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Where does the performance gain come from? Is it driven by the diffusion model only? The
performance gain in our model is not solely driven by the diffusion model. It is, in fact, a result of the
combined efforts of two major stages: the fMRI encoder and the stable diffusion model.

In the first stage, the fMRI encoder plays a crucial role in learning representations from the brain. It
effectively captures the complex spatiotemporal information embedded in the fMRI data, allowing the
model to understand and interpret the underlying neural activities. This step is particularly important as it
forms the foundation of our model and significantly influences the subsequent steps.

In the second stage, the stable diffusion model steps in to generate videos. One of the key advantages
of our stable diffusion model over other generative models, such as GANs, lies in its ability to produce
higher-quality videos. It leverages the representations learned by the fMRI encoder and utilizes its unique
diffusion process to generate videos that are not only of superior quality but also better align with the
original neural activities.

What does the fMRI encoder learn? Why don’t we train an fMRI to object classifier, followed by a
generation model? The fMRI encoder is designed to learn intricate representations from brain activity.
These representations go beyond simple categorical information to encompass more nuanced semantic
details that can’t be adequately captured by discrete class labels (e.g. image texture, depth, etc.). Due to the
richness and diversity of human thought and perception, a model that can handle continuous semantics,
rather than discrete ones, is necessary.

The proposal to train an fMRI-to-object classifier followed by a generation model does not align with our
goal of comprehensive brain decoding. This is largely due to a crucial trade-off between classification
complexity and solution space:

• Classification Complexity: Classifying fMRI data into a large number of classes (e.g., 1000
classes) is non-trivial. As reported in [2], reasonable performance can only be achieved in
a smaller classification task (less than 50-way), due to the limited data per category and the
complexity of the task.

• Limited Solution Space: The solution space of discrete classes is significantly more restricted
than that of continuous semantics. Thus, a classifier may not capture the complex, multi-faceted
nature of brain activities.

This trade-off illustrates why a classifier might not be the best approach for this task. In contrast, our
proposed method focuses on learning continuous semantic representations from the brain, which better
reflects the complexity and diversity of neural processes. This approach not only improves the quality of
the generated videos but also provides more meaningful and interpretable insights into brain decoding.

Is the fMRI-video generation pipeline simply imputing missing frames in a sequence of static images
based on the fMRI-image generation pipeline? No, the fMRI-to-video generation process is not merely
an imputation on the fMRI-to-image generation pipeline. While both involve generating visual content
based on fMRI data, the tasks and their complexities are fundamentally different.

The fMRI-to-image generation involves mapping brain activity to a static image. This task primarily
focuses on spatial information, that is, which brain regions are active and how they relate to elements in an
image.

In contrast, the fMRI-to-video generation task involves mapping brain activity to dynamic videos. This task
is considerably more complex as it requires the model to capture both spatial information and temporal
dynamics. It’s not just about predicting which brain regions are active, but also about understanding how
these activations change over time and how they relate to moving elements in a video.

Adding to the complexity is the hemodynamic response inherent in fMRI data, which introduces a delay
and blur in the timing of neural activity. This necessitates careful handling of the temporal aspects in the
data. Furthermore, the temporal resolution of fMRI is quite low, making it challenging to capture fast-paced
changes in neural activity.
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We also use a stable diffusion process as our generative model, which is a probabilistic model. This means
that the generation process involves a degree of randomness, leading to slight differences during each
generation for video frames. Additionally, in video generation, we need to ensure consistency across video
frames, which adds another layer of complexity.

B More Implementation Details

Large-Scale Pre-training The large-scale pre-training uses the same setup as the MBM described in [6]. A
ViT-large-based model with a 1-dimensional patchifier is trained with hyperparameters shown in Tab. B.1.
The training takes around 3 days using 8RTX3090 GPUs. The training is performed on the 600,000 fMRI
from HCP. Same as the literature, after the large-scale pre-training, the autoencoder is tuned with fMRI
data from the target dataset, namely, Wen (2018), using MBM as well. The tuning is performed using a
small learning rate and epochs.

