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Abstract

Action knowledge involves the understanding of textual, visual, and temporal as-1

pects of actions. We introduce the Action Dynamics Benchmark (ActionBench)2

containing two carefully designed probing tasks: Action Antonym and Video Rever-3

sal, which targets multimodal alignment capabilities and temporal understanding4

skills of the model, respectively. Despite recent video-language models’ (VidLM)5

impressive performance on various benchmark tasks, our diagnostic tasks reveal6

their surprising deficiency (near-random performance) in action knowledge, sug-7

gesting that current models rely on object recognition abilities as a shortcut for ac-8

tion understanding. To remedy this, we propose a novel framework, PAXION, along9

with a new Discriminative Video Dynamics Modeling (DVDM) objective. The10

PAXION framework utilizes a Knowledge Patcher network to encode new action11

knowledge and a Knowledge Fuser component to integrate the Patcher into frozen12

VidLMs without compromising their existing capabilities. Due to limitations of the13

widely-used Video-Text Contrastive (VTC) loss for learning action knowledge, we14

introduce the DVDM objective to train the Knowledge Patcher. DVDM forces the15

model to encode the correlation between the action text and the correct ordering16

of video frames. Our extensive analyses show that PAXION and DVDM together17

effectively fill the gap in action knowledge understanding (~50% → 80%), while18

maintaining or improving performance on a wide spectrum of both object- and19

action-centric downstream tasks.20

1 Introduction21

Recent video-language models (VidLMs) [29, 24, 54, 34, 56, 51] have shown impressive performance22

on a wide range of video-language tasks. However, such multimodal models are not without23

deficiencies: [23] points out that many popular video-language benchmarks [55, 3, 15] can be solved24

by looking at a single frame, and [58] shows that vision-language models struggle to understand25

compositional and order relations in images, treating images as bags of objects. Such limitations26

suggest that models’ understanding of actions, which may require several frames and comprehension27

of object relationships, may be lacking.28

To test this hypothesis, we first define action knowledge as an understanding of the cause and effect29

of actions in textual, visual, and temporal dimensions. To quantify a model’s action knowledge, we30

introduce the Action Dynamics Benchmark (ActionBench). ActionBench contains two probing31

tasks: distinguishing between (1) a video’s caption and the caption with its action verbs replaced by32

their antonyms; (2) the original and reversed videos. The benchmark also includes a baseline task33

for controlling the undesired impact from domain mismatch and investigating potential bias towards34

objects. The baseline task requires the model to differentiate between the original video captions35

and altered versions with randomly replaced objects. We find that state-of-the-art video-language36
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Figure 1: Overview of the PAXION framework. The goal is to patch frozen VidLMs with action
knowledge without compromising their general vision-language capabilities. The Knowledge Patcher
(KP) aims to learn an action-centric representation by leveraging ActionBench data (§ 2) and our
newly proposed Discriminative Video Dynamics Modeling (DVDM) training objectives (§ 3.1). The
Knowledge Fuser (KF) aims to obtain a balanced representation for general downstream tasks by
fusing the KP with the backbone.

foundation models [51, 56, 23] exhibit near-random performance on our action-oriented probing tasks37

while excelling on the object-oriented baseline task (Figure 2). This shows that VidLMs lack action38

knowledge and suggests that their impressive performance on other benchmarks may be attributed to39

their object recognition ability instead of action understanding.40

To address this shortcoming, we propose a novel framework, PAXION (Patching Actions), to patch ex-41

isting VidLMs with action knowledge without compromising their general vision-language (VL) capa-42

bilities. PAXION comprises two main components, the Knowledge Patcher and the Knowledge Fuser.43

The Knowledge Patcher (KP) is a Perceiver-based [20, 19] lightweight module attached to a frozen44

VidLM backbone used to augment the VidLM with action-aware representations. Through our45

preliminary experiments, one major challenge for patching action knowledge is that the widely-used46

