
Appendix432

In this Appendix, we discuss how we factorize the hierarchical decision-making process in Section A.433

In Section B, we then detail the background and architecture for visually grounded task planning,434

visual planning with video diffusion, and action planning with inverse dynamics model. In Section C,435

we discuss the training and evaluation details for the different levels of planning in HiP and the436

corresponding training hyperparameters. Finally, in Section D, we showcase additional ablation437

studies comparing different approaches to enforce consistency across the levels of hierarchy.438

A Factorizing Hierarchical Decision-Making Process439

We model the hierarchical decision-making process described in Section 2 with pΘ which can be440

factorized into the task distribution pθ, visual distribution pϕ, and action distribution pψ .441

pΘ(W, {τ ix}, {τ ia}|g, x1,1) =

N∏
i=1

pθ(wi|g, xi,1, w<i, τ<ix , τ<ia)

N∏
i=1

pϕ(τ
i
x|w≤i, xi,1, g, τ

<i
x , τ<ia)

N∏
i=1

pψ(τ
i
a|τ≤ix , w≤i, xi,1, g, τ

<i
a)

Here, given random variables Y i, Y <i and Y ≤i represents {Y 1, . . . , Y i−1} and {Y 1, . . . , Y i}442

respectively. Now, we apply Markov assumption: Given current observation xi,1, future variables443

(wi, τ ix, τ
i
a) and past variables (wj , τ jx, τ

j
a ∀j < i) are conditionally independent.444

pΘ(W, {τ ix}, {τ ia}|g, x1,1) =

N∏
i=1

pθ(wi|g, xi,1)
N∏
i=1

pϕ(τ
i
x|wi, xi,1, g)

N∏
i=1

pψ(τ
i
a|τ ix, wi, xi,1, g)

We model task distribution pθ with a large language model (LLM) which is independent of observation445

xi,1. Since the image trajectory τ ix = {xi,1:T } describes a physically plausible plan for achieving446

subgoal wi from observation xi,1, it is conditionally independent of goal g given subgoal wi and447

observation xi,1. Furthermore, we assume that an action ai,t can be recovered from observation at448

the same timestep xi,t and the next timestep xi,t+1. Thus, we can write the factorization as449

pΘ(W, {τ ix}, {τ ia}|g, x1,1) =

(
N∏
i=1

pθ(wi|g)

)(
N∏
i=1

pϕ(τ
i
x|wi, xi,1)

)(
N∏
i=1

T−1∏
t=1

pψ(ai,t|xi,t, xi,t+1)

)

B Background and Architecture450

B.1 Task Planning451

Background on Density Ratio Estimation. Let p and q be two densities, such that q is absolutely452

continuous with respect to p, denoted as q << p i.e. q(x) > 0 wherever p(x) > 0. Then, their ratio453

is defined as r(x) = p(x)/q(x) over the support of p. We can estimate this density ratio r(x) by454

training a binary classifier to distinguish between samples from p and q [44, 14, 17]. More recent455

work [43] has shown one can introduce auxiliary densities {mi}Mi=1 and train a multi-class classifier456

to distinguish samples between M classes to learn a better-calibrated and more accurate density ratio457

estimator. Once trained, the log density ratio can be estimated by log r(x) = ĥp(x)− ĥq(x), where458

ĥi(x) is the unnormalized log probability of the input sample under the ith density, parameterized by459

the model.460

Learning a Classifier to Visually Ground Task Planning. We estimate the density ratio p(xi,1|wi,g)
p(xi,1|g)461

with a multi-class classifier fϕ(xi,1, {wj}, g) trained to distinguish samples amongst the conditional462

distributions p(xi,1|wi, g), ..., p(xi,1|wM , g) and the marginal distribution p(xi,1|g). Upon conver-463

gence, the classifier learns to assign high scores to (xi,1, wi, g) if wi is the subgoal corresponding to464

the observation xi,1 and task g and low scores otherwise.465

Architecture. We parameterize fϕ as a 4-layer multi-layer perceptron (MLP) on top of an ImageNet-466

pretrained vision encoder (ResNet-18 [15]) and a frozen pretrained language encoder (Flan-T5-467