parameter value parameter value parameter value parameter value

patch size 16 encoder depth 24 decoder embed dim 512 clip gradient 0.8
embedding dim 1024 encoder heads 16 learning rate 2.5e-4 weight decay 0.05

mask ratio 0.75 decoder depth 8 warm-up epochs 40 batch size 500
mlp ratio 1.0 decoder heads 16 epochs 500 optimizer AdamW

Table B.1. Hyperparameters used in the large-scale pre-training

Multimodal Contrastive Learning In this step, we will take the pre-trained fMRI encoder from the
previous step and augment it with temporal attention heads to accommodate multiple fMRI. Then contrastive
learning is performed with fMRI-image-text triplets. The image is a randomly-picked frame from an
fMRI scan window. As mentioned, there are two important factors in the contrastive: batch size and data
augmentations. Therefore, data augmentations are applied for all modalities. Random sparsification is used
for fMRI, where 20% of voxels are randomly set to zeros each time. The random crop is applied to videos
with a probability of 0.5. To augment the frame captions, we apply synonym augmentation and random
word swapping. Due to a small dataset size (⇠4000), we use a dropout rate of 0.6 to avoid overfitting. For
Subject 1 and 2, the training is performed with a batch size of 20, while a batch size of 32 is used due to
fewer fMRI voxels with Subject 3. Training for all subjects is performed for 1,2000 steps with a learning
rate of 2⇥10�5. The training takes around 10 hours using one RTX3090.

Training of Augmented Stable Diffusion The stable diffusion model is augmented with temporal attention
heads for video generation. We train the augmented stable diffusion model with videos from the target
datasets. The videos are downsampled from 30 FPS to 3 FPS at a resolution of 256⇥256 due to limited
GPU memory, even though our model can work with the full time resolution. This step is important for
two reasons: 1) the augmented temporal heads are untrained; 2) the stable diffusion is pre-trained at a
resolution of 512⇥512, so we need to adapt it to a lower resolution.

During the training, we update the self-attention heads (“attn1”), cross-attention heads (“attn2”), and
temporal attention heads (“attn_temp”). The training is performed with text conditioning for 800 steps. We
use a learning rate 2⇥10�5 and a batch size of 14. The training takes around 2 hours using one RTX3090.
Visual results show that videos of high quality can be generated with text conditioning after this step.

Co-training The fMRI encoder produces embeddings of dimensions 77⇥768, which are used to condition
the augmented stable model during co-training. The whole fMRI encoder is updated, and only part of the
stable diffusion is updated (same as the last step). The training is performed with a batch size of 9 and a
learning rate of 3⇥10�5 for 1,5000 steps. The training takes around 16 hours using one RTX3090.

Inference All samples are generated with 200 diffusion steps using fMRI adversarial guidance. The fMRI
adversarial guidance uses an average fMRI as the negative guidance with a guidance scale of 12.5.

C Analysis of Visual Results

We test on all three subjects in Wen (2018) dataset. Around 6000 voxels are identified as ROI for Subject 1
and 2, while around 3000 voxels are identified for Subject 3. Thus, a larger batch size can be used when
training with Subject 3, which may be the reason for its better numeric evaluation results. Nonetheless, all
three subjects show consistent generation results. Some samples are shown in Fig. C.1.
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Figure C.1. Samples from different subjects.

Visual results of the ablation studies are shown in Fig. C.2. The Full model is trained with our full pipeline
and inference with adversarial guidance. In contrastive learning ablation, we tested with incomplete
modality, namely, image-fMRI and text-fMRI, respectively. Similar to the numeric evaluations, using
incomplete contrastive gave an unsatisfactory visual result compared to using all three modality. However,
incomplete modality still outperformed inferencing without adversarial guidance significantly, which
generated visually meaningless results.
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Figure C.2. Reconstruction samples for ablation studies. The Full model uses full modality contrastive learning with
adversarial guidance.
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Some fail cases are shown in Fig. C.3. It is observed that even though some fail cases generated different
animals and objects compared to the groundtruth, other semantics like the motions, color, and scene
dynamics can still be correctly reconstructed. For example, even though the airplane and flying bird are not
reconstructed, similar fast-motion scenes are recovered in Fig. C.3.
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Figure C.3. Fail cases.
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