· 1x∈[ i−1
m , i

m )

!

i∈[m],j∈[0,⌊α⌋]
,

one can ensure that [see 11, Lemma 11.1]470

∥ΠFf
∗ − f∗∥2 ≤ ∥ΠFf

∗ − f∗∥∞ ≤ L

2α ⌊α⌋!mα
,

where ΠF denotes the orthogonal projection from L2 onto F . The same type of result also holds471

in dimension d using md multivariate polynomials of degree less then ⌊α⌋. The number of such472

polynomials is mdh⌊α⌋(1d), where h⌊α⌋ is the complete homogeneous symmetric polynomial of473

degree ⌊α⌋ in d variables and 1d is the vector of all ones. Thus,474

h⌊α⌋(1d) =

�
d+ ⌊α⌋

α

�
=

(d+ ⌊α⌋)!
d! ⌊α⌋! ≥ ⌈α⌉d

d!
.

Balancing the bias and the variance term, we get an excess risk that behaves as475

E
h
∥fn − f∗∥2

i
≲ inf

m∈Z+

ε2md ⌈α⌉d
n

+
L2

22α ⌊α⌋!m2α
= cn−2α/(d+2α),
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for some constant c that depends on α, d and grows with L, σ2, the infimum being found for476

m ∝ (L2n)1/(d+2α). This shows an important point for practitioners: the size of the window should477

depend on how smooth f∗ is expected to be among the functions in Cα.478

Covering issues in high-dimension? Intuitively in high-dimension problems, where d = dim(X )479

is big, leveraging local properties is not very reasonable, since the covering of X with local neigh-480

borhoods grows exponentially with the dimension d, meaning that if one wants to have enough481

samples per neighborhood, n should scale exponentially with d. Because rates in O(n−2α/(2α+d))482

are minimax optimal and of the lower bound in (10), it appears explicitly that to ensure minimax483

optimal convergence rates (i.e. make sure the rates hold for all functions in Cα), the partition size484

of X should scale in O(nd/(2α+d)) = O(n × n−2α/(2α+d)) when trying to leverage the fact that485

f∗ ∈ Cα. Indeed and in contrast with the prior intuition, the partition size does not deteriorate with486

the dimension of the input space nor with the regularity of the target function, nor the percentage of487

the total volume contained in each region of the partition.2 As a consequence, we expect the length488

of transitory regimes to suffer from the difficulty to leverage smoothness in high-dimension rather489

than to the fact that Taylor expansions need to be localized, and expect similar pessimistic pictures to490

take place when estimating target function through Fourier expansion.491

A.4.2 Upper bound application to translation-invariant kernels492

Table 1 depicts two types of kernels: the Matérn kernels (the exponential kernel corresponding to493

a Matérn kernel of low smoothness), and the Gaussian kernel (which can be seen as the limit of494

a Matérn kernel to infinite smoothness). By balancing bias and variance, one can prove the usual495

convergence rates for functions in Sobolev spaces, i.e. f∗ ∈ Hα. We refer to Appendix B for an496

explanation of those bounds on the variance and bias terms.497

For the Matérn kernels, the generalization error reads, with τ = 2β − d,498

E
h
∥fn − f∗∥2

i
≲ (στλ)−d/2β

n
+ (στλ)α/β .

This is optimized for499

στλ = n−2β/(2α+d),

leading to minimax convergence rates in O(n−2α/(2α+d)).500

For the Gaussian kernel, we get501

E
h
∥fn − f∗∥2

i
≲ σ−d log(λ−1σd)d/2

n
+ σ2α log(λ−1σd)−α,

which is optimized for502

σ−2 log(λ−1σd) = n2/(2α+d),

leading to the same minimax convergence rate. In particular, when σ is fixed, this leads to503

λ = λn = σd exp(−σ2n2/(2α+d)).

Based on Theorem 2, this is true as long as N (λ)N 1/2
∞ (λ)/n1/2 goes to zero with n, which imposes504

some constraints on α when assuming f∗ ∈ Hα. However, considering the refinement of Mourtada505

et al. [18], the upper bound is actually true without this constraint, which allows to prove the506

convergence rates in O(n2α/(2α+d)) for any α.507

A.4.3 Lower bound application to local polynomials - Proof of Proposition 1508

Proposition 1 is a straightforward adaptation of Theorem 2, using the fact that N (0) = dimF is509

larger than the number of unknowns in a single Taylor expansion of order α in dimension d, which510

corresponds to the number of coefficients in a polynomial of degree α with d variables, and is equal511

to the number of sets of d elements among d+ α elements.512

2However, the radius of those regions will scale as r = v1/d for v the volume of those regions, meaning that
when this volume will shrink to zero, the radius will shrink slower as the dimension grows, which will lead to a
slower minimization of the approximation error.
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A.4.4 Lower bound application to translation-invariant kernels - Proof of Proposition 2513

Using the bias and variance lower bounds decomposition and Proposition 14, we get, when f∗ = fm514

is a single frequency function f̂(ω) = δm(ω) with m ∈ Zd,515

ε2N2(λ)

n
+ B(λ) ≥

 
dπ(d−1)/2

2d+2Γ((d− 1)/2)n
λ−d/2β +

λ2

((1 + ∥m∥2)−β + λ)2

!

≥ 1

2

�
dπ(d−1)/2

2d+1Γ((d− 1)/2)n
λ−d/2β +min(λ2(1 + ∥m∥2)2β , 1)

�
.

