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We have included some of the implementation information in the supplementary material. Figures1

referenced in the supplementary material correspond to those presented in the main text. Further-2

more, to enhance the visual representation of our work, we have created videos showcasing select3

stimuli. For a concise overview, we recommend accessing the quick links embedded in the PDF. In4

case the quick links are unavailable, one can directly refer to the attached videos.5

1 Training Details6

1.1 Dataset7

Current methods for estimating optical flow using DNNs can be categorized as unsupervised/self-8

supervised and supervised learning approaches. While unsupervised learning methods are intuitively9

similar to creatures’ interaction with the world, most current methods based on differentiable image10

warping[1–3] still attempt to approximate physical motion GT. Therefore, we choose to use the11

supervised learning approach, which is more straightforward as recent research suggests that human12

perception of motion is highly similar to physical GT[4].13

To train and evaluate the model, we construct a dataset containing various natural and artificial14

motion scenes. Specifically, we incorporate the Sintel benchmark[5], the DAVIS[6] dataset with15

pseudo-labels generated by FlowFormer[7], as well as self-created multi-frame datasets with non-16

texture motions and drifting grating motion. 117

Simple non-texture motion: As the name suggests, non-texture motion refers to scenarios where18

both the moving object and the background exhibit low texture density. We incorporate non-texture19

motion as part of our training data due to the incompleteness of existing optical flow datasets. Our20

observations show that current DNN models exhibit suboptimal generalization performance on sim-21

ple stimuli commonly employed in vision research, such as a drifting grating and a simple moving22

box. (Check here and here for video demos of unstable results of official RAFT[8]).23

There are various explanations for this phenomenon. First, non-texture stimuli, such as drifting24

gratings, present multiple ambiguous motion solutions, which may confuse the model. Additionally,25

the model may not have been trained on non-texture datasets, leading to difficulties in generalizing26

to such stimuli. Consequently, the model’s instability causes significant deviations from human27

interpretation in such pure experimental scenarios, hindering the study of the model using stimuli28

commonly employed in vision science.29

To alleviate the problem, we used a concise method to construct a non-texture dataset. We first30

employed a superpixel algorithm [9] to extract the self-regions of natural images, followed by a31

low-pass filter to smooth out the texture. We practiced affine transformations to simulate two-32

dimensional translations, rotations, deformations, etc., of the object and inverse affine transforma-33

tions to track the optical flow. The motion of each step is sampled from a random Gaussian distri-34

1The proposed dataset and the project code will be publicly available online once the work get published.
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bution, and we use a Markovian stochastic process to simulate inter-frame smoothed motion over35

multiple frames, where the current moment’s motion is correlated with the previous motion state.36

Specifically, we assume that random object movement S(t) can be decomposed into two orthogonal37

vectors S(t) = [U(t), V (t)]. For any time step t, we introduce Markov properties by assuming that38

the motion state depends only on the motion in the previous time step t− 1:39

Pr [S(t)] = Pr[S(t) = st | S(t− 1) = st−1] (1)

The motion states [U, V ] at time t are sampled from the 2D Gaussian distributions with condition of40

previous motion state. Check here for a demo of the non-texture training sample.41

Drifting Grating: Drifting gratings are commonly used stimuli in visual studies, which contain42

only a single spatiotemporal frequency component. We used five different combinations of frequen-43

cies linearly sampled from (0, 1
16 ] (pixel/ frame), four different temporal frequencies linearly sam-44

pled from (0, 1
8 ] (pixel/ frame), and eight different orientations sampled uniformly between (0, 2π].45

In total, there are 160 scenes, and each contains 32 continuous frames. Due to the aperture problem,46

there is no single solution for this class of motion, but we defined the labels with the slowest mov-47

ing speed as perpendicular to the spatial stripe, which is most similar to the human interpretation.48