Base [8]). The vision encoder encodes the observation xi,1, and the text encoder encodes the subgoals468

13

wj and the goal g. The encoded observation, the encoded subgoals, and the encoded goal are469

concatenated, and passed through a MLP with 3 hidden layers of sizes 512, 256, and 128. The470

output dimension for MLP (i.e., number of classes for multi-classification) M is 6 for paint-block471

environment and 5 for object-arrange environment.472

Choice of Large Language Model. We use GPT3.5-turbo [36] as our large language model.473

B.2 Visual Planning474

Background. Diffusion Probabilistic Models [41, 20] learn the data distribution h(x) from a475

dataset D := {xi}. The data-generating procedure involves a predefined forward noising process476

q(xk+1|xk) and a trainable reverse process pϕ(xk−1|xk), both parameterized as conditional Gaussian477

distributions. Here, x0 := x is a sample, x1,x2, ...,xK−1 are the latents, and xK ∼ N (0, I) for a478

sufficiently large K. Starting with Gaussian noise, samples are then iteratively generated through a479

series of “denoising” steps. Although a tractable variational lower-bound on log pϕ can be optimized480

to train diffusion models, Ho et al. [20] propose a simplified surrogate loss:481

Ldenoise(θ) := Ek∼[1,K],x0∼h,ϵ∼N (0,I)[||ϵ− ϵϕ(xk, k)||2]

The predicted noise ϵθ(xk, k), parameterized with a deep neural network, estimates the noise ϵ ∼482

N (0, I) added to the dataset sample x0 to produce noisy xk.483

Guiding Diffusion Models with Text. Diffusion models are most notable for synthesizing high-484

quality images [39, 34] and videos [21, 49] from text descriptions. Modeling the conditional data485

distribution q(x|y) makes it possible to generate samples satisfying the text description y. To enable486

conditional data generation with diffusion, Ho and Salimans [19] modified the original training setup487

to learn both a conditional ϵϕ(xk,y, k) and an unconditional ϵϕ(xk, k) model for the noise. The488

unconditional noise is represented, in practice, as the conditional noise ϵϕ(xk, ∅, k), where a dummy489

value ∅ takes the place of y. The perturbed noise ϵϕ(xk, ∅, k) + ω
(
ϵϕ(xk,y, k)− ϵϕ(xk, ∅, k)

)
(i.e.490

classifier-free guidance) is used to later generate samples.491

Video Diffusion in Latent Space. As diffusion models generally perform denoising in the input492

space [20], the optimization and inference become computationally demanding when dealing with493

high-dimensional data, such as videos. Inspired by recent works [38, 49], we first use an autoencoder494

venc to learn a latent space for our video data. It projects an observation trajectory τx (i.e., video) into495

a 2D tri-plane representation [49] τz = [τTz , τ
H
z , τWz] where τTz , τHz , τWz capture variations in the496

video across time, height, and width respectively. We then diffuse over this learned latent space [49].497

Latent Space Video Diffusion for Visual Planning. Our video diffusion model pϕ(τ ix|wi, xi,1)498

generates video τ ix given a language subgoal wi and the current observation xi,1. It is param-499

eterized through its noise model ϵϕ((τ iz)k, wi, xi,1, k) := ϵϕ((τ
i
z)k, lenc(wi), venc(xi,1), k) where500

τ iz := venc(τ
i
x) is the latent representation of video τ ix over which we diffuse. We condition the noise501

model ϵϕ on subgoal wi using a pretrained language encoder lenc and on current observation xi,1502

using video encoder venc. To use venc with a single observation xi,1, we first tile the observation along503

the temporal dimension to create a video.504

Architecture. We now detail the architectures of different components:505

• Video Autoencoder We borrow our architecture for venc from PVDM [49] which uses transformers506

to project video τx ∈ RT×H×W to latent codes τz = [τTz , τ
H
z , τWz] where τTz ∈ RC×H′×W ′

,507

τHz ∈ RC×T×W ′
, τWz ∈ RC×H′×T . Here, T = 50 represents the time horizon of a video, H = 48508

represents video height, W = 64 represents video width, C = 4 represents latent codebook509

dimension, H ′ = 12 represents latent height, and W ′ = 8 represents latent width.510

