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1 Overview1

In this supplementary, we provide the following:2

• Detailed description of the datasets we use in Sec. 2, and more implementation details in3

Sec. 3.4

• More examples of the panoramic environments generated by our PANOGEN in Sec. 4.5

• Limitations and broader impacts in Sec. 5, and licenses in Sec. 6.6

2 Datasets7

We evaluate our agent on three datasets: Room-to-Room dataset (R2R) [1], Cooperative Vision-and-8

Dialog Navigation dataset (CVDN) [4], and Room-for-Room dataset (R4R) [3].9

R2R. Room-to-Room dataset contains detailed instructions to guide the agents navigate toward the10

target location step by step. The ground truth paths are the shortest path between the start location11

and the end location. The training set contains 61 different room environments, while the unseen12

validation set and test set contain 11, and 18 room environments that are unseen during training.13

R4R. Room-for-Room dataset is created by concatenating the adjacent paths in the Room-to-Room14

dataset. In this case, the ground truth path is not the shortest path. This encourages the agent to follow15

the instructions to reach the target instead of exploring the environment bias and reach the target by16

directly navigating the shortest path.17

CVDN. Cooperative Vision-and-Dialog Navigation dataset contains interactive dialogue instructions.18

The dialogue usually contains under-specified instructions, and the agent needs to navigate based on19

both the dialogue histories and the commonsense knowledge of the room. The room environments in20

the training set, unseen validation set, and test set follow the split in Room-to-Room dataset.21

3 Implementation Details22

In panoramic environment generation, we caption all the view images in the training environments23

in R2R dataset with BLIP-2-FlanT5-xxL. We utilize stable-diffusion-v2.1 base model to generate24

the single view based on caption only, and use stable-diffusion-v1.5-inpainting model to inpaint the25

unseen observation for the rotated views. It takes 2 days on 6 A100s to generate all the environments.26

In speaker data generation, we build our speaker model based on mPLUG-base, which has 350M27

parameters and utilizes ViT/B-16 as the visual backbone. We train the speaker for 4 epochs on one28

A6000 GPU with batch size 16 for two days.29
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Figure 1: Qualitative analysis of the panoramic environments generated with our PANOGEN. “Mat-
terport3D" is the original environment for VLN tasks. “Stable Diffusion for Discretized Views" is the
concatenation of separately generated discretized views given text captions.

For navigation training, we adopt the agent architecture from DUET [2]. We follow the training30

hyperparameters in DUET. Different from DUET, we utilize CLIP-ViT/B-16 to extract the visual31

features. We train the model on one A6000 GPU. We pre-train the agent with batch size 64 for 150k32

iterations, and then fine-tune the agent with batch size 8 for 40k iterations. Both the pre-training and33

fine-tuning take approximately one day to finish. We report reproduced baseline performance with34

CLIP-ViT/B-16 features for a fair comparison. The best model is selected based on performance on35

validation unseen set.36

4 Qualitative Example37

We show more panoramic environments generated with our PANOGEN in Figure 1. We observe that38

directly concatenating discretized views generated separately will generate inconsistent panoramas39

(Row “Stable Diffusion for Discretized Views”). In comparison, our PANOGEN can generate40

continuous views with reasonable layout and object co-occurrence (Row “PANOGEN”). Moreover,41

our approach can generate panorama for both indoor and outdoor environments. Though generating42

the outdoor environments might not benefit agents’ indoor navigation ability directly, our approach43

demonstrates its potential to be applied to panorama generation with different content (e.g., landscape).44

5 Limitations and Broader Impacts45

Vision-and-Language Navigation tasks can be used in many real-world applications, for example, a46

home service robot can bring things to the owner based on natural language instructions. In this paper,47

our proposed method generates panoramic environments for VLN training, and significantly improves48

navigation agents’ generalization ability to unseen environments given limited human-annotated49

training data. Our approach reduces the efforts of re-training the agents in every new environment50

when adapting to real-world scenarios.51

We also note that there are some limitations of our work. First, this work directly utilizes stable52

diffusion models trained for inpainting on “laion-aesthetics v2 5+”. Though the zero-shot generation53

performance is good, further improvement might be observed if further trained on room images.54

Second, we investigate one specific task Vision-and-Language Navigation in this paper, but the55

proposed method can be potentially used in other embodied tasks like concept learning and grounding56

in panoramic environments. We will explore other useful and interesting tasks in the future.57

6 Licenses58

We provide the licenses of the existing assets we use in this paper in Table 1.59
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Table 1: A list of the licenses of the existing assets used in this paper.
Asset License

Pytorch BSD-style
Huggingface Transformers Apache License 2.0

Torchvision BSD 3-Clause “New” or “Revised” License
Room-to-Room MIT
Room-for-Room Apache License 2.0

Cooperative Vision-and-Dialog Navigation MIT
BLIP-2 BSD 3-Clause “New” or “Revised” License
mPLUG Apache License 2.0
DUET N/A

Stable Diffusion CreativeML Open RAIL-M
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https://github.com/pytorch/pytorch/blob/main/LICENSE
https://github.com/huggingface/transformers/blob/main/LICENSE
https://github.com/pytorch/vision/blob/main/LICENSE
https://github.com/peteanderson80/Matterport3DSimulator/blob/master/LICENSE
https://github.com/google-research/google-research/blob/master/LICENSE
https://github.com/mmurray/cvdn/blob/master/LICENSE
https://github.com/salesforce/LAVIS/blob/main/LICENSE.txt
https://github.com/alibaba/AliceMind/blob/main/LICENSE
https://github.com/cshizhe/VLN-DUET
https://github.com/runwayml/stable-diffusion/blob/main/LICENSE
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