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Appendix

A Motion-X: Additional Details

In this section, we provide more details about Motion-X that are not included in the main paper
due to space limitations, including statistic analyses, data preprocessing, and motion augmentation
mechanism.

A.1 Statistic Analyses

Fig. 1(a) shows each sub-dataset standard deviation of body, hand, and face joints. Our dataset has a
large diversity of the hand and face joints, filling the gap of the previous body-only dataset in terms
of expressiveness. Besides, as shown in Fig. 1(b), Motion-X provides a large volume of long motion
(> 240 frames), which will be beneficial for long-term motion generation.

(a) Motion-X Components
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Figure 1: Statistics of motion diversity and length.

A.2 Processing of Each Sub-dataset

We gather 81.1K motion sequences from seven existing datasets and a large volume of online videos
with the proposed annotation pipeline. As shown in Tab. 1, due to the lack of comprehensive annota-
tions from their original datasets, we provide well-annotated whole-body motion, comprehensive
semantic labels, and whole-body pose descriptions for all datasets. Here we introduce more details
about each sub-dataset’s data preprocessing.

Dataset Clip Number Frame Number Motion Annotation Text Annotation RGB

AMASS [15] 26.3K 5.4M B,H S ✗
AIST [35] 1.4K 0.3M B S ✓
HAA500 [9] 5.2K 0.3M - S ✓
HuMMan [6] 0.7K 0.1M B S ✓
GRAB [33] 1.3K 0.4M B,H S ✗
EgoBody [44] 1.0K 0.4M B,H - ✓
BAUM [40] 1.4K 0.2M F S ✓
IDEA400* 12.5K 2.6M - - ✓
Online Videos* 32.5K 6.0M - - ✓

Motion-X 81.1K 15.6M B,H,F S,P ✓

Table 1: Statistics of sub-datasets. B, H, and F are body, hand, and face. S and P are semantic and pose texts.
Please note that the semantic text annotations are different from different datasets. Some action datasets [22, 25,
9, 40] only provide action-level texts instead of sentences. Most semantic labels are annotated manually, making
specific domain descriptions (e.g., specific instruments) hard to label precisely. * denotes videos are collected in
this work.

AMASS [25] is the existing largest-scale motion capture dataset, which provides body motions and
almost static hand motions. To fill in the face parameters, we extract facial expressions from the facial
dataset BAUM [40] with the SOTA facial reconstruction method EMOCA [10] and perform a data
augmentation (in Sec. A.3). For the text labels, we utilize the semantic labels from HumanML3D [15]
and annotate the pose description with our whole-body pose captioning module.

IDEA400 is a high-quality and expressive motion dataset recorded by ourselves, providing 13K
motion sequences and 2.6M frames. Inheriting the NTU120 [22] categories, we expand them to 400
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actions with additional human self-contact motions, human-object contact motions, and expressive
whole-body motions (e.g., rich facial expressions and fine-grained hand gestures). There are 36
actors with diverse appearance and clothing. For each action, we have the actors perform three
times standing, three times walking, and four times sitting, a total of ten times. We annotate the
SMPL-X format pseudo labels with the proposed motion annotation pipeline, which can generate
high-quality whole-body motions. To obtain the semantic labels, we use the designed action labels
and expand them with the large language model (LLM) [18]. The pose descriptions are annotated
with our whole-body pose captioning method. In this subset, we provide monocular videos, the body
keypoints, SMPL-X parameters, and action labels. Please see the video in our website for more
details and visualization.

AIST [35] is a large-scale dance dataset with multi-view videos and dance genres labels. Instead of
using the body-only SMPL annotations from AIST++ [20], we annotate the whole-body motion via
our motion annotation pipeline. We obtain the semantic labels by expanding the dance genres label
and providing frame-level pose descriptions.

HAA500 [9] is a large-scale human-centric atomic action dataset with manually annotated labels and
videos for action recognition. It contains 500 classes with fine-grained atomic action labels, covering
sports, playing musical instruments, and daily actions. However, it does not have the motion labels.
We annotate the 3D whole-body motion with our pipeline. We use the provided atomic action label
as semantic labels. Besides, we input the video into video-LLaMA [42] and filter the human action
descriptions as supplemental texts. Pose description is generated by our automatic pose annotation
method.