• Language Encoder We use Flan-T5-Base [8] as the pretrained frozen language encoder lenc.511

• Noise Model We borrow PVDM-L architecture [49] which uses 2D UNet architecture, similar to512

the one in Latent Diffusion Model (LDM) [38], to represent p(τz|τ ′z). In our case, τz = venc(τ
i
x)513

and τ ′z = venc(xi,1). To further condition noise model ϵϕ on lenc(wi), we augment the 2D UNet514

Model with cross-attention mechanism borrowed by LDM [38].515

For implementing these architectures, we used the codebase https://github.com/sihyun-yu/PVDM516

which contains the code for PVDM and LDM.517

14

Classifier for Consistency between Visual Planning and Action Planning. To ensure consistency518

between visual planning and action planning, we want to sample observation trajectories that maxi-519

mizes both conditional observation trajectory likelihood from diffusion and the likelihood of sampled520

actions given the observation trajectory (see equation 4). To approximate likelihood calculation of521

action trajectory, we learn a binary classifier gψ that models if the observation trajectory leads to522

a high likelihood action trajectories. Since diffusion happens in latent space and we use gradients523

from gψ to bias the denoising of the video diffusion, gψ(τ iz) takes the observation trajectory in524

latent space. The binary classifier gψ is trained to distinguish between observation trajectories in525

latent space sampled from video dataset τ iz = venc(τ
i
x), τ

i
x ∼ Dvideo (i.e. label of 1) and observa-526

tion trajectories in latent space sampled from video dataset whose frames where randomly shuffled527

(τ iz)
′ = venc(σ(τ

i
x)), τ

i
x ∼ Dvideo (i.e. label of 0). Here, σ denotes the random shuffling of frames.528

To randomly shuffle frames in an observation trajectory (of length 50), we first randomly select 5529

frames in the observation trajectory. For each of the selected frame, we randomly permute it with its530

neighboring frame (i.e. either with the frame before it or with the frame after it). Once gψ is trained,531

we use it to bias the denoising of the video diffusion532

ϵ̂ := ϵϕ((τz)k, venc(xt), k) + ω(ϵϕ((τz)k, venc(xt), lenc(w), k)− ϵϕ((τz)k, venc(xt), k))

− ω′∇(τz)k log gψ(1|(τz)k)

Here, ϵ̂ is the noise used in denoising of the video diffusion and ω, ω′ are guidance hyperparameters.533

Classifier Architecture. The classifier gψ(τz = [τTz , τ
H
z , τWz]) has a ResNet-9 encoder that converts534

τTz , τHz , and τWz to latent vectors, then concatenate those latent vectors and passes the concatenated535

vector through an MLP with 2 hidden layers of sizes 256 and 128 and an output layer of size 1.536

B.3 Action Planning537

To do action planning, we learn an inverse dynamics model to pψ(ai,t|xi,t, xi,t+1) predicts 7-538

dimensional robot states si,t = pψ(xi,t) and si,t+1 = pψ(xi,t+1). The first 6 dimensions of the robot539

state represent joint angles and the last dimension of the robot state represents the gripper state (i.e.,540

whether it’s open or closed). The first 6 action dimension is represented as joint angle difference541

ai,t[: 6] = si,t+1[: 6] − si,t[: 6] while the last action dimension is gripper state of next timestep542

ai,t[−1] = si,t+1[−1].543

Architecture. We use ViT-B [9] (VC-1 [31] initialization) along with a linear layer to parameterize544

pψ . ViT-B projects the observation xi,t ∈ R48×64×3 to 768 dimensional latent vector from which the545

linear layer predicts the 7 dimensional state si,t.546

C Training and Evaluation547

C.1 Task Planning548

Inability	to	recognize	uncommon	objects Hallucination	leading	to	wrong	spatial	reasoning
Is	screwdriver	in	brown	box?

Yes,	screwdriver	is	in	brown	box

Is	computer	hard	drive	in	
brown	box?