From the fact that516

inf
x∈R

ax−α + bx2 =
�
α2/(2+α) + α−α/(2+α)

�
bα/(2+α)a2/(2+α) ≥ bα/(2+α)a2/(2+α),

we have that, whatsoever λ is (if it is fixed for all n independently of the realization Dn).517

dπ(d−1)/2

2d+1Γ((d− 1)/2)n
λ−d/2β + λ2(1 + ∥m∥2)2β

≥
�

dπ(d−1)/2

2d−1Γ((d− 1)/2)

�4β/(4β+d) �
1 + ∥m∥2

�2βd/(4β+d)

.

Once again, this lower bound is also true when d is replaced by any l ∈ [d].518

A.5 Interpolation spaces, capacity and source conditions519

In this section, we discuss the values of N (λ) and B(λ) for classical problems.520

A.5.1 Relation between variances521

We begin with simple facts.522

Proposition 7. For any search space F and regularization λ > 0,523

N2(λ) ≤ N1(λ) ≤ N∞(λ). (24)

Once again, the precise study of the variance is easier in H with the operator Σ rather than in L2.524

First of all, notice that K = SS∗ has the same spectrum as Σ = S∗S, so that, for a ∈ [1, 2],525

Na(λ) = Tr((K + λ)−aKa) = Tr((Σ+ λ)−aΣa) =
X

µ∈spec(Σ)

µa

(λ+ µ)a
.

This shows the first part of the inequality (24):526

�
0 ≤ x

x+ λ
≤ 1 ⇒ x

x+ λ
≤ xa

(x+ λ)a

�
⇒ N2(λ) ≤ N1(λ).

For the second part of the inequality, we need to reformulate N∞(λ).527

Lemma 8. N∞(λ) can be expressed in H as528

N∞(λ) = ess sup
x∼ρX




(Σ+ λ)−1/2φ(x)




2

.

Proof. Observe that, for x ∈ X ,529




(Σ+ λ)−1/2φ(x)




2

= φ(x)⊤(Σ+ λ)−1φ(x) = Tr

(Σ+ λ)−1φ(x)⊗ φ(x)

�
.

Let us introduce the operator530

Sx : H → L2(ρX ), θ 7→ (x′ 7→ φ(x)⊤θ).

From531

⟨Sxθ, g⟩ = E[g(X)φ(x)⊤θ] = ⟨θ,EX [g(X)φ(x)]⟩
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we get S∗
xg = E[g(X)φ(x)]. Similarly, one can check that532

Kx(g)(x
′) = (SxS

∗
xg)(x

′) = (Sx(EX [g(X)]φ(x)))(x′) = φ(x)⊤φ(x)EX [g(X)] = E[g]k(x, x),

and that533

Σxθ = S∗
xSxθ = EX [φ(x)⊤θ]φ(x) = (φ(x)⊗ φ(x))θ,

from which we deduce that there exists ε ∈ {−1, 1} such that534

ε


(K + λ)−1Kx



 = Tr (K + λ)−1Kx) = Tr(Σ+ λ)−1φ(x)⊗ φ(x)) =



(Σ+ λ)−1/2φ(x)




 .

Necessarily ε = 1 since the right term is positive. Taking the essential supremum ends the proof.535

In view of Lemma 8, the last inequality in (24) follows from536

N2(λ) = EX

�
Tr((Σ+ λ)−1φ(X)⊗ φ(X)

�
≤ ess sup

X
Tr((Σ+ λ)−1φ(X)⊗ φ(X)) = N∞(λ).

A.5.2 Bounding the variance with interpolation inequalities537

The following is a reinterpretation of Proposition 29 of Cabannes et al. [5].538

Proposition 9 (Capacity condition). When Kp(L2(ρX )) is continuously embedded in L∞(ρX ) with539

p ≤ 1/2, there exists a constant c such that540

N∞(λ) ≤ cλ−2p. (25)

Proof. The continuous embedding means that there exists a constant c such that, for any λ ≥ 0,541

∥Kpf∥∞ ≤ c ∥f∥2 .
Stated in H, we get542

∥Sθ∥∞ ≤ c


K−pSθ




2
= c




Σ1/2−pθ





for every θ ∈ H. In other terms,543

ess sup
x

��φ(x)⊤θ
�� ≤ c




Σ1/2−pθ



 .

Let us denote by (λi, θi) the eigenvalue decomposition of Σ. Then544

ess sup
x

(φ(x)⊤θ)2 ≤ c2



Σ1/2−pθ





2

= c2
X

i∈N
λ1−2p
i (θ⊤i θ)

2.

When considering θ = θi, this leads to545

��θ⊤φ(x)
�� ≤ cλ

1/2−p
i .

Therefore,546

N 1/2
∞ (λ) = sup

x




(Σ+ λ)−1/2φ(x)



 = sup

x
sup

θ;∥θ∥≤1

θ⊤Σ−1/2
λ φ(x)

= sup
x

sup
θ;∥θ∥≤1

X

i∈N

θ⊤θiθ⊤i φ(x)

(λ+ λi)1/2
≤ c sup

a;
P

a2
i≤1

X

i∈N

aiλ
1/2−p
i

(λ+ λi)1/2

= c sup
i∈N

λ
1/2−p
i

(λ+ λi)1/2
= c sup

t∈spec(K)

t1/2−p

(λ+ t)1/2
≤ c sup

t≥0

t1/2−p

(λ+ t)1/2

= c(2p)−p(1− 2p)1/2−pλ−p,

where the last equality follows from basic calculus.547
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A.5.3 Bounding the bias with source conditions548

We now focus our attention on the bias term.549

Proposition 10 (Capacity condition). When f∗ ∈ Kq(L2(ρX ) with q ≤ 1, there exists a constant c550

such that, for any λ ≥ 0,551

B(λ) = λ2S(λ) ≤ cλ2q. (26)

Proof. The proof is straight-forward. If f∗ = Kqg with g ∈ L2, then552

S(λ) =


(K + λ)−1f∗



2
=



(K + λ)−1Kqg



2

=


(K + λ)q−1




2



(K + λ)−qKq



2
∥g∥2 ≤ λq−1



K−pf∗


2
.

