
A Additional Related Work on Data-Centric Approach474

Data Augmentation Data augmentation creates new examples with preserved labels but uses475

no unlabeled data (Shorten and Khoshgoftaar, 2019; Kashefi and Hwa, 2020; Balestriero et al.,476

2022). Examples of heuristic data augmentation techniques include flipping, distorting, and rotating477

images (Shorten and Khoshgoftaar, 2019), using lexical substitution, inserting words, and shuffling478

sentences in texts (Kashefi and Hwa, 2020), and deleting nodes and dropping edges in graphs (Zhao479

et al., 2022). While human knowledge can be used to improve data diversity and reduce over-fitting480

in heuristic methods, it is difficult to use a single heuristic method to preserve the different labels for481

different tasks (Balestriero et al., 2022; Cubuk et al., 2019). So, automated augmentation (Cubuk482

et al., 2019) learned from data to search for the best policy to combine a bunch of predefined heuristic483

augmentations. Generation models (Antoniou et al., 2017; Bowles et al., 2018; Han et al., 2022) create484

in-class examples. Other learning ideas such as FATTEN (Liu et al., 2018) and GREA (Liu et al.,485

2022) learned to split the latent space for data augmentation. However, learning and augmenting from486

insufficient labels at the same time may limit the diversity of new examples and cause over-fitting.487

DCT leverages unlabeled data to avoid them.488

Figure 7: Qualitative relationship of
graphs from different data-centric ap-
proach on the task relatedness and con-
tained knowledge.
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Relationship between Data-Centric Approaches As489

presented in Figure 7, perturb edges, delete nodes and490

mask attributes (Rong et al., 2019; Trivedi et al., 2022) for491

graphs are some heuristic ways for data augmentation. The492

augmented knowledge from them is mainly controlled by493

human prior knowledge on the perturbations and it often494

fails to be close to the task, i.e., , random perturbations495

hardly preserve labels for the augmented graphs. The learn-496

ing to augment approaches learn from labeled graphs to497

perturb graph structures (Luo et al., 2022), to estimate498

graphons for different classes (Han et al., 2022), or to499

split the latent space for augmentation (Liu et al., 2022).500

Although these approaches could preserve labels for the501

augmented graphs, they introduce less extra knowledge to502

improve the model prediction. In summary, graph data aug-503

mentation is effective in expanding knowledge for limited504

labels, but it makes no use of unlabeled graphs. Besides,505

the diversity and richness of the domain knowledge from augmented graphs are far from that con-506

tained in a large number of unlabeled graphs. To learn from unlabeled graphs, data-centric approaches507

like the self-training is assumed to be useful when the unlabeled and labeled data are from the same508

source. It is less studied when we have a single unified unlabeled source for different tasks.509

B Additional Method Details510

B.1 Upper bounding the mutual information511

In Eq. (6), we use a leave-one-out variant of InfoNCE (Ibound) to derive the upper bound of mutual512

information. We summarize the derivation (Poole et al., 2019) here.513

I1(G′;G) = Ep(G,G′)

[
log

p(G′|G)

p(G′)

]
= Ep(G,G′)

[
log

p(G′|G)q(G′)

q(G′)p(G′)

]
= Ep(G,G′)

[
log

p(G′|G)

q(G′)

]
−KL(p(G′)||q(G′))

≤ Ep(G,G′)

[
log

p(G′|G)

q(G′)

]
(9)

The intractable upper bound is minimized when the variational approximation q(G′) matches the514

true marginal p(G′) (Poole et al., 2019). For each Gi, its augmented output G′
i, and M − 1 negative515
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examples with different labels, we could approximate q(G′
i) =

1
M−1

∑
j ̸=i p(G

′
i|Gj). So, we have516

I1(G′
i, Gi) ≤ log

p(G′
i|Gi)

1
K−1

∑M
j=1,j ̸=i p(G

′
i|Gj)

= log
p(G′

i|Gi)∑M
j=1,j ̸=i p(G

′
i|Gj)

+ log(M − 1)

= Ibound(G
′
i;Gi) + constant

(10)