No,	the	computer	hard	drive	is	
not	in	the	brown	box

Is	scissor	in	brown	box?

Yes,	scissor	is	in	brown	box

User Vision	Language	Model

Figure 8: Failure in VLM. to recognize uncommon objects like computer hard drives and occasional hallucina-
tion of object presence, leading to incorrect visual reasoning.

Training Objective and Dataset for Learned Classifier. We use a softmax cross-entropy loss to549

train the multi-class classifier fϕ(xi,1, {wj}Mj=1, g) to classify an observation xi,1 into one of the M550

given subgoal. We train it using the classification dataset Dclassify := {xi,1, g, {wj}Mj=1, i} consisting551

of observation xi,1, goal g, candidate subgoals {wj}Mj=1 and the correct subgoal label i. While the552

dataset for paint-block contains approximately 58k data points, the dataset for object-arrange553

consists of 82k data points.554

15

Vision-Language Model (VLM) as a Classifier. We use a frozen pretrained Vision-Language Model555

(VLM) (MiniGPT4 [53]) as a classifier. We first sample a list of all possible subgoals W = {wi}Mi=1556

from the LLM given the language goal g. We then use the VLM to eliminate subgoals from W557

that have been completed. For each subgoal, we question the VLM whether that subgoal has been558

completed. For example, consider the subgoal "Place white block in yellow bowl". To see if the559

subgoal has been completed, we ask the VLM "Is there a block in yellow bowl?". Consider the560

subgoal "Place green block in brown box" as another example. To see if the subgoal has been561

completed, we ask the VLM "Is there a green block in brown box?". Furthermore, if the VLM562

says "yes" and the subgoal has been completed, we also remove other subgoals from W that should563

have been completed, such as "Place white block in green bowl". Once we have eliminated the564

completed subgoals, we use the domain knowledge to determine which subgoal to execute out of565

all the remaining subgoals. As an example, if the goal is to "Stack green block on top of blue block566

in brown box" and we have a green block in green bowl and a blue block in blue bowl, we should567

execute the subgoal "Place blue block in brown box" before the subgoal "Place green block on blue568

block". While this process of asking questions from VLM to determine the remaining subgoals and569

then sequencing the remaining subgoals doesn’t require any training data, it heavily relies on the570

task’s domain knowledge.571

Failure Modes of VLM. We observe two common failure modes of the VLM approach in572

object-arrange environment and visualize them in Figure 8. First, because the model is not573

trained on any in-domain data, it often fails to recognize uncommon objects, such as computer hard574

drives, in the observations. Second, it occasionally hallucinates the presence of objects at certain575

locations and thus leads to incorrect visual reasoning.576

VLM as a Subgoal Predictor. We also tried to prompt the VLM with 5 examples of goal g577

and subgoal candidates {wi}Mi=1 and then directly use it to generate the next subgoal wi given the578

observation xi,1 and the goal g. However, it completely failed. We hypothesize that the VLM fails to579

directly generate the next subgoal due to its inability to perform in-context learning.580

Evaluation. We evaluate the trained classifier fϕ and the frozen VLM for subgoal prediction accuracy581

on 5k unseen datapoints, consisting of observation, goal, candidate subgoals and correct subgoal,582

generated from test tasks Ttest. We average over 4 seeds and show the results in Figure 7.583

C.2 Visual Planning584

Ego4D dataset processing. We pre-train on canonical clips of the Ego4D dataset which are text-585

annotated short clips made from longer videos. We further divide each canonical clip into 10sec586

segments from which we derive 50 frames. We resize each frame to 48× 64. We create a pretraining587

Ego4D dataset of (approximately) 344k short clips, each consisting of 50 frames and a text annotation.588

We use the loader from R3M [33] codebase (https://github.com/facebookresearch/r3m) to load our589

pretraining Ego4D dataset.590

Training Objective and Dataset. We use pixel-level L1 reconstruction and negative perceptual591

similarity for training the autoencoder venc. We borrow this objective from PVDM [49] paper592

except we don’t use adversarial loss. We keep the language encoder frozen. We use denoising loss593

in video latent space Ek∼[1,K],τz,w,x∼D,ϵ∼N (O,I)[∥ϵ − ϵϕ((τz)k, lenc(w), venc(x), k)∥2] to train the594

noise model ϵϕ. We replace w with a null token so that ϵϕ learns both a text-conditional model and595

an unconditional model. We pretrain the autoencoder venc and the noise model ϵϕ on the processed596