Squaring this term and multiplying it by λ2 leads to the result.553

A.5.4 Classical interpolation inequalities554

We begin with a simple proposition.555

Proposition 11. When the function x → k(x, x) is bounded, the RKHS associated with k verifies556

N∞(λ) = O(λ−1).

Proof. This follows from the fact that K1/2(L2) ,→ L∞ as soon as φ is bounded since, for any557

f = φ(·)⊤θ ∈ F = SH = K1/2(L2),558

|f(x)| =
��φ(x)⊤θ

�� ≤ ∥φ∥∞ ∥θ∥ = ∥φ∥∞ ∥f∥F = ∥φ∥∞



K−1/2f





2
.

The previous characterization of N∞ leads to the claim.559

We now turn ourselves to more complicated interpolations, and offer an informal proposition of facts560

that are well-known in approximation theory [28, 9].561

Proposition 12 (Informal source condition). When F = Hβ and f∗ ∈ Hα, it holds562

f∗ ∈ Kα/2β(L2(ρX )).

Proof. In essence, as explained in Appendix B, K takes a function in L2(ρX ) and multiply its563

Fourier transform by q̂(ω)−1 = (1 + ∥ω∥2)β , with q defining the Matérn kernel, making it 2β-564

smooth in the Sobolev sense. In harmonic settings where the Fourier functions diagonalize K565

and q̂(ω) parameterizes the spectrum of K, the fractional operator Kp can be seen as multiplying566

the Fourier transform of f by q̂(ω)−p, making it 2pβ-smooth. This fact can be extended beyond567

those harmonic settings, notably with interpolation inequalities as the one used for the last part of568

Proposition 3. On the opposite direction, any α-smooth function can be multiplied by q(ω)α/2β in569

Fourier while staying in L2(ρX ), so that, if f∗ is α-smooth, it belongs to Kα/2β .570

Proposition 13 (Informal interpolation inequality). When F = Hβ is the space of α-Sobolev571

functions,572

Kd/2β(L2) ,→ L∞.

Proof. Note that F = SH = K1/2(L2. We have seen informally in the proof of the previous573

lemma how Kp(L2 ⊂ H2pβ . Now, let us recall the Sobolev embedding theorems [1]. Under mild574

assumptions on ρX , for k, r, l, s > 0575

W k,r(ρX ) ,→ W l,s(ρX ), as long as
1

r
− k

d
≤ 1

s
− l

d
.

We want to use it with k = 2pβ, r = 2, l = 0 and s = +∞, which leads to p = 4β/d.576

These results partially explained Table 1, which we derive formally in Appendix B.577
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B Translation-invariant kernels and Fourier analysis578

Let us recall basic facts about kernel methods and Fourier analysis, before providing proofs to579

Propositions 2 and 3.580

B.1 Stylized analysis on the torus581

When k is a translation-invariant kernel, i.e. k(x, x′) = q(x − x′), the integral operator K is a582

convolution against q. Let us expand on the friendly case provided by the torus X = Td := Rd/Zd =583

[0, 1]d/ ∼, where ∼ is the relation identifying opposite faces of the hypercube, and ρX the uniform584

distribution. On the torus, a translation invariant kernel is defined through q being a one-periodic585

function on Rd. The integral operator K : L2(X , dx) → L2(X , dx) is the convolution586

Kf(x) =

Z

[0,1]d
k(x, x′)f(x′) dx′ =

Z

[0,1]d
q(x′ − x)f(x′) dx′ = q ∗ f(x).

For m ∈ Zd, define the Fourier function fm : x 7→ exp(2iπ ⟨m,x⟩). One can check that the fm’s587

form an orthonormal family that diagonalizes K with3588

Kfm = bqmfm, where bqm =

Z

[0,1]d
q(x) exp(2iπ ⟨x,m⟩) dx.

Hence, using Pythagoras theorem, we can define the norm on F through its action on Fourier589

coefficients as590

∥f∥2F =


f,K−1f

�
L2(ρX )

=
X

m∈Zd

bq−1
m | bfm|2 =

Z

Rd

bq(ω)−1| bf(ω)|2#(dω),

where bfm = ⟨f, fm⟩L2(ρX ), and # is the counting measure on Zd ⊂ Rd.591

B.1.1 First part of the proof of Proposition 3592

Since K is diagonalized in Fourier, we compute the size of F for a ∈ {1, 2} with593

Na(λ) = Tr

Ka(K + λ)−a

�
=
X

m∈Zd

bqam
(bqm + λ)a

.