B.2 Extraction of Statistical Features on Graphs517

For each molecule and polymer graph, we concatenate the following vectors or values for statistical518

feature extraction.519

• the sum of the degree in the graph;520

• the vector indicating the distribution of atom types;521

• the vector containing the maximum, minimum and mean values of atoms weights in a522

molecule or polymer;523

• the vector containing the maximum, minimum, and mean values of bond valence.524

For each protein-protein interaction ego-graph in the biology field, we use the sorted vector of node525

degree distribution in the graph as the statistical features.526

B.3 Technical Details for Graph Data Augmentation with Diffusion Model527

The Lookup Table from Atom Type to Node Embedding Space Given a graph G, we assume the528

node feature matrix on the graph is X ∈ Rn×Fn , where n is the number of nodes. The edge feature529

matrix is E ∈ Rm×Fe , where m is the number of edges. There are two ways for G to represent530

the graph structure in practice. We can use either the dense adjacency matrix A ∈ Rn×n or sparse531

edge index Ie ∈ R2×m. The diffusion model (Jo et al., 2022) on graphs prefers the former, which is532

more straightforward for graph generations. The prediction model prefers the latter because of its533

flexibility, and less computational cost and time. The transformation between two types of graph534

structure representation takes additional time. Particularly for molecular graphs, the node features535

used for generation (one-hot encoding of the atom type) and for prediction (see the official package of536

OGBG 1 for details) are different, which introduces extra time to process the graph data. For details,537

we (1) first need to extract discrete node attributes given the atom type and its neighborhoods; (2)538

we then need to use an embedding table to embed node attributes in a continuous embedding space;539

(3) the embedding features of nodes with their graph structure are inputted into the graph neural540

networks to get the latent representation for nodes. The reverse process for data augmentation in541

DCT may need to repeatedly process graph data with steps (1) and (2). It introduces additional time.542

So, we build up a lookup table to directly map the atom type to the node embedding. To achieve it,543

we average the node attributes for the same type of node within the batch. We then use the continuous544

node attributes as weights to average the corresponding node embedding according to the embedding545

table.546

Instantiations of SDE on Graphs According to Song et al. (2021), we use the Variance Exploding547

(VE) SDE for the diffusion process. Given the minimal noise σmin and the maximal noise σmax, the548

VE SDE is:549

dG = σmin

(
σmax

σmin

)t√
2 log

σmax

σmin
dw, t ∈ (0, 1] (11)

The perturbation kernel is derived (Song et al., 2021) as:550

p0t(G
(t) | G(0)) = N

(
G(t);G(0), σ2

min

(
σmax

σmin

)2t

I

)
, t ∈ (0, 1] (12)

On graphs, we follow Jo et al. (2022) to separate the perturbation of adjacency matrix and node551

features:552

p0t(G
(t) | G(0)) = p0t(A

(t) | A(0))p0t(X
(t) | X(0)). (13)

1https://github.com/snap-stanford/ogb/blob/master/ogb/utils/features.py
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The Sampling Algorithm in the Reverse Process for Graph Data Augmentation We adapt553

the Predictor-Corrector (PC) samplers for the graph data augmentation in the reverse process. The554

algorithm is shown in Algorithm 1.555

Algorithm 1 Diffusion-Based Graph Augmentation with PC Sampling
Input: Graph G with node feature X and adjacency matrix A, the denoising function for node feature sX
and adjacency matrix sA, the fine-tune loss Laug, Lagevin MCMC step size β, scaling coefficient ϵ1
A(D) ← A+ zA; zA ∼ N (0, I)

X(D) ← X+ zX ; zX ∼ N (0, I)
for t = D − 1 to 0 do

Ĝ(t+1) ∼ p0t+1(Ĝ(t+1)|G(t+1)) {inner-loop sampling with another PC sampler}
SA = 1

2
sA(G(t+1), t+ 1)− 1

2
α∇A(t)Laug(Ĝ(t+1))

SX = 1
2
sX(G(t+1), t+ 1)− 1

2
α∇X(t)Laug(Ĝ(t+1))

Ã(t) ← A(t+1) + g(t)2SA + g(t)zA; zA ∼ N (0, I) {Predictor for adjacency matrix}
X̃(t) ← X(t+1) + g(t)2SX + g(t)zX ; zX ∼ N (0, I) {Predictor for node features}
A(t) ← Ã(t) + β