Ego4D dataset. We then finetune it on our dataset Dvideo := {τ ix, wi} consisting of approximately597

100k observation trajectories of length T = 50 and associated text subgoals.598

Classifier Training Objective and Dataset. We use a binary cross-entropy loss to train the binary599

classifier gψ(τz) that predicts if the observation trajectory in latent space τz = venc(τx) leads to600

high-likelihood action trajectory. It is trained using trajectories from video dataset τx ∼ Dvideo.601

C.3 Action Planning602

Training Objective and Dataset. We train inverse dynamics pψ on a dataset Dinv. Since actions are603

differences between robotic joint states, we train pψ to directly predict robotic state si,t = pψ(xi,t)604

by minimizing the mean squared error between the predicted robotic state and ground truth robotic605

16

state. Hence, Dinv := {τ ix, τ is} consists of 1k paired observation and robotic state trajectories, each606

having a length of T = 50.607

Evaluation. We evaluate the trained pψ (i.e., VC-1 initialized model and other related models in608

Figure 6) on 100 unseen paired observation and robotic state trajectories generated from test tasks609

Ttest. We use mean squared error to evaluate our inverse dynamics models. We use 4 seeds to calculate610

the standard error, represented by the shaded area in Figure 6.611

C.4 Hyperparameters612

Task Planning. We train fϕ for 50 epochs using AdamW optimizer [30], a batch size of 256, a613

learning rate of 1e− 3 and a weight decay of 1e− 6. We used one V100 Nvidia GPU for training the614

multi-class classifier.615

Visual Planning. We borrow our hyperparameters for training video diffusion from the PVDM616

paper [49]. We use AdamW optimizer [30], a batch size of 24 and a learning rate of 1e − 4 for617

training the autoencoder. We use AdamW optimizer, a batch size of 64, and a learning rate of 1e− 4618

for training the noise model. During the pretraining phase with the Ego4D dataset, we train the619

autoencoder for 5 epochs and then the noise model for 5 epochs. During the finetuning phase with620

Dvideo, we train the autoencoder for 10 epochs and then the noise model for 40 epochs. We used two621

A6000 Nvidia GPUs for training these diffusion models. We train gψ for 10 epochs using AdamW622

optimizer, a batch size of 256 and a learning rate of 1e − 4. We used one V100 Nvidia GPU for623

training the binary classifier. During classifier-free guidance, we use ω = 4 and ω′ = 1.624

Action Planning. We train VC-1 initialized inverse dynamics model for 20 epochs with AdamW625

optimizer [30], a batch size of 256 and a learning rate of 3e−5. We trained other randomly initialized626

ViT-B inverse dynamics models and randomly initialized ResNet-18 inverse dynamics models for 20627

epochs with AdamW optimizer, a batch size of 256, and a learning rate of 1e− 4. We used one V100628

Nvidia GPU for training these inverse dynamics models.629

D Additional Ablation Studies630

D.1 Consistency between task planning and visual planning631

To make task planning consistent with visual planning, we need to select subgoal w∗
i which maximizes632

the joint likelihood (see equation 3) of LLM pLLM(wi|g) and video diffusion pϕ(τ
i
x|wi, xi,1). While633

generating videos for different subgoal candidates wi and calculating the likelihood of the generated634

video is computationally expensive, we would still like to evaluate its performance in subgoal635

prediction given it is theoretically grounded. To this end, we first sample M subgoals W = {wj}Mj=1636

from the LLM. Then, we calculate w∗
i = argmaxw∈W log pϕ(τ

i
x|w, xi,1) and use w∗

i as our predicted637

subgoal. Since log pϕ(τ
i
x|w, xi,1) is intractable, we estimate its variational lower-bound as an638

approximation. We use this approach for subgoal prediction in paint-block environment and639

compare its performance to that of the learned classifier. It achieves a subgoal prediction accuracy of640

