
A Philosophies behind SAMA & Scalable Meta Learning353

Here, we additionally discuss several important design principles and philosophies behind scalable354

meta learning and SAMA in a Q&A format.355

Q. Why do we study scalable meta learning?356

A. Richard Sutton points out in his article “The Bitter Lesson” [59] that machine learning algorithms357

that stand the test of time are ones that continue to scale gracefully with the increased computation358

budget (i.e., scalable algorithms). Given that meta learning is an important topic in machine learning359

with many applications including data optimization [53], hyperparameter optimization [17], few-shot360

learning [15, 50], and adversarial learning [44], it was a natural call for us to investigate the scalability361

of meta learning algorithms following the spirit of “The Bitter Lesson”. Interestingly, such a focus362

on the scalability of meta learning algorithms distinguishes our work from most other meta learning363

works, in which the typical focus is to improve the overall performance of meta learning algorithms364

under a limited computation budget (usually bounded by a single GPU).365

Q. What are the design principles behind scalable meta learning?366

A. The increased computation budget powered by hardware advancements (e.g., Moore’s law) has367

evolved a new ecosystem of large models and datasets in machine learning over time, which involves368

both systems and algorithms components. For example, to efficiently leverage the increased computa-369

tion for large-scale learning, diverse systems techniques, such as data/model/pipeline parallelism have370

been developed [29, 35, 56]. At the same time, researchers have devised various algorithms that are371

highly effective for large-scale learning, such as backpropagation [54], skip connections [28], Adam372

optimizer [32], self-attention [61], etc. Accordingly, in addition to guaranteeing memory/compute373

efficiency for the scalability, our major design principle for scalable meta learning was to ensure374

compatibility with existing systems and algorithms in the large-scale learning ecosystem.375

Systems compatibility Given that a great deal of systems support in machine learning, such as376

communication-computation overlap [35], has been developed for first-order gradient methods, avoid-377

ing explicit computations of higher-order gradient information including Hessian-vector products378

was an important design principle in SAMA. Even though we mostly explored distributed training in379

this work, SAMA is also compatible with other system features such as half-precision training and380

activation checkpointing, which could further improve memory efficiency.381

Algorithms compatibility While there exist several meta learning algorithms that avoid the com-382

putation of higher-order gradient information [34, 37, 65], many of these algorithms either assume383

the use of a naive SGD update rule or devise specific update rules tailored to their own algorithms at384

the base level, significantly hampering their algorithm compatibility. In contrast, SAMA allows for385

the use of arbitrary optimizers at the base level via the algorithmic adaptation.386
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B Experiment Details387

In this section, we discuss various experiment details such as hyperparameters, baselines, and compute388

resources used for our experiments in Section 4. For reproducible research, we plan to release our389

experiment codes and SAMA implementation in the future (at the moment, codes are available in the390

supplementary material).391

B.1 Noisy Finetuning of Large Language Models392

Hyperparameters We ran training for 1000 iterations on TREC/SemEval/IMDB/ChemProt/Yelp/393

AGNews datasets from the WRENCH benchmark [67], with a batch size of 32, a weak supervision394

algorithm of majority voting, and the hyperparameters in Table 4 below.

model optimizer init_lr lr_scheduler wdecay dataset unroll step SAMA ↵

Base BERT-base Adam 1e-5 cosine 0 WRENCH train set
(with majority voting) 10 1.0

Meta
(Reweight) 2-layer MLP Adam 1e-5 None 0 WRENCH dev set N/A N/A

Meta
(Correct) 2-layer MLP Adam 1e-5 None 0 WRENCH dev set N/A N/A

Table 4: Hyperparameters for noisy finetuning of large language models experiments.

395

Baselines We adopted naive finetuning and self-training (i.e., COSINE [66]) approaches from the396

original WRENCH benchmark paper [67] as our baseline.397

Compute Resources We used 1 NVIDIA RTX 2080Ti GPU for the main experiment, and 4398

NVIDIA Tesla V100 GPUs for the throughput-memory analysis in Table 2 and Figure 1.399

B.2 Continued Pretraining of Large Language Models400

Hyperparameters We ran training for 100 epochs with a batch size of 16, a maximum sequence401

length of 256, and the hyperparameters in Table 5 below.

model optimizer init_lr lr_scheduler wdecay dataset unroll step SAMA ↵

Base
(Downstream) RoBERTa-base Adam 2e-5 linear decay + warmup linear

(warmup proportion 0.6) 0
train split of

ChemProt/HyperPartisan/
ACL-ARC/SciERC

10 0.3

Base
(Auxiliary) RoBERTa-base Adam 2e-5 linear decay + warmup linear

(warmup proportion 0.6) 0
train split of

ChemProt/HyperPartisan/
ACL-ARC/SciERC

10 0.3

Meta 2-layer MLP Adam 1e-5 None 0
train split of

ChemProt/HyperPartisan/
ACL-ARC/SciERC

N/A N/A

Table 5: Hyperparameters for continued pretraining of large language models experiments.