2
SA + ϵ1

√
βzA; zA ∼ N (0, I) {Corrector for adjacency matrix}

X(t) ← X̃(t) + β
2
SX + ϵ1

√
βzX ; zX ∼ N (0, I) {Corrector for node features}

end for
return G′ = (A(0),X(0))

The Algorithm of the Framework The algorithm of the proposed data-centric knowledge transfer556

framework is presented in Algorithm 2 and Algorithm 3. In detail, Algorithm 2 corresponds to557

Section 4.2 and Algorithm 3 corresponds to Section 4.3.558

Algorithm 2 The Data-Centric Knowledge Trans-
fer Framework: Learning from Unlabeled Graphs

Input: Given unlabeled graphs from the space G[U ],
randomly initialized score models sX and sA for node
feature and graph adjacency matrix, respectively, the
total diffusion time step T .
while sX and sA not converged do

Sample G = (X,A) ∈ G[U ]

Sample t ∈ Uniform(1, 2, . . . , T )
Sample zA ∼ N (0, I)
Sample zX ∼ N (0, I)

Sample Ĝ with t, zA, zX and Eq. (13)
Optimize sA with the gradient:
∇∥zA − sA(Ĝ, t)∥2

Optimize sX with the gradient:
∇∥zX − sX(Ĝ, t)∥2

end while

Algorithm 3 The Data-Centric Knowledge Transfer
Framework: Generating Task-specific Labeled Graphs

Input: Given task k with the graph-label space (G,Y),
a randomly initialized prediction model fθ , the well-
trained score model s = (sX, sA), the training data set
{Gi, yi}Nt

i , total training epoch e, the hyper-paramtere n
for current epoch ei from 1 to e do

Train fθ on current training data {Gi, yi}Nt
i

if ei is divisible by the augmentation interval then
Select n graph-label pairs with the lowest training
loss from {Gi, yi}Nt

i

Get the augmented examples {G′
i, y

′
i}ni by Algo-

rithm 1 with the selected examples
Update {Gi, yi}Nt

i with {G′
i, y

′
i}ni , e.g., add

{G′
i, y

′
i}ni to {Gi, yi}Nt

i .
end if

end for

559

C Additional Experiments Set-ups560

We perform experiments on 15 datasets, including eight classification and seven regression tasks from561

chemistry, material science, and biology. We use Area under the ROC curve (AUC) for classification562

performance and mean absolute error (MAE) for regression.563

C.1 Molecule Classification and Regression Tasks564

Seven molecule classification and three molecule regression tasks are from open graph benchmark (Hu565

et al., 2020). They were originally collected by MoleculeNet (Wu et al., 2018) and used to predict566

molecule properties. They include (1) inhibition to HIV virus replication in ogbg-HIV, (2) toxicologi-567

cal properties of 617 types in ogbg-ToxCast, (3) toxicity measurements such as nuclear receptors and568

stress response in ogbg-Tox21, (4) blood–brain barrier permeability in ogbg-BBBP, (5) inhibition to569

human β-secretase 1 in ogbg-BACE, (6) FDA approval status or failed clinical trial in ogbg-ClinTox,570
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Table 3: Statistics of datasets for graph property prediction in different domains.
Data Type Dataset # Graphs Prediction Task # Task Avg./Max # Nodes Avg./Max # Edges

Molecules

ogbg-HIV 41,127 Classification 1 25.5 / 222 54.9 / 502
ogbg-ToxCast 8,576 Classification 617 18.8 / 124 38.5 / 268
ogbg-Tox21 7,831 Classification 12 18.6 / 132 38.6 / 290
ogbg-BBBP 2,039 Classification 1 24.1 / 132 51.9 / 290
ogbg-BACE 1,513 Classification 1 34.1 / 97 73.7 / 202
ogbg-ClinTox 1,477 Classification 2 26.2 / 136 55.8 / 286
ogbg-SIDER 1,427 Classification 27 33.6 / 492 70.7 / 1010
ogbg-Lipo 4200 Regression 1 27 / 115 59 / 236
ogbg-ESOL 1128 Regression 1 13.3 / 55 27.4 / 124
ogbg-FreeSolv 642 Regression 1 8.7 / 24 16.8 / 50