Incorporating this class of datasets into the training provides a potential slow-world Bayesian prior49

of humans[10] to solve the ambiguous motion. Check here for a demo of the training sample.50

1.2 Training51

Environment: For the model training, we implemented our method using the PyTorch 2.0 frame-52

work on a workstation equipped with four parallel Nvidia RTX A6000 GPUs, running on the CUDA53

11.7 runtime. The data analysis was conducted using MATLAB, as well as Python packages such54

as SciPy and Pandas.55

Timing Setting: Considering the current mainstream playback frame rate (25 FPS) and the time56

of the human visual impulse response (about 200 ms), we set the temporal window of the first stage57

to 6 frames (spanning 200 ms). In training, 11 consecutive images (400 ms) are fed into the model.58

The instantaneous velocity in the middle of the image sequence, i.e., the fifth frame, is used as the59

label for supervised training.60

Hyperparameters: The total trainable parameters of the model is 14.7 M. During training, we61

set the iteration as eight in stage II. A total of nine flow fields are generated per inference, and62

we employ a sequence loss based on mean square error [8] to measure the difference between the63

predicted optical flow and the GT flow. The model is first pre-trained with simple motion and64

subsequently fine-tuned on complex natural scenes to facilitate convergence[11]. Specifically, we65

first train the model on simple no-texture motion and drifting grating for 150 epochs with a learning66

rate (lr) of 1e−4, and then fine-tune it on the Sintel and DAVIS dataset for an extra 150 epochs67

with a learning rate of 0.5e−4. The entire training process was optimized using the Adam optimizer68

[12] with linear decay of the learning rate and a batch size of 24. Mixed precision training and69

gradient clipping techniques were employed in all training stages for faster convergence. For image70

preprocessing, all images were resized to 448×960 and then randomly cropped into 384×576. We71

also adopted random image horizontal flipping for data augmentation.72

2 In Silico Neurophysiological Test73

We utilized drifting Gabor or plaid (superimposed by two Gabor components) with a single fre-74

quency component as the input stimulus (check here for video demos, Gabor: here; Plaid: here).75

Referring to Figure 1 (D), the model’s response value at Stage I, or after the remap operation of each76

iteration in Stage II, was considered as the poststimulus time histogram of the unit. We averaged77

the responses across spatial dimensions using a Gaussian weighted window to obtain the activation78

distribution of the total of 256 units, i.e., R1×1×256, with respect to input stimulus. The image79

sequence is generally set to 512× 512 with full contrast.80

2.1 Directional tuning81

We used a single frequency drifting-Gabor and plaid (superimposed by ±30 degrees) as the stim-82

ulus input. First, we selected 12 directions uniformly sampled from (0, 2π]. For each direction,83
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we linearly sampled 8 × 8 = 64 sets of spatiotemporal frequency combinations and thus obtained84

64 directional tuning curves for each unit using the drifting-Gabor stimulus. We selected the spa-85

tiotemporal frequency with the largest tuning standard deviation as the preferred frequency st∗ of86

each unit. Then, we input the Gabor and plaid with the frequency configuration of st∗ into the87

model and obtained the direction tuning curve of each unit. Denoting the model’s tuning curve on88

the drifting-Gabor with st∗ as C and the tuning curve on the plaid with st∗ as P , we calculated the89

directional tuning capability of each cell using a pair of partial correlations [13]:90

Rpattern =
(rp − rcrcp)√(

(1− r2
c )
(
1− r2

cp

)) , Rcomponent =
(rc − rprcp)√((

1− r2
p

) (
1− r2

cp

)) , (2)

where rc is the correlation of the P with the component prediction, which is generated by the su-91

perimposed ± 30-degree shift of the C; rp is the correlation of the P with the pattern prediction,92

which is equal to C; and rcp is the correlation between the two predictions. We labeled units as93

"component" if the component correlation coefficient significantly exceeded either 0 or the pattern94

correlation coefficient, whichever was larger. Similarly, we labeled units as "pattern" if the pattern95

correlation coefficient significantly exceeded either 0 or the component correlation coefficient. Units96

were labeled as "unclassified" if both pattern and component correlations significantly exceeded 097

but did not differ significantly from one another, or if neither correlation coefficient differed signifi-98

cantly from 0. The visualized result is plotted on Figure 3 (A) of the main text.99

We employed maximum activation technology [14] to render the unit’s preferred motion stimuli100

reversely. The initialized motion stimuli are composed of spatiotemporally incoherent Gaussian101

white noise I ∈ RH×W×T , which is continuously updated by a gradient ascent method to maximize102

the activation response of each unit. The activation response of each unit is obtained by a weighted103

average pooling of its responses a ∈ RH×W across all spatial locations. To consider the continuity104

of the motion, we add temporal smoothing and spatial smoothing regular terms based on the first-105

order gradient to the optimization function, which is defined as:106

A(I) =
∑
Ω

Giai + w

(∣∣∣∣∂I(x, y, t)

∂x1

∣∣∣∣+

∣∣∣∣∂I(x, y, t)

∂y

∣∣∣∣+

∣∣∣∣∂I(x, y, t)

∂T

∣∣∣∣) ; (3)

where Ω denotes the set across the image space and G is a 2D Gaussian kernel defined on the Ω.107

We iterate I := I + w ∂
∂IA(I) so as to maximize the unit’s activation. Each unit went through108

approximately 300 iterations to generate the following stimuli:109

1. For component units, which prefers motion components of a single spatiotemporal fre-110

quency: check here for a video demo.111

2. For pattern units, which prefers textures or plaids that move in a specific direction: check112

here for a video demo.113

3. For unclassified units, which have a variety of complex motion formats that go beyond the114

interpretation of simple directional tuning: check here for a video demo.115

2.2 Spectral receptive field and speed tuning116

To investigate the spectral properties of the units, we used a combination of drifting-Gabor stimuli117

with different spatiotemporal frequency components. We first sampled 16 directions uniformly from118

the interval (0, 2π]. For each direction, we tested 10 × 10 = 100 spatiotemporal frequency com-119

binations, with 10 logarithmically spaced spatial frequencies between 0.004 and 0.125 pixels/cycle120

and 10 logarithmically spaced temporal frequencies between 0.04 and 0.25 pixels/frame. Then we121

selected the direction with the largest sum of activations across all 100 spatiotemporal combinations122

as the preferred motion direction D∗. Each unit under its D∗ has 10× 10 responses under different123

spatiotemporal combinations, constituting a grid in logarithmic coordinates. This grid of responses124

is visualized on the bottom left side of Figure 3 (D) and is referred to as the spectral receptive field125

of each unit.126

Following [15], we use a 2D oriented Gaussian profile to fit the spectral receptive field of each unit,127

where the 2D Gaussian is defined as:128

P = A · exp

(
û2

σ2
x

+
ω̂2

σ2
y

)
+ p, s.t.

{
û = (u− x) cos θ + (ω − y) sin θ
ω̂ = −(u− x) sin θ + (ω − y) cos θ

(4)
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The matlab fmincon function is used to search the best fitting based on the LSE loss function within129

{(θ, σx, σy, x, y) | θ ∈ [0, π2 );σx,y ∈ (0,∞); x, y ∈ [−1, 1]}:130

`lse = ||P −RF ||+ w
sin(2θ)

exp( |σ1−σ2|√
σ1×σ2

)
, (5)

where the second term is a weighted regularization to prevent tilting (i.e., 0 < θ < 90) when the131

receptive field is close to a circle. The fitting results are illustrated in Figure 3 (D) of the main text,132

where each red dot represents the midpoint of the receptive field and the slope of the bar indicates133

the orientation of the receptive field, which is consistent with the visualization style in [15].134

We further employed a pair of partial correlations to validate the speed-tuning capability for each135

unit [16]:136

Rindep =
(ri − rsris)√

(1− r2
s ) (1− r2

is)
, Rspeed =

(rs − riris)√
(1− r2

i ) (1− r2
is)

(6)

where Rindep and Rspeed are the partial correlations of the response field with the independent and137

speed-tuned predictions, ri is the correlation of the data with the independent prediction, rs is the138

correlation of the data with the speed-tuned prediction, and ris is the correlation of the two pre-139

dictions, as shown in Figure 3 (F). Here, the spatiotemporal-frequency-independent prediction is140

computed by taking the outer product of the two 1D tuning curves, and the speed-tuned prediction is141

computed by shifting the temporal frequency as a function of spatial frequency so that the preferred142

speed is independent of the speed tuning of the unit. (See [16]’s Figure 5 for details).143

3 Psychophysical stimulus Test144

Global Motion Integration: The stimulus contained small Gabor blocks with different directions145

and velocities of motion, which were locally processed by the human V1 cortex and globally inte-146

grated by MT to perceive downward motion [17]. Our model exhibited a similar global response to147

that of humans, as shown in Fig. 4 (A). For the stimulus, please refer to this link.148

Motion Integration Prototype: As shown in Fig. 4 (B), we presented two stimuli (A: Local-149

Gabor and B: Local-plaid). For the subjects, stimulus A was more likely to integrate into global150

downward motion than stimulus B [17]. This indicates that humans preferentially integrate motion151

in conjunction with local cues, and once the aperture problem is solved locally (e.g., stimulus B),152

the ability of motion to propagate distally will be inhibited. The model demonstrated the same153

integration strategy as humans. Please refer to this link for stimulus A and this link for stimulus B.154

Missing-Fundamental Motion: Check here for a detailed view. This stimulus induced a strong155

illusion of leftward motion by adding a leftward Fourier motion to the rightward moving square wave156

and removing the first harmonic of its Fourier series [18]. Visually, the subject perceives movement157

to the left[18], but if focusing on structure alone, the stimulus is moving to the right (check here158

to experience). Most DNN models fail to handle this motion stably or perceive rightward motion,159

whereas our model perceives leftward Fourier motion consistent with human perception. Check here160

for the result of RAFT[8] , here for the result of GMFlow[19].161

Mario Reversed-Phi Illusion[20]: For the video demo, please refer to this link. This stimulus162

demonstrated the reverse-phi illusion in psychology, where the subject perceives continuous motion163

despite the absence of actual motion. Current DNN models provide unstable results for this kind of164

motion (see [20], also click here for the result of FlowNet2.0[11]), while our model produces the165

illusion of motion similar to the continuous motion perceived by humans; check this link for our166

result.167

Results on Naturalistic Scenes: The proposed motion integration mechanism demonstrated suffi-168

cient flexibility to cope with various complex natural scenes and is comparable to human and current169

DNN models. Without specific fine-tuning, our best results had an end-point error of 1.69 on the170

clean of the Sintel training set and 1.75 on the final set, which is comparable to the majority of DNN171

models. For a demo on the Sintel dataset, please refer to this link.172

The following is demonstration diagrams of the motion integration and segregation process:173
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Appendix-Fig. 1: Demo of motion integration process. Foreground and background can be segmented by
leveraging the differences in connectivity within unit clusters, similar to segmentation tasks.
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Appendix-Fig. 2: Demo of adaptive motion integration & segregation process. The example shows that our
model can handle intricate natural scenes and consider certain occlusion relations, where the motion energy
in region A demonstrates its robust connectivity within the graph (attention) space, even when different body
regions are separated due to occlusion.
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Appendix-Fig. 3: Demo of global motion integration. Our model successfully replicated the illusion of
perceiving a global downward motion from Stage I to Stage II, similar to the integration of motion signals from
V1 cells in the MT region of humans.
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