For kernels whose scales are explicitly defined through qσ = q(x/σ), we have bqσ(ω) = σdbq(σω),594

which leads to (12).595

Similarly, the bound on the bias term follows from Fourier analysis by596

B(λ) =


K(K + λ)−1f − f



2
L2(ρX )

=
X

m∈Zd

��� bfm
���
� bqm
bqm + λ

− 1

�2

=
X

m∈Zd

��� bfm
���
�

λ

bqm + λ

�2

.

which provides (13).597

B.1.2 Second part of the proof of Proposition 3598

When ρ is a distribution that is absolutely continuous with respect to the Lebesgue measure and599

whose density is bounded from above, we get600

K ⪯ ρ∞Kdx, with ρ∞ =






dρX
dx






L∞(ρX )

,

where Kdx is the integral operator associated to the kernel k on L2(dx) endowed with the Lebesgue601

measure. Using the fact the effective dimension is an increasing function of the eigenvalues (since602

3Indeed, the Fourier transform of a function f ∈ L2(Td) can be defined as the mapping from N to
(⟨fi, f⟩)i∈N where (fi) is a basis that diagonalizes all convolution operators (note that this definition is possible
because ρX is uniform on the torus).
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x 7→ x/(x+ 1) is increasing), and that eigenvalues are increasing with the Loewner order, this leads603

to, with the Fourier transform on L2(dx),604

N (λ) ≤ ρ∞ Tr

(Kdx + λ)−1Kdx

�
= ρ∞

Z

Rd

bq(ω)
λ+ bq(ω) dω.

Note that those derivations are written informally (since K and Kdx do not act on the same space),605

but could be made formal with the isomorphic covariance operators on H, plus some technicalities606

to make sure Σdx is well defined (assuming φ(X) as a fourth-order moment against Lebesgue, or607

approaching Kdx within its action on compact space of X where it is bounded, before taking the608

limit of Ndx(λ)).609

For the bias term, using the fact that L2(ρX ) is continuously embedded in L2(dx) and the isometry610

between the spatial and the Fourier domain611

∥f − f∗∥L2(ρX ) ≤ ρ1/2∞ ∥f − f∗∥L2(dx) = ρ1/2∞ ∥ bf −cf∗∥L2(dx).

Finally, it should be noted that the norm associated with F does not depend on the density of X ,612

hence the formula can be written independently of ρX . Indeed, under definition assumption, this613

formula can even be written with a measure of infinite mass. For example, when X = Rd, one can614

consider the Fourier transform associated with L2(dx) endowed with the Lebesgue measure, and get615

∥f∥2F =

Z

ω∈Xd

bq(ω)−1| bf(ω)|2 dω, where bq(ω) =
Z

Rd

q(x) exp(−2iπ ⟨x,ω⟩) dx, (27)

although some care is needed to deal with the continuous version of the spectral theorem (the set of616

eigenvalues being non-countable). From there the same derivations as for Proposition 3 lead to the617

desired result.618

B.2 Sobolev spaces619

Recall the action of derivation on the Fourier transform, for m ∈ Nd, |m| := ∥m∥1, and f ∈ L2(dx),620

\∂|m|fQ
i∈[d] ∂

mixi
(ω) = (2iπ)|m| Y

i∈[d]

ωmi
i
bf(ω).

It characterizes the pseudo-norm621

∥f∥2m =

Z

Rd







∂|m|f(x)Q
i∈[d] ∂

mixi








2

dx = (2π)2|m|
Z

Rd

Y

i∈[d]

ω2mi
i

��� bf(ω)
���
2

dω.

This pseudo-norm is associated with the translation-invariant kernel such that bq(ω) =Qi∈[d] ω
−2mi
i622

as per (27). Note that q is well defined when bq belongs to L1(dx) (Bochner’s theorem), that is623

|m| > d. Those observations are usual to deduce that the so-call Matérn kernel, which are defined624

from bq(ω) ∝ (1+ ∥ω∥22)−β , corresponds to ∥·∥F the Sobolev space Hβ(dx) endowed with the norm625

∥f∥2Hβ =
X

m;|m|≤β

∥f∥2m .

It follows from Bochner theorem that Hβ is a reproducing kernel Hilbert space if only if 2β > d.626

Remarkably, the exponential kernel corresponds to the Matérn kernel with β = (d+ 1)/2 [22]. For627

the Gaussian kernel, bq(ω) = π−d/2 exp(−π2 ∥ω∥2), and the associated function class F are analytic628

(Paley-Wiener theorem).629

B.2.1 Functional sizes630

Let us now express the capacity and bias bound within Sobolev spaces.631

Proposition 14 (Sobolev capacity). When bq(ω) = (1 + ∥ω∥2)−β for β > d, when λσ−d is bounded,632

and ρ has a bounded density633

N1(λ,σ) ≤
2βρ∞π(d+1)/2

Γ((d− 1)/2)
λ−d/2βσ−d(2β−d)/2β .

23



Moreover when X = Td and ρX is uniform, we get634

N2(λ,σ = 1) ≥ max
l∈[d]

lπ(l+1)/2

2l+1Γ((l − 1)/2)
λ−l/2β .

Proof. In this setting, Proposition 3 leads to635
Z

Rd

1

1 + λ bqσ(ω)−1
dω =

Z

Rd

1

1 + λσ−dbq(σω)−1
dω =

Z

Rd

1

1 + λσ−d(1 + σ2 ∥ω∥2)β
dω

= surf(Sd+1)

Z

R+

rd−1 dr

1 + λσ−d(1 + σ2r2)β

= 2π vol(Sd)

Z ∞

λ1/βσ−d/β

(u− λ1/βσ−d/β)d/2−1 du

λd/2βσd−d2/2β(1 + uβ)

= 2π vol(Sd)λ−d/2βσd(d−2β)/2β

Z

R+

xd/2−1 dx

1 + (x+ λ1/βσ−d/β)β

≤ 2πβ vol(Sd)λ−d/2βσd(d−2β)/2β .