402

Baselines We adopt DAPT [25] and TARTAN-MT [11] as our baselines for this experiment. In403

detail, DAPT [25] performs additional masked language model pretraining on domain-specific data404

on top of the pretrained RoBERTa-base model and then finetunes the model on the downstream405

text classification task. We follow [25] (see Table 14 in the original paper) for setting downstream406

finetuning hyperparameters. Alternatively, TARTAN-MT [11] performs masked language modeling407

with task specific data and downstream text classification training simultaneously in a multitask408

fashion through two different heads.409

Compute Resources We used 1 NVIDIA Tesla V100 GPU for the main experiment, and 1 NVIDIA410

RTX A6000 GPU for the “memory vs model-size analysis” in Figure 1.411

B.3 Scale-Agnostic Efficient Data Pruning412

Hyperparameters We ran meta learning for 30 epochs with a batch size of 256 and the configuration413

shown in Table 6 below. After pruning data based on the meta learning result, we ran ImageNet-1k414
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training for 120 epochs with learning rate decayed by 10 at epochs [40, 80] following the setup in415

DynaMS [62].

model optimizer init_lr lr_scheduler wdecay dataset unroll step SAMA ↵

Base ResNet-50 SGD 1e-1 None 1e-4 ImageNet-1k train set 2 1.0

Meta 2-layer MLP Adam 1e-5 None 0 ImageNet-1k train set N/A N/A

Table 6: Hyperparameters for ImageNet-1k data pruning experiments

416

For the CIFAR-10 data pruning experiment, we ran meta learning for 50 epochs with the batch size417

of 128, and configuration in Table 7 below. After pruning the data based on the meta learning result,418

we ran CIFAR-10 training for 200 epochs with the cosine learning rate decay schedule following the419

setup in DeepCore [23].

model optimizer init_lr lr_scheduler wdecay dataset unroll step SAMA ↵

Base ResNet-18 SGD 1e-1 None 5e-4 CIFAR-10 train set 2 1.0

Meta 2-layer MLP Adam 1e-5 None 0 CIFAR-10 train set N/A N/A

Table 7: Hyperparameters for CIFAR-10 data pruning experiments

420

Baselines We adopt EL2N [46], GraNd [46], DynaMS [62] as our baselines for the ImageNet-421

1k experiments and GraNd [46], forgetting [60], margin [8] for the CIFAR-10 experiments. In422

detail, EL2N/GraND [46] respectively select samples with large L2-loss/gradient-norm values,423

forgetting [46] chooses samples that are frequently forgotten during training, and margin [8] chooses424

samples with least confidence. While these baselines are considered static pruning, DynaMS [62]425

falls under the category of dynamic pruning where data to be pruned change during training. Dynamic426

pruning may see the whole training data across different epochs, making a fair comparison difficult.427

Surprisingly, despite being a static pruning algorithm, SAMA-based data pruning still achieves a428

better performance than DynaMS.429

Compute Resources We used 4 NVIDIA Tesla V100 GPUs for Imagenet-1k data pruning meta430

learning experiments and 1 NVIDIA RTX 2080Ti GPU for CIFAR-10 experiments.431

Additional Information We measured the uncertainty U via the difference between the predictions432

of the current model and the exponentially-moving-averaged model.433
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C Algorithmic Adaptation for Adam Optimizer434

Since the Adam optimizer [32] has been the most popular optimizer to train large models, exemplified435

by Transformers [68], here we provide the adaptation matrix for Adam. We denote first and second436

moments of the gradient in Adam as m and v respectively, and the learning rate as �.437

@uadam

@g
=

@u

@g

✓
�

�1m+ (1� �1)gp
�1v + (1� �1)g2 + ✏

◆

= �
(1� �1)�2v � (1� �1)�2mg + (1� �1)✏

p
�1v + (1� �1)g2p

�1v + (1� �1)g2
�p

�1v + (1� �1)g2 + e
�2

⇡ �
(1� �1)�2v � (1� �1)�2mg

p
�1v + (1� �1)g2

�p
�1v + (1� �1)g2 + e

�2 (because ✏ ⌧ 1)

Adaptation matrices can be similarly derived for other adaptive optimizers.438

D The Effect of Scaling in Model-Agnostic Meta Learning439

Since the inception of MAML [15], a myriad of algorithms have been proposed to improve few-shot440

image classification while assuming a fixed network architecture. In contrast, here we shift our441

focus from the algorithm to the scale, and propose to study the following question: “Leveraging the442

compute/memory efficiency of SAMA, can we improve the few-shot generalization capability by443

scaling up the network size?”. Since SAMA is a variant of implicit differentiation, we closely follow444

the experiment setup in iMAML [50], where proximity to the initialization weights is explicitly445

enforced by L2-regularization. The major difference is that iMAML uses a conjugate-gradient-based446

method, which requires second-order gradient information to compute meta gradients, while we adopt447

SAMA to achieve improved scaling to larger networks with its superior memory/compute efficiency.448

We conduct preliminary experiments on the Omniglot 20-way 1-/5-shot tasks with the basic 4-layer449

CNN architecture, while varying the width (hidden size) of the networks to study the effect of the450

model size on the few-shot classification accuracy. The experiment results are provided in Figure 4451

below.452

Figure 4: Few-shot image classification accuracy on Omniglot 20-way 1-/5-shot tasks with varying
network sizes.

Interestingly, we observe that the increased model size leads to consistent improvements in few-shot453

classification accuracy. The important question following this observation is “can we apply scaling454

laws [31] from other tasks (e.g., language modeling) to general meta learning beyond few-shot image455

classification?” Since meta learning involves two optimization problems (meta and base) unlike456

traditional machine learning problems, it is as of now unclear how to define the general concept of457

“scale” in terms of both model and dataset sizes. We expect that further research in this direction458

would be critical in systematically studying scalable meta learning.459
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