54.3± 7.2% whereas the learned classifier achieves a subgoal prediction accuracy of 98.2± 1.5%641

in paint-block environment. Both approaches outperform the approach of randomly selecting642

a subgoal from W (i.e., no task plan refinement), which yields a subgoal prediction accuracy of643

16.67% given M = 6. The poor performance of the described approach could result from the fact644

that the diffusion model only coarsely approximates the true distribution p(τ ix|wi, xi,1), which results645

in loose variational lower-bound and thus uncalibrated likelihoods from the diffusion model. A larger646

diffusion model could better approximate p(τ ix|wi, xi,1), resulting in tighter variational lower-bound647

and better-calibrated likelihoods.648

D.2 Consistency between visual planning and action planning649

To make visual planning consistent with action planning, we need to select observation trajectory650

(τ ix)
∗ which maximizes joint likelihood (see equation 4) of conditional video diffusion pϕ(τ

i
x|wi, xi,1)651

and inverse model
∏T−1
t=1 pψ(ai,t|xi,t, xi,t+1). While sampling action trajectories and calculating652

their likelihoods during every step of the denoising process is computationally inefficient, we would653

still like to evaluate its effectiveness in visual plan refinements. However, we perform video diffusion654

17

in latent space while our inverse model is in observation space. Hence, for purpose of this experiment,655

we learn another inverse model pψ(τ
i
a|τ iz) that uses a sequence model (i.e. a transformer) to produce656

an action trajectory τ ia given an observation trajectory in latent space τ iz . We train pψ for 20657

epochs on 10k paired observation and action trajectories, each having a length of T = 50. We use658

AdamW optimizer, a batch size of 256 and a learning rate of 1e− 4 during training. To generate an659

observation trajectory that maximizes the joint likelihood, we first sample 30 observation trajectories660

from video diffusion pϕ(τ
i
x|wi, xi,1) conditioned on subgoal wi and observation xi,1. For each661

generated observation trajectory τ ix, we sample a corresponding action trajectory τ ia and calculate662

its corresponding log-likelihood log pψ(τ
i
a|venc(τ

i
x)). We select the observation trajectory τ ix with663

highest log-likelihood. Note that we only use pψ for visual plan refinement and use pψ for action664

execution to ensure fair comparison. If we use this approach for visual plan refinement with HiP, we665

obtain a success rate of 72.5±1.9 on unseen tasks in paint-block environment. This is comparable666

to the performance of HiP with visual plan refinements from learned classifier gψ which obtains a667

success rate of 72.8± 1.7 on unseen tasks in paint-block environment. In contrast, HiP without668

any visual plan refinement obtains a success rate of 71.1 ± 1.3 on unseen tasks in paint-block669

environment. These results show that gψ serves as a good approximation for estimating whether an670

observation trajectory leads to a high-likelihood action trajectory, while still being computationally671

efficient.672

Architecture for pψ. We use a transformer model to represent pψ(τa|τz = [τTz , τ
H
z , τWz]). We first673

use a ResNet-9 encoder to convert τTz , τHz , and τWz to latent vectors. We then concatenate those674

latent vectors and project the resulting vector to a hidden space of 64 dimension using a linear layer.675

We then pass the 64 dimensional vector to a trajectory transformer model [24] which generates an676

action trajectory τa of length 50. The trajectory transformer uses a transformer architecture with 4677

layers and 4 self-attention heads.678

18

	Introduction
	Hierarchical Planning with Foundation Models
	Task Planning via Large Language Models
	Visual Planning with Video Generation
	Action Planning with Inverse Dynamics

	Experimental Evaluations
	Evaluation Environments
	Baselines
	Results

	Related Work
	Limitations and Conclusion
	Factorizing Hierarchical Decision-Making Process
	Background and Architecture
	Task Planning
	Visual Planning
	Action Planning

	Training and Evaluation
	Task Planning
	Visual Planning
	Action Planning
	Hyperparameters

	Additional Ablation Studies
	Consistency between task planning and visual planning
	Consistency between visual planning and action planning