Where we have used the fact that636
Z ∞

0

xd/2−1 dx

1 + (x+ λ1/βσ−d/β)β
≤
Z ∞

0

xd/2−1 dx

max(1,max(xβ ,λσ−d))

≤
Z 1

0

xd/2−1 dx+

Z ∞

1

xd/2−1 dx

xβ
= d/2− (d/2− β) = β,

which is true as long as β > d/2 to ensure proper convergence of the last integral.637

For the part on the torus, in order to get a sharp learning limit, we need to be slightly more precise.638

In particular, we want to relate the discrete Fourier transform integral of Proposition 3 with the639

continuous one through series-integral comparison, and to get a lower bound on the last integral. We640

will fix σ = 1 for simplicity. A simple cut of Rd into unit cubes, and the fact that our integrand is641

decreasing leads to642

X

m∈Zd

10/∈m
bq2m

(bqm + λ)2
≤
Z bq(ω)2

(bq(ω) + λ)2
dω ≤

X

m∈Zd

2#{i∈[d] |mi=0} bq2m
(bqm + λ)2

.

We simplify it as643

N2(σ,λ) ≥ 2−d

Z bq(ω)2
(bq(ω) + λ)2

dω.

We compute the integral with the same techniques as before644
Z bq(ω)2

(bq(ω) + λ)2
dω =

Z
1

(1 + bq(ω)−1λ)2
dω =

Z
1

(1 + (1 + ∥ω∥2)βλ)2
dω

= 2π vol(Sd)

Z
xd−1

(1 + (1 + x2)βλ)2
dx

= 2π vol(Sd)λ−d/2β

Z
xd−1

(1 + (λ1/β + x2)β)2
dx

≥ 2π vol(Sd)λ−d/2β

Z
xd−1

4max(1, 4β max(λ2, x4β))
dx

= 2−1π vol(Sd)λ−d/2β

�Z 1

0

xd−1 dx+ 4−β

Z ∞

1

xd−1

x4β
dx

�

= 2−1π vol(Sd)λ−d/2β(d+ 4−β(4β − d))

≥ 2−1π vol(Sd)λ−d/2βd.

It should be noted that this last bound is somewhat too lax, as it tends to zero when the dimension645

increases. Since,
P

m∈Zd a(∥m∥) for a > 0 strictly increasing with d, we deduce that this lower646

bound holds for any k ≤ d.647
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Proposition 15 (Gaussian capacity). When bq(ω) = exp(−∥ω∥2), and ρ has a bounded density648

N1(λ,σ) ≤
ρ∞π(d−1)/2d

2σd
L(λ−1σd),

where L is defined by Eq. (28). In particular, L(x) ≤ x when x < 1, and L(x) ≲ log(x)d/2 when x649

gets large. Moreover when X = Td and ρX is uniform, we get650

N2(λ,σ) ≥
π(d−1)/2

2d+1σd
L(λ−1σd),

Proof. With the Gaussian kernel, Proposition 3 leads to651

Z

Rd

1

1 + λσ−d exp(σ2 ∥ω∥2)
dω = vol(Sd)

Z

R+

2xd−1

1 + λσ−d exp(σ2x2)
dx

= vol(Sd)σ−d

Z

R+

ud/2−1

1 + λσ−d exp(u)
du

= vol(Sd)Γ(d/2)
−Lid/2


−σd/λ

�

σd
,

where Li is the polylogarithm function, hence the definition of L as652

L(x) = −Lid/2(−x) =

∞X

k=1

(−1)k+1xk

kd/2
(28)

We recognize an alternating sequence, whose terms amplitudes are decreasing as a function of k ∈ N653

when x ≤ 1, which explains that L(x) is smaller than the first term in this case. The expansion of the654

polylogarithm function in infinity leads to the upper bound when x goes to infinity.655

When it comes to an lower bound, we can proceed as the precedent lemma with656

N2(σ,λ) ≥ 2−d

Z
dω

(1 + λbq(ω)−1)2
≥ 2−d

Z
dω

1 + λbq(ω)−1
,

which corresponds to the integral computed for the upper bound. Once again, this also holds when d657

is replaced by any l ∈ [d].658

B.2.2 Adherences659

Let us now turn our attention to the bias, i.e. the adherence of functions in those spaces. For proof660

readability, we will assume that ρX has compact support. In this setting, Wα,2 is continuously661

embedded in Cα+d/2 = Wα+d/2,∞, which can be defined as662

Cα+d/2 =

�
f : Rd → R

���� ∥f∥α := ess sup
ω∈Rd

��� bf(ω)
��� (1 + ∥ω∥)α+d/2 < +∞

�
.

Proposition 16 (Adherence of Hα in Hβ). When bq(ω) = (1 + ∥ω∥2)−β hence F = Hβ , if α > 2β,663

for any f∗ ∈ Hα(ρX ), and λ small enough,664

B(σ,λ) ≤ λ2


K−1f



2
L2(ρX)

.

If α < β, and ρX has a bounded density, then for any function f∗ ∈ Cα+d/2665

B(σ,λ) ≤ ρ∞
4βπ(d+1)/2ρ∞ ∥f∥2α β

(β2 − α2)Γ((d− 1)/2)
λα/βσ(2β−d)α/β . (29)

Proof. The first part results from previous consideration on the source condition since we have the666

inclusion f∗ ∈ Hα ⊂ H2β = K(L2(ρX )). The second part follows from an L1 − L∞ Hölder667
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inequality668

B(σ,λ) ≤ ρ∞

Z

Rd

��� bf(ω)
���
2

(λ−1σdbq(σω) + 1)2
dω ≤ ρ∞ ∥f∥2α

Z

Rd

(1 + ∥ω∥2)−(d/2+α)

(λ−1σd(1 + σ2 ∥ω∥2)−β + 1)2
dω

= 2π vol(Sd)ρ∞ ∥f∥2α
Z

R+

2(1 + x2)−(d/2+α)xd−1

(λ−1σd(1 + σ2x2)−β + 1)2
dx

= 2π vol(Sd)ρ∞ ∥f∥2α aασ2α

Z ∞

a

(u− a+ aσ2)−(d/2+α)(u− a)d/2−1

(u−β + 1)2
du

≤ 4βπ vol(Sd)ρ∞ ∥f∥2α β

β2 − α2
λα/βσ(2β−d)α/β ,

where a was set to be λ1/βσ−d/β , and the last integral can be computed with669 Z ∞

a

(u− a+ aσ2)−(d/2+α)(u− a)d/2−1

(u−β + 1)2
du ≤

Z ∞

0

ud/2+β−1

(u+ a(σ2 − 1))d/2+α(1 + uβ)2
du

≤
Z ∞

0

ud/2+β−1

(u+ a(σ2 − 1))d/2+α(1 + uβ)2
du ≤

Z 1

0

ud/2+β−1

ud/2+α
du+

Z +∞

1

ud/2+β−1

ud/2+αu2β
du

=
1

β − α
+

1

β + α
=

β

α(β − α)
.

The volume of the sphere ends the proof.670

Proposition 17 (Adherence of Hα in Gaussian RKHS). When F is associated with the Gaussian671

kernel and ρX has a bounded density, for any f∗ ∈ Cα+d/2,672

B(σ,λ) ≤ 2π(d+1)/2ρ∞ ∥f∥2α
Γ((d− 1)/2)

�
1

σ2d+4α
+

2 log(2)−(d/2+2α)

d+ 2α

�
σ2α log(λ−1σd)−α.

Proof. We follow the same path as the adherence of Hα in Hβ ,673

B(σ,λ) ≤ ρ∞ ∥f∥2α
Z

Rd

(1 + ∥ω∥2)−(d/2+α)

(λ−1σdbq(σω) + 1)2
dω

= ρ∞ ∥f∥2α
Z

Rd

(1 + ∥ω∥2)−(d/2+α)

(λ−1σd exp(−σ2 ∥ω∥2) + 1)2
dω

= 2π vol(Sd)ρ∞ ∥f∥2α
Z

R+

(1 + x2)−(d/2+α)xd−1

(λ−1σd exp(−σ2x2) + 1)2
dx

= 2π vol(Sd)ρ∞ ∥f∥2α σ2α

Z +∞

1

log(x)d/2−1

(σ2 + log(x))d+2α(a+ x)
dx

≤ 2π vol(Sd)ρ∞ ∥f∥2α σ2α log(λ−1σd)−α

�
1

σ2d+4α
+

log(2)−α

α

�
.

where the integral was computed with674 Z +∞

1

log(x)d/2−1

(σ2 + log(x))d+2α(a+ x)
dx ≤

Z e

1

log(x)

σ2d+4α
dx+

Z +∞

e

1

(log(x))d/2+2α+1x
dx

=
1

σ2d+4α
+

log(2)−(d/2+2α)

d/2 + 2α
.

The same type of derivations can be made for the bias in the lower bound.675

Note that the proofs also work when the L1 − L∞ Hölder inequality is replaced by a L∞ − L1 one,676

showcasing the norm of f in Hα instead of in Cα+d/2. We refer to Bach [4] for details.677

Remark 18 (Blessing of dimensionality). It should be noted that all our integral calculations show a678

constant 2πρ∞ vol(Sd) which will be present in front of the excess risk. As d increases, this constant679

goes to zero faster than any exponential profile. To see that, note how the volume of the d-sphere is680

always smaller than twice the one of its inscribed hypercube, whose volume is d−d/2. We do not have681

clear intuition to understand this behavior at time of writing.682
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Figure 7: (Right) Noise-free convergence rates for f∗(x) = x5
1 with k(x, y) ∝ (1 + x⊤y)5. We

observed similar deterioration of convergence rates as a function of the dimension d as on Figure 2.
The fact that the error is not exactly zero when d = 1 and n ≥ 5 is due to a small regularization
added in our algorithm to avoid running into computational issues when inverting a matrix online. (Left)
Convergence rates for f∗(x) = cos(4πx1) on the torus X = Td with the (periodic) exponential kernel
k(x, y) = q(−100 ∥x− y∥2 /d). We observe similar behavior as on Figure 2, the picture being worse
because the kernel weights all frequencies in the Fourier domain, and not only the first


d+5
5

�
ones.

C Experimental details683

C.1 Online solving of problems of increasing size684

In order to solve a big number of least-squares problems with increasing numbers of samples, one685

can use recursive matrix inversion. When A ∈ Rn×n, x ∈ Rn and b ∈ R, one can check that686

�
A x
x⊤ b

�−1

=

�
A−1 + cyy⊤ −cy

−cy⊤ c

�

where687

c =
1

b− x⊤y
, and y = A−1x.

This allows efficient computation of matrix inversion online as the number of samples is increasing.688

C.2 Example of convergence rates for “sparse” functions689

Polynomial estimation. Consider the target function f∗(x) = 63x5
1 − 70x3

1 + 15x1, learned with690

the polynomial kernel k(x, y) = (1 + x⊤y)d with X = [0, 1]d and ρ uniform, in the interpolation691

regime λ = 0. In this setting, F is exactly the space of polynomials of degree less than 5, which692

follows from the fact that k can be rewritten through a vector φ that enumerates monomials693

(1 + x⊤y)d =
X

i∈[0,d]

�
n

i

� X

(ij)j ;
P

j ij=i

�
i

(ij)j

�Y
x
ij
j y

ij
j = φ(x)⊤φ(y).

As a consequence, f∗ belongs to F , and we expect the bias term to be zero. Yet, we expect the694

variance, hence the generalization error, to behave in ε2 dimF/n where ε corresponds to some695

notion of variability between labels. The dimension of dimensionality of the class of functions made696

by polynomials of degree q verifies F =

q+d
d

�
. In particular, in dimension d = 100, a polynomial697

of degree at most q = 5 can have up to one hundred million coefficients, meaning that, one need698

about one hundred million observations to enter the high-sample regime and expect an excess risk699

R(fn)−R(f∗) of order ε2 as per Theorem 2. While one could fit a smaller polynomial of degree700

four instead of five, since f∗ is actually orthogonal to all polynomials of lower degree, there is no701

hope to get better rates with such a smaller functional space. On Figure 2, the target function is702

f∗(x) = x5
1, and the polynomial kernel is normalized as703

k(x, y) =

�
1 + x⊤y
1 + d

�5

,

to avoid running into computational issues. The noise level ε is set to 10−2, and the lower bound in704

ε2 dimF/n is plotted on Figure 2. In practice, this lower bound describes well the learning dynamic705
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Figure 8: Excess risk when the target at the top is taken as f∗(x) = exp(−max(x2, C))− exp(C) with
C = 1/4, and x ∈ R with unit Gaussian distribution. Note that the learning of the smooth part is more
efficient when the regularizer is big, which forces the reconstruction to be smooth.

when the number of samples is high compared to the effective dimension of the space of functions706

considered.707

Same example in Fourier. To transpose the previous example in the Fourier domain, one can708

consider f∗(x) = cos(ω0x1) together with some translation-invariant kernel. We illustrate it on709

Figure 7. The deterioration of the rates with respect to dimension can be understood precisely. In710

harmonic setting, such as on the torus with uniform measure, one can consider f∗ as an eigenfunction711

of the integral operator K, associated with the eigenvalue λω0
. The lower bound on the bias is given712

by713

B =
λ2

(λ+ λω0
)2
.

When k is translation invariant with q(0), we get that714

TrK =
X

ω∈Zd

λω = Tr

E[φ(X)φ(X)⊤]

�
= E[φ(X)⊤φ(X)] = E[k(X,X)] = q(0).

When q(0) does not depend on d, this quantity is constant. On the other hand, we expect the λω to715

decrease with ∥ω∥, and because the number of frequencies below ∥ω0∥ grows exponentially with716

the dimension, in order to keep this sum constant, λω0 has to decrease exponentially fast with the717

dimension, hence the bias increase exponentially fast with the dimension.718

Example of “wrongfully” arbitrarily fast convergence rates. To further emphasis on the impor-719

tance of constants and transitory regimes, let us discuss an even simpler example. Assume that one720

wants to learn a polynomial of a unknown degree s ∈ N in a noiseless setting; or equivalently, learn721

an analytical function such that f (s+1) = 0 for an unknown s ∈ N. This polynomial can be learned722

exactly when provided with as many points as there are unknown coefficients in the polynomials.723

Meaning that the generalization error will almost surely go zero when provided enough points, as a724

consequence725

∀h : N → R, E(fn) ≤ O(h(n)).

where fn is defined in (5) with F the space of polynomials of any degree. In other terms, we are able726

to prove arbitrarily fast convergence rates. Yet those convergence rates hide constants that are the727

real quantities governing convergence behaviors of any learning procedure. Figure 7 shows how the728

number of coefficients in a Taylor expansion of order s is once again the right quantity to look at.729

C.3 Different convergence rates profiles730

Figure 3 was computed with the Gaussian kernel on either the torus or R. One hundred runs were731

launched and averaged to get a meaningful estimate of the expected excess risks. Convergence732

rates were computed for different hyperparameters, and the best set of hyperparameters (changing733

with respect to the number of samples but constant over run) was taken to show the best achievable734

convergence rates.735
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Figure 9: Example of a smooth target function with a C1-singularity whose estimation is expected to
showcase convergence rates that decrease fast first then slowly. The x-axis represent the input space
X = [−2, 2], the y-axis represent the output space f∗(x) and fn,λ for n = 102 and n = 104. The first
fast decrease of excess risk corresponds to the easy estimation of the coarse details of the function, while
the then slow decrease corresponds to the precise estimation of the C1-singularity. The target function
x → exp(−max(x2, 1)) − exp(−1) is represented in blue, while the estimation with 104 samples is
represented in orange, and the one with 102 samples is represented in dashed green. The left picture zooms
in on the estimation of the singularity, we see that the increase from 102 to 104 does not lead to a much
better estimate.
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Figure 10: Excess of risk when the target at the top is taken as f∗(x) = cos(2πωx) with ω = 20, and
x ∈ S = R/[−1, 1] uniform on the circle. Observe how the risk first stalls, before learning the function
quite fast. The two graphs {(n,Na(λ,σ)} for a ∈ {1, 2} are plotted with the blue lines.