Polymers

GlassTemp 7,174 Regression 1 36.7 / 166 79.3 / 362
MeltingTemp 3,651 Regression 1 26.9 / 102 55.4 / 212
ThermCond 759 Regression 1 21.3 / 71 42.3 / 162
O2Perm 595 Regression 1 37.3 / 103 82.1 / 234

Proteins PPI 88000 Classification 40 49.4 / 111 890.8 / 11556

(7) having drug side effects of 27 system organ classes in ogbg-SIDER, (8) predicting the property of571

lipophilicity in ogbg-Lipo, (9) predicting the water solubility (log solubility in mols per litre) from572

chemical structures in ogbg-ESOL, (10) predicting the hydration free energy of molecules in water in573

ogbg-FreeSolv. For all molecule datasets, we use the scaffold splitting procedure as the open graph574

benchmark adopted (Hu et al., 2020). It attempts to separate structurally different molecules into575

different subsets, which provides a more realistic estimate of model performance in experiments (Wu576

et al., 2018).577

C.2 Polymer Regression Tasks578

Four polymer regression tasks include GlassTemp, MeltingTemp, ThermCond, and O2Perm. They579

are used to predict different polymer properties such as glass transition temperature (◦C), melting580

temperature (◦C), thermal conductivity (W/mK) and oxygen permeability (Barrer). GlassTemp and581

MeltingTemp are collected from PolyInfo, which is the largest web-based polymer database (Otsuka582

et al., 2011). The ThermCond dataset is from molecular dynamics simulation and is an extension583

from the dataset used in (Ma et al., 2022). The O2Perm dataset is created from the Membrane Society584

of Australasia portal, consisting of a variety of gas permeability data (Thornton et al., 2012). Since a585

polymer is built from repeated units, researchers often use a single unit graph with polymerization586

points as polymer graphs to predict properties. Different from molecular graphs, two polymerization587

points are two special nodes (see “∗” in Figure 2), indicating the polymerization of monomers588

(Cormack and Elorza, 2004). For all the polymer tasks, we randomly split by 60%/10%/30% for589

training, validation, and test.590

C.3 Protein Classification Task591

An additional task is protein function prediction using protein-protein interaction graphs (Hu et al.,592

2019). A node is a protein without attributes, an edge is a relation type between two proteins such593

as co-expression and co-occurrence. In our DCT, we treat all the relations as the undirected edge594

without attributes.595

C.4 Baselines and Implementation596

When implementing GIN (Xu et al., 2019), we tune its hyper-parameters for different tasks with an597

early stop on the validation set. We generally implement pre-training baselines following their own598

setting. For molecule and polymer property prediction and protein function prediction, the pre-trained599

GIN models with self-supervised tasks such as EDGEPRED, ATTRMASK, CONTEXTPRED in (Hu600

et al., 2019), INFOMAX (Velickovic et al., 2019) are available. So we directly use them. For other601

self-supervised methods, we implement their codes with default hyper-parameters. Following their602

settings, we use 2M ZINC15 (Sterling and Irwin, 2015) to pre-train GIN models for molecule and603

polymer property prediction. We use 306K unlabeled protein-protein interaction ego-networks (Hu604

et al., 2019) to pre-train the GIN for the downstream protein function property prediction. For605
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self-training with real unlabeled graphs and INFOGRAPH (Sun et al., 2020), we use 113K QM9 (Ra-606

makrishnan et al., 2014). For self-training with generated unlabeled graphs, we train the diffusion607

model (Jo et al., 2022) on the real QM9 dataset and then produce the same number of generated608

unlabeled graphs. To train the diffusion model in our DCT, we also use QM9 (Ramakrishnan et al.,609

2014).610

D Additional Experiment Analysis611

D.1 The Power of Diffusion Model to Learn from Unlabeled Graphs612

In Table 2, when we replace the 133K QM9 with the 249K ZINC (Jo et al., 2022) to train the diffusion613

model, which nearly doubles the size of the unlabeled graphs and includes more atom types, we do614

not observe any additional improvement, and in some cases, even worse performance. It is possible615

because of the constraint of the current diffusion model’s capacity to model the data distribution for a616

much larger number of more complex graphs. It encourages powerful generative models in the future,617

which could be directly used to benefit predictive models under the proposed framework.618
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