Video-Text Contrastive (VTC) objective [42, 54, 28, 25, 27] is insufficient, which echoes the findings47

of related work [7, 23, 58]. Hence, inspired by dynamics modeling in robotics and reinforcement48

learning [1, 4, 14, 22, 38], we introduce the Discriminative Video Dynamics Modeling (DVDM)49

objective that forces the model to learn the correlation between an action’s textual signifier, the50

action text (e.g. the word “falling”), and the action’s visual depiction (e.g. a clip of a falling book).51

DVDM includes two new losses, Video-Action Contrastive (VAC) and Action-Temporal Matching52

(ATM), which are compatible with VTC without additional parameters. Specifically, we formulate53

discriminative tasks using action antonyms and reversed videos, with special emphasis on learn-54

ing from data instances with salient state changes. We demonstrate that the synergy between the55

Knowledge Patcher and DVDM leads to a dramatic improvement on our ActionBench tasks.56

Next, we investigate whether our Knowledge Patcher, which is specialized for action understanding,57

can be integrated into existing VidLMs for downstream tasks that require both action and object58

knowledge. To this end, we introduce the Knowledge Fuser (KF) component of PAXION which fuses59

the action-centric representation from the Knowledge Patcher with the object-centric representation60

from the frozen backbone using cross-attention. We show that the fused representation from PAXION61

improves both object and action understanding on a wide spectrum of tasks, including Video-Text62

Retrieval (SSv2-label [12, 23]), Video-to-Action Retrieval (SSv2-template [23], Temporal [44]), and63

Causal-Temporal Video Question Answering (NExT-QA [53]). Moreover, our analysis shows that the64

Knowledge Fuser is essential to maintain a balance between the models’ object-related understanding65

and improving performance on downtream action and temporal-oriented tasks.66

We also test the robustness of PAXION by considering a zero-shot cross-domain transfer setting on the67

Moments-in-Time [37] and Kinetics [21] datasets. We find that the Knowledge Fuser is critical for68

increasing robustness to domain shifts and that positive transfer to unseen domains can be achieved69

by further ensembling PAXION with the backbone model.70

To the best of our knowledge, this is the first work to systematically evaluate action knowledge and71

patch it into video-language foundation models. Our main contributions are threefold:72

1. We introduce the Action Dynamics Benchmark (§ 2), which probes action understanding73

capabilities in video-language models. We evaluate three state-of-the-art video-language74

foundation models and conclude that they lack a basic grasp of action knowledge.75

2. We propose a novel learning framework called PAXION, which patches the missing76

action knowledge into frozen video-language foundation models without hurting their gen-77
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Figure 2: Top: Illustration of the probing tasks and baseline task in our proposed ActionBench. The
bounding boxes in the video frames are purely for visualization. The numbers on the right show the
ranking scores from a state-of-the-art VidLM, InternVideo [51]. The model struggles to determine
whether a book is “falling” or “rising,” but can confidently identify the object to be a “book” instead
of a “cellphone”. Bottom: ActionBench results of three recent VidLMs [51, 56, 23]. The column
“Avg” indicates averaged results on each task across all three models. Existing VidLMs achieve
near-random results on the probing tasks (AA and VR) while excelling on the baseline task (OR).
This demonstrates that existing VidLMs lack fundamental action knowledge and exhibit strong bias to
object understanding.

eral vision-language capabilities. The key components of PAXION include a Perceiver-based78

Knowledge Patcher (§ 3) and a cross-attention-based Knowledge Fuser (§ 4).79

3. We propose the DVDM objective (§ 3.1), an improvement over the widely-used VTC loss,80

which forces the model to encode the correlation between the action text and the correct81

ordering of video frames. Extensive experiments show that PAXION with DVDM improves82

the joint understanding of objects and actions while being robust to domain shift.83

2 Action Dynamics Benchmark (ActionBench): Do Video-Language84

Foundation Models Understand Action Knowledge?85

To investigate the presence of action knowledge in state-of-the-art video-language foundation models,86

we propose the Action Dynamics Benchmark (ActionBench). ActionBench comprises the Action87

Antonym (AA) and Video Reversal (VR) probing tasks, along with the Object Replacement (OR)88

baseline task. The probing tasks evaluate the multimodal and temporal correlations between an89

action text and a video. The baseline task controls for the potential impact of domain mismatch.90