HuMMan [6] is a human dataset with multi-modality data, including multi-view videos, keypoints,
SMPL parameters, action labels, etc. It does not provide whole-body pose labels. We estimate the
SMPL-X parameters with our annotation pipeline. Besides, we expand the action label with LLM
into semantic labels and use the proposed captioning pipeline to obtain pose descriptions.

GRAB [33] is human grasping dataset with body and hand motion. Meanwhile, it provides text
descriptions of each grasping motion without corresponding videos. Therefore, similar to AMASS,
we extract facial expressions from BAUM to fill in the facial expression. We use the provided text
description as semantic labels and annotate pose descriptions based on the SMPL-X parameters.

EgoBody [44] is a large-scale dataset capturing ground-truth 3D human motions in social interactions
scenes. It provides high-quality body and hand motion annotations, lacking facial expression. Thus,
we perform a motion augmentation to obtain expressive whole-body motions. Since EgoBody does
not provide text information, we manually label the semantic description using the VGG Image
Annotation (VIA) [11] and annotate the pose description with the automatic pose captioning pipeline.

BAUM [40] is a facial dataset with 1.4K audio-visual clips and 13 emotions. We annotate facial
expressions from BAUM with the SOTA face reconstruction method EMOCA.

Online Videos. To improve the richness of appearance and motion diversity, especially on profes-
sional motions, we collect 33K monocular videos from online sources, covering various real-life
scenes. We design action categories as motion prompts and input them into LLM. Then, we collect
videos from online sources based on the answer of LLM, after which we filter the candidate videos
by transition detection and annotate the whole-body motion, semantic label and pose description for
the selected videos.

A.3 Motion Augmentation Mechanism

Lower-body Motion Augmentation. Motion-X contains some upper-body videos collected from
online videos, like the videos in UBody [21], where the lower-body part is invisible. Estimating
accurate lower-body motions and global trajectories for these videos is challenging. Thanks to
the precise low-body motions provided in AMASS, we can simply perform a lower-body motion
augmentation for these sequences, i.e., selecting the closest motion from AMASS based on the
SMPL-X parameters and replacing the lower-body motion with it. Meanwhile, we incorporate
relevant keywords (e.g., sitting, standing, walking) in the text descriptions. Fig. 2(a) depicts three
plausible lower-body augmentations for the motion sequence with the semantic label "a person is
playing the guitar happily."
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Facial Expression Augmentation. As shown in Tab. 1, the motion capture datasets AMASS, GRAB,
and EgoBody do not provide facial expressions. Thus, we perform a facial expression augmentation
for these motions by randomly selecting a facial expression sequence from the BAUM [40] dataset
to fill the void and incorporating emotion labels (e.g., happy, sad, and surprise) in the semantic
description. We perform interpolation for the selected sequence to ensure the same length as the
original motion. An example of face expression augmentation is illustrated in Fig. 2(b).

si
tti

ng
st

an
di

ng
w

al
ki

ng

(a) Lower-body Augmentation of “A person is playing the guitar happily”.
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(b) Facial Expression Augmentation of “A man is drinking from a straw”.

Figure 2: Illustration of two motion augmentation methods: (a) lower-body augmentation. (b) facial
expression augmentation.
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B More Annotation Visual Results

In this section, we present some visual results of the 2D keypoints, SMPL-X parameters, and motion
sequences to show the effectiveness of our proposed motion annotation pipeline.

B.1 2D Keypoints

As the main paper claims, we propose a hierarchical Transformer-based model for 2D keypoints
estimation. To demonstrate the superiority of our method, we compare it with two widely used
methods, Openpose [7] and MediaPipe [41]. We use the PyTorch implementation of Openpose and
only estimate the body and hand keypoints as it does not provide the face estimator. As shown in
Fig. 3, Openpose and MediaPipe can not achieve accurate results in some challenging poses. Besides,
there exists severe missing detection of hands for Openpose and MediaPipe. In contrast, our method
performs significantly better, especially the hand keypoint localization.

B.2 SMPL-X Parameters

To register accurate SMPL-X parameters, we elaborately design a learning-based fitting method with
several training loss functions. We compare our method with two SOTA learning-based methods,
Hand4Whole [29] and OSX [21]. As shown in Fig. 4, our method achieves a much better alignment
result than the other models, especially on some difficult poses, which benefits from the iterative
fitting process. Notably, Hand4Whole [29] and OSX [21] can only estimate the local positions
without optimized global positions, which will suffer from unstable and jittery global estimation.
Furthermore, we compare with the widely used fitting method SMPLify-X [30], using their officially
released codes, in Fig. 5. Our method is more robust than SMPLify-X and can obtain better results
about physically plausible poses, especially in challenging scenes (e.g., hard poses, low-resolution
inputs, heavy occlusions). The results from the side view demonstrate that our method can properly
deal with depth ambiguity and avoid the lean issue.

B.3 Motion Sequences

To highlight the expressiveness and diversity of our proposed motions, we illustrate examples of
the same semantic label, like dance ballet, with six motion styles in Fig. 6. This one-to-many
(text-to-motion) information can benefit the diversity of motion generation. Then, we demonstrate
more motion visualization in Fig. 7 and 8 for different motion scenes. These motions show different
facial expressions, hand poses, and body motions.

C Experiment

C.1 Experiment Setup

Motion Representation. To capture the 3D expressive whole-body motion, we use SMPL-X [30] as
our motion representation. A pose state is formulated as:

x = {θb, θh, θf , ψ, r}. (1)

Here, θb ∈ R22×3 and θh ∈ R30×3 denote the 3D body rotations and hand rotations. θf ∈ R3 and
ψ ∈ R50 are the jaw pose and facial expression. r ∈ R3 is the global translation.

Evaluation Metrics. We adopt the same evaluation metrics as [15, 17], including Frechet Inception
Distance (FID), multimodality, diversity, R-precision, and multimodal distance. We pretrain a motion
feature extractor and a text feature extractor for the new motion presentation with contrastive loss to
map the text and motion into feature space and then evaluate the distance between the text-motion
pairs. For each generated motion, its ground-truth text description and 31 mismatched text description
randomly selected from the test set compose a description pool. We rank the Euclidean distances
between the generated motion and each text in the pool and then calculate the average accuracy at the
top-k positions to derive R-precision. Multimodal distance is computed as the Euclidean distance
between the feature vectors of generated motion and its corresponding text description in the test
set. Additionally, We include the average temporal standard deviation as a supplementary metric to
evaluate the diversity and temporal variation of whole-body motion.
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(a) Input Image (b) Openpose (c) MediaPipe (d) Ours

Figure 3: Comparisons of the 2D keypoints annotation quality with widely used methods Openpose [7]
and MediaPipe [41].

Computational Costs. We use 8 NVIDIA A100 GPUs for motion annotation and 4 GPUs for motion
generation experiments. It takes about 72 hours to annotate 1M frames with our annotation pipeline.

C.2 More Ablation Study

More Comparisons with HumanML3D. Previous motion generation datasets are limited in ex-
pressing rich hand and face motions, as they only contain body and minimal hand movements. To
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(a) Input Image (b) Hand4Whole (c) OSX (d) Ours

Figure 4: Comparisons of the 3D SMPL-X annotation quality with SOTA methods Hand4Whole [29]
and OSX [21].

demonstrate the expressiveness of our dataset, we conduct a comparison between HumanML3D
and Motion-X on face, hand, and body, separately. Specifically, we train MLD [8] on each dataset
and evaluate the diversity of generated motions and ground-truth motions by computing the average
temporal standard deviation of the SMPL-X parameters and joint positions. The SMPL-X parameters
include body poses, hand poses, and facial expressions. Body, hand, and face joint positions are
represented as root-relative, wrist-relative, and neck-relative, respectively. We randomly choose 300
generated samples from the validation set and repeat the experiment 10 times to report the average
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Figure 5: Comparisons of the 3D SMPL-X annotation quality with wide-used fittiing methods
SMPLify-X [30].

results. As shown in Tab. 2, the generated and ground-truth motions in Motion-X exhibit a higher
deviation, especially in hand and face parameters, indicating significant hand and face movements
over time. These results demonstrate that the model trained with Motion-X can generate more diverse
facial expressions and hand motions, demonstrating the ability of our whole-body motion to capture
fine-grained hand and face movements and expressive actions.

Method
Joints Position ↑ SMPL-X Param (10−2) ↑

Face Hand Body Face Hand Body

HumanML3D (GT) 0.00 0.00 88.7 0.00 0.00 9.01
Motion-X (GT) 1.60 8.82 92.2 13.4 5.24 9.95

HumanML3D 0.00 0.00 64.8 0.00 0.00 7.23
Motion-X 1.33 11.4 66.0 7.28 5.30 7.41

Table 2: Temporal standard deviation of the SMPL-X parameters and joint positions on HumanML3D and
Motion-X. We compare the GT and generated motions with the MLD model trained on HumanML3D and
Motion-X, respectively.

D Related Work

In this part, we introduce relevant methods for human motion generation.

According to different inputs, producing human motions can be divided into two categories: the
general motion synthesis from scratch [37, 47, 45, 5] and the controllable motion generation from
given text, audio, and music as conditions [1, 32, 46, 43, 8, 15, 2, 13]. Motion synthesis encompasses
several tasks, such as motion prediction, completion, and interpolation [5], developed over several
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decades in computer vision and graphics. These tasks tend to utilize nearby frames with spatio-
temporal correlations to infer estimated frames in a deterministic manner [28, 3, 4, 12, 14, 19, 27, 26].
On the other hand, motion generation is a more challenging task that aims to synthesize long-term,
diverse, natural human motions.

Many generative models, like GANs, VAEs, and recent diffusion models, have been explored [36, 38,
16, 17, 31]. This work mainly discusses text-conditioned motion generation. This field has evolved
from inputting action classes [16, 17] to sentence descriptions [15, 8, 43], and generating motions
from 2D to 3D keypoints, to the emerging parametric model (e.g., SMPL [23, 15, 8]). These models
have become expressive and comprehensive toward real-world scenarios thanks to the development
of related benchmarks. Recently, diffusion model-based methods have rapidly developed and shown
advantages in diverse, realistic, and fine-grained motion generation [43, 8, 46, 34, 39]. Some
concurrent works [34, 43, 8] introduce novel diffusion model-based motion generation framework
to achieve state-of-the-art (SOTA) quality. For example, MLD [8] presents a motion latent-based
diffusion model with a representative motion variational autoencoder, showing its efficiency. Based on
the proposed Motion-X, HumanTOMATO [24] introduces the first text-aligned whole-body motion
generation that can generate high-quality, diverse, and coherent facial expressions, hand gestures, and
body motions simultaneously.

E Limitation and Broader Impact

E.1 Limitation

There are two main limitations. (i) The motion quality of our markless motion annotation pipeline is
inevitably inferior to the multi-view mark-based motion capture system. However, as the quantitative
and qualitative results demonstrate, our method can perform much better than existing markless
methods, thanks to large-scale models pre-trained on massive 2D and 3D keypoints datasets and our
elaborately designed fitting pipeline. Besides, a 30 mm PA-MPVPE error would be acceptable for the
text-driven motion generation task since the target is to synthesize natural and realistic motions that
are semantically consistent with the text input. Furthermore, the experiment on the mesh recovery
task has demonstrated that our dataset can also benefit the human reconstruction task, which requires
a higher annotation quality. Accordingly, a better motion annotation will be beneficial, and we will
leave it as our future work. (ii) During our experiment, we found out that existing evaluation metrics
are not always consistent with visual results. Besides, SMPL-X parameters may not be the best
motion representation for expressive whole-body motion representation. Thus, there is a need for
further research on the evaluation metric, motion representation, and model designs for the expressive
motion generation task. We leave them as future work.

E.2 Broader Impact

Based on the scalable and automatic annotation way proposed in this work, although there are
inevitable errors, large-scale data could be helpful. Meanwhile, this way can boost the direction of
“learning from noisy labels" for related tasks, such as text-driven whole-body motion generation. A
large-scale 3D human motion dataset would have numerous applications and boost novel research
topics in various fields, such as animation, games, virtual reality, and human-computer interaction.
Until now, human motion datasets have had no negative social impact yet. Our proposed Motion-X
will strictly follow the license of previous datasets, and would not present any negative foreseeable
societal consequence, either.

F License

All data is distributed under the CC BY-NC-SA (Attribution-NonCommercial-ShareAlike) license.
Detailed license and instructions can be found on the page https://motion-x-dataset.github.
io. Further, we will provide a GitHub repository to solicit possible annotation errors from data users.
For the sub-datasets, we would ask the user to read the original license of each original dataset, and
we would only provide our annotated result to the user with the approvals from the original Institution.
Here, we provide a brief license of the used assets:
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• HumanML3D dataset [15] originates from the HumanAct12 [17] and AMASS [25] datasets,
which are both released for academic research only and it is free to researchers from
educational or research institutes for non-commercial purposes.

• BAUM dataset [40] is CC-BY 4.0 licensed.
• HAA500 dataset [9] is MIT licensed.
• IDEA400 dataset belongs to the International Digital Economy Academy (IDEA) and

is licensed under the Attribution-Non Commercial-Share Alike 4.0 International License
(CC-BY-NC-SA 4.0).

• HuMMan dataset [6] is under S-Lab License v1.0.
• AIST dataset [20] is CC-BY 4.0 licensed.
• GRAB dataset [33] is released for academic research only and is free to researchers from

educational or research institutes for non-commercial purposes.
• EgoBody [44] is under CC-BY-NC-SA 4.0 license.
• Other data is under CC BY-SA 4.0 license.
• SMPLify-X [30] codes are released for academic research only and are free to researchers

from educational or research institutes for non-commercial purposes.
• Codes for preprocessing and training are under MIT LICENSE.
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motion diversity.

11



(a
) s

pr
ou

t d
an

ce
(b

) F
ro

ze
n 

da
nc

e
(d

) C
he

er
in

g
(f)

 T
ig

ht
ro

pe
(e

) D
ru

nk

Perform motions

Dance motions

(c
) B

re
ak

 b
as

ic
 

da
nc

e

Figure 7: Visualization of the dance and perform motion sequences of Motion-X.

12



(a
)

Ly
in

g 
w

ith
 

le
gs

 k
ic

ki
ng

(b
) S

ta
nd

in
g 

w
ith

 
ki

ck
in

g 
le

ft 
an

d 
rig

ht
(c

) F
oa

m
 s

ha
ft 

   
  

st
re

tc
hi

ng
(e

) B
ea

si
w

al
k

(f)
 S

hi
el

d 
gi

an
t 

(d
) A

 M
on

st
er

 
Po

w
er

s 
U

p

Fitness motions

Game motions

Figure 8: Visualization of the fitness and game motion sequences of Motion-X.

13



References
[1] Hyemin Ahn, Timothy Ha, Yunho Choi, Hwiyeon Yoo, and Songhwai Oh. Text2action:

Generative adversarial synthesis from language to action. In ICRA, 2018.

[2] Chaitanya Ahuja and Louis-Philippe Morency. Language2pose: Natural language grounded
pose forecasting. In 3DV, 2019.

[3] Judith Butepage, Michael J Black, Danica Kragic, and Hedvig Kjellstrom. Deep representation
learning for human motion prediction and classification. In CVPR, 2017.

[4] Yujun Cai, Lin Huang, Yiwei Wang, Tat-Jen Cham, Jianfei Cai, Junsong Yuan, Jun Liu, Xu Yang,
Yiheng Zhu, Xiaohui Shen, et al. Learning progressive joint propagation for human motion
prediction. In ECCV, 2020.

[5] Yujun Cai, Yiwei Wang, Yiheng Zhu, Tat-Jen Cham, Jianfei Cai, Junsong Yuan, Jun Liu,
Chuanxia Zheng, Sijie Yan, Henghui Ding, et al. A unified 3d human motion synthesis model
via conditional variational auto-encoder. In ICCV, 2021.

[6] Zhongang Cai, Daxuan Ren, Ailing Zeng, Zhengyu Lin, Tao Yu, Wenjia Wang, Xiangyu Fan,
Yang Gao, Yifan Yu, Liang Pan, Fangzhou Hong, Mingyuan Zhang, Chen Change Loy, Lei
Yang, and Ziwei Liu. Humman: Multi-modal 4d human dataset for versatile sensing and
modeling. In ECCV, 2022.

[7] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime multi-person 2d pose
estimation using part affinity fields. In CVPR, 2017.

[8] Xin Chen, Biao Jiang, Wen Liu, Zilong Huang, Bin Fu, Tao Chen, Jingyi Yu, and Gang Yu.
Executing your commands via motion diffusion in latent space. In CVPR, 2023.

[9] Jihoon Chung, Cheng-hsin Wuu, Hsuan-ru Yang, Yu-Wing Tai, and Chi-Keung Tang. Haa500:
Human-centric atomic action dataset with curated videos. In ICCV, 2021.
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