Fast then slow profile. Let us focus on the example provided by f∗ : x → exp(−max(∥x∥2 , C))−736

exp(−C). Note that for qσ = exp(−x2/σ), the convolution qσ ∗ f for a large σ will not modify f737

much, while making it analytical. This follows from Fourier analysis. If f is integrable, its Fourier738

transform is bounded. Since a convolution corresponds to a product in Fourier, and since the Fourier739

transform qσ decays exponentially fast, so does f ∗ qσ, which implies its analytical property. As740

a consequence, all functions are close to analytical functions whose approximation should exhibit741

convergence rates in n−1. In particular for f∗ defined as before for a big C, one does not have enough742

observations, one will not be able to distinguish between f∗ and qσ ∗ f∗, and as the number of sample743

first increase, one will learn quite fast a smooth version of f∗. After a certain number of samples,744

the learning will stall until enough points are provided to distinguish between f∗ and its smoothing,745

and learn the C1-singularity of the former. Figure 8 illustrates this observation. Note that similar746

reasoning could be made for any RKHS that is dense in L2.747

Slow then fast profile. The slow then fast profile was computed with X = R/[−1, 1] being the748

sphere, ρX being uniform and f∗ : x → cos(2πωx) with ω = 20. One hundred runs were launched749

and averaged to get an estimate of the excess risk of the estimator in (6) for different values of σ and750

λ. Again, the best results for different sample sizes were reported to get an estimate of convergence751

rates on Figure 3. A log-log-log-log plot of the results is provided by Figure 10.752

C.4 Exploring the low-sample regime753

Looking at the population weights first. When given access to the knowledge of the full distribution754

ρ, the estimator in (6) can be rewritten as755

f∞,λ = E[Y αX ], αX : x → (K + λI)−1k(X,x). (30)

This shows an interesting property of kernel ridge regression: it can be seen as learning in an756

unsupervised fashion the weights α : X → L2(ρ), which then indicate on how to fold the input space757

to use information provided by the labels. At a high-level, one can think of a scheme, given some758

input points, to perform finite differences and leverage the result to build an estimate of the target759
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function from Taylor expansions, whatsoever would be the labels observations. Figure 11 shows how760

when λ is not to big, the reconstruction f∞,λ(x0) (x0 being the same point at the bluest center on761

the different pictures on this Figure) depends on observations made far away from x0 according to762

some periodic pattern, implicitly assuming that the target function should be regular when looked at763

in the Fourier domain. From this picture, one can build examples of non-smooth functions where this764

inductive bias will have adversarial effects.765

Looking at the empirical weights. While the previous paragraph discusses the weights αX(x)766

when given access to the full distribution, similar derivations can be made when accessing a finite767

number of samples. Indeed, kernel ridge regression reads768

fλ,n(x) =
X

i∈[n]

Yiα̂i(x), α̂(x) = (K̂ + nλ)−1K̂x ∈ Rn,

where769

K̂ = (k(Xi, Xj))i,j∈[n] ∈ Rn×n, K̂x = (k(Xi, x))i∈[n] ∈ Rn.

Note that α̂i(x) = α̂Xi|DX ,n
(x) where DX ,n = (X1, · · · , Xn) is the input dataset. As a consequence,770

we check that771

EDn
[fn(x)] =

X

i∈[n]

EDn
[Yiα̂Xi|DX ,n

(x)] = n · · ·EDn
[Y1α̂X1|DX ,n

(x)].

In other terms, fn is a bias estimator whose average is defined as772

EDn
[fn] = E(X,Y )[Y α̂X ], α̂X = n · EDX ,n

�
α̂X1|DX ,n

��X1 = X
�
. (31)

Those are the weights plotted on Figure 12. In order to compute those weights efficiently, one can773

use the block matrix inversion, we have, using classical matrix notations774

α̂Xn|Dn
(x) = [(K̂ + nλ)−1K̂X ]n = [(K̂ + nλ)−1]n,: × K̂x

= [(K̂ + nλ)−1]n,:n−1 × [K̂x]:n−1 + [(K̂ + nλ)−1]n,n × [K̂x]n

= −(b− x⊤A−1x)−1([K̂x]n − x⊤A−1 × [K̂x]:n−1).

where775

K̂ + nλI =

�
A x
x⊤ b

�
=

�
[K̂]:n−1,:n−1 + nλ [K̂]n,:n−1

[K̂]⊤n,:n−1 [K̂]n,n + nλ

�

Let us denote776

K̃ = (k(Xi, Xj))i,j∈[n−1] ∈ Rn−1×n−1K̃x = (k(Xi, x))i∈[n−1] ∈ Rn−1,

we get777

α̂X|Dn
(x) =


k(X,X)− Z⊤

XZX + nλ
�−1

k(X,x)− Z⊤
XZx

�
, Zx = (K̃ + nλ)−1/2K̃x.

Those weights are plotted on Figures 12 and 13.778

Figure 11: Level lines of the weights x → αx(x0) (30) for a given x0 ∈ X , when X is the torus
R2/[−1, 1]2 and the kernel is taken as the Gaussian kernel with the Riemannian metric on the torus (think
of an unrolled donut). Parameters are taken as σ = 1 together with λ = 106 (left), λ = 102 (middle) or
λ = 1 (right).

30



−0.5 0.0 0.5

0

High-sample ratio: 0.60

−0.5 0.0 0.5

0

High-sample ratio: 1.00

−0.5 0.0 0.5

0

High-sample ratio: 2.00

−0.5 0.0 0.5

0

High-sample ratio: 4.00

−0.5 0.0 0.5

0

High-sample ratio: 8.00

−0.5 0.0 0.5

0

High-sample ratio: 16.00

Figure 12: Weights x → α̂X(x) as per (30), for X = −1/2 (blue), X = 0 (orange) and X = 1/2
(green), when X = [−1, 1] and ρX is uniform. The weights are computed with the Gaussian kernel
with bandwidth σ = .1 and λ = 10−5 which yields an effective dimension of N = 45, and for
n ∈ {27, 45, 90, 180, 360, 720} which explains the high-sample ratio n/N seen on the titles of the
different plots. When this ratio is close to one, the weights present weird behaviors which could explain
the pic observed in convergence rates when transitioning from low-sample to high-sample regimes.
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Figure 13: Same picture as Figure 12 yet with σ = .05, which leads to an effective dimension N = 85.
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