We construct this benchmark by leveraging two existing open-domain video-language datasets,91

Ego4D [13] and Something-Something v2 (SSv2) [12], which provide fine-grained action annotations92

for each video clip. Compared to a previous verb understanding probing benchmark [41] based93
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on MSRVTT [55] and LSMDC [43], ActionBench is more action-oriented, larger in scale, and94

contains both ego-centric and third-person videos. Detailed statistics can be found in Appendix B.95

An illustration of each ActionBench task can be found in Figure 2.96

Probing Task: Action Antonym (AA). The Action Antonym task probes the multimodal alignment97

of the action text and the video representation. We formulate AA as a binary classification task that98

involves distinguishing the original text annotation from its altered version with the action replaced by99

its antonym, given the corresponding video clip. For example, if the original text is “Book falling100

like a rock”, the action antonym text would be “Book rising like a rock”. We leverage the101

WordNet [35] database and manually constructed mappings to automatically construct the antonym102

texts (details in Appendix B).103

Probing Task: Video Reversal (VR). The Video Reversal task probes the temporal understanding104

of actions. We formulate VR as a binary classification task, where given a video-text pair with at105

least one action and a reversed version of the video, the goal is to distinguish the original video from106

the reversed one. Achieving non-trivial performance on the Video Reversal task requires the model107

to understand the temporal sequence implied by the action. The Video Reversal task also evaluates108

VLMs’ abilities to identify violations of physical knowledge, as some clips defy expectation when109

reversed (e.g. a falling book becomes one which rises without any discernible cause).110

Baseline Task: Object Replacement (OR). Object Replacement is a binary classification task that111

requires the model to distinguish between the original text annotation and an altered version with112

objects tokens randomly replaced by other object tokens in the dataset. The Object Replacement113

task allows us to understand: (1) whether current VidLMs rely on object recognition as a “shortcut”114

for video-text matching (i.e., if they have an object-biased representation), and (2) whether poor115

performance on Action Antonym can be attributed to domain mismatch (i.e., not being trained on116

Ego4D or SSv2) instead of a lack of action knowledge.117

2.1 Evaluating Video-Language Models on ActionBench118

We evaluate three recent video-language foundation models, InternVideo [51], CLIP-ViP [56] and119

Singularity-temporal [23]1, on ActionBench. Despite their impressive improvements on video-120

language benchmarks, these models struggle to achieve non-trivial performance on Action Antonym121

and Video Reversal, as depicted in Figure 2. The fact that they achieve significantly better performance122

on the Object Replacement task indicates a strong bias towards objects over actions, and affirms that123

the poor performance on AA is not solely a result of domain mismatch. The near-random performance124

on the VR task indicates a lack of basic temporal reasoning and physical knowledge.125

These observations align with previous approaches [16, 41, 58, 36] which show similar limitations126

in image-language models [42, 27] and earlier video-language models [10, 34]. We find that high127

performance on video-language benchmarks does not necessarily equate to a stronger understanding128

of action knowledge.129

3 Patching Action Knowledge in Frozen Video-Language Models130

In § 2, we showed that current VidLMs exhibit limitations in their understanding of action knowledge,131

a crucial component for developing a comprehensive understanding of the external world. This raises132

the important question: Can we enhance existing VidLMs with this missing knowledge without hurting133

their general video-language capabilities?134

To this end, we propose a novel learning framework, PAXION, which comprises two main components:135

the Knowledge Patcher (KP) (§ 3) and the Knowledge Fuser (KF) (§ 4). An overview of the136

PAXION framework can be found in Figure 1. Analogous to releasing patches to fix bugs in published137

software, the Knowledge Patcher is a Perceiver-based [20, 19] lightweight module attached to a frozen138

VidLM for steering the VidLM towards action-centric representations. As the widely used video-139

language contrastive (VTC) objective is insufficient for learning action knowledge, we introduce140

Discriminative Video Dynamics Modeling (DVDM) (§ 3.1) objectives that force the model to141

encode the correlation between the actual action text (e.g., “falling”) and the correct sequence of142

visual state-changes (i.e., video frames).143

1For simplicity, we use “Singularity” to represent “Singularity-temporal” in our figures and tables.
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Figure 3: Illustration of the Knowledge Patcher component (bottom left) of PAXION and the training
objectives (upper left). On the right, we show the comparison of performance on ActionBench before
and after adding the Knowledge Patcher.

Table 1: ActionBench results (in accuracy %). KP-* refers to Knowledge Patcher. AA and VR
indicate the Action Antonym task and the Video Reversal task. VTC and DVDM stands for Video-Text
Contrastive loss and our newly proposed Discriminative Video Dynamics Modeling losses detailed
in § 3.1. Trainable Param# indicates the size of the trainable parameters compared to the backbone.

Action Dynamics Benchmark (ActionBench) Results

Backbone Method [Patcher Training Loss]
Trainable AA VR AA VR AvgParam# (Ego4d) (Ego4d) (SSv2) (SSv2)

InternVideo

Backbone - 58.8 46.2 51.8 48.3 51.3
KP-Transformer [VTC] 8.4M (1.8%) 68.2 62.8 65.5 60.6 64.3
KP-Perceiver [VTC] 4.2M (0.9%) 66.5 63.6 69.8 71.0 67.7
KP-Perceiver [VTC+DVDM] 4.2M (0.9%) 90.1 75.5 90.7 87.4 85.9

Clip-ViP

Backbone - 49.3 55.0 70.2 53.6 57.0
KP-Transformer [VTC] 3.9M (2.6%) 61.9 53.4 72.2 54.3 60.5
KP-Perceiver [VTC] 2.4M (1.6%) 61.9 54.6 71.5 48.8 59.2
KP-Perceiver [VTC+DVDM] 2.4M (1.6%) 89.3 56.9 89.3 66.0 75.4

Singularity

Backbone - 47.0 50.1 48.9 49.6 48.9
KP-Transformer [VTC] 3.9M (1.8%) 61.9 48.2 63.8 49.5 55.9
KP-Perceiver [VTC] 1.3M (0.6%) 60.3 46.1 63.3 51.5 55.3
KP-Perceiver [VTC+DVDM] 1.3M (0.6%) 83.8 58.9 82.4 68.8 73.5

Human 92.0 78.0 96.0 90.0 89.0

Knowledge Patching with Perceivers. Inspired by recent work [2, 26] leveraging Perceivers [20,144

19] to extract language-related visual features, we use Perceivers to extract knowledge-specific145

features. As shown in Figure 3 Knowledge Patcher , we use a lightweight Perceiver which per-146

forms cross-attention between a sequence of lower-dimensional, learnable latents Q and the higher-147

dimensional visual embedding V∗ from a frozen, pretrained VidLM backbone. To further investigate148

the viability of Perceivers as an alternative to Transformers [48], we include another variant of the149

KP where we replace the Perceiver with a standard Transformer Encoder. Table 1 shows that the150

Perceiver-based KP achieves competitive or better performance compared to the Transformer variant151

while being 2-3 times smaller in scale. Architecture details of the KPs can be found in Appendix D.1.152
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Video-Text Contrastive (VTC) is insufficient for learning action knowledge. We initially train153

both variants of the Knowledge Patcher on the training set of ActionBench with only the Video-Text154

Contrastive (VTC) loss. VTC loss aligns the visual representation V from the KP with the pooled155

textual representation t∗ from the frozen backbone. Results in Table 1 show that training with the156

VTC loss alone provides marginal to no improvements on Action Antonym (AA) and Video Reversal157

(VR), particularly on smaller backbone models. This suggests the need for new training objectives158

(§ 3.1) for learning action knowledge.159

3.1 Learning Action Knowledge with Discriminative Video Dynamics Modeling160

To address the limitation of the VTC loss in learning action knowledge, we propose two new losses161

that draw inspiration from dynamics modeling in Robotics and Reinforcement Learning [1, 4, 14, 22,162

38]. Specifically, in a typical Markov Decision Process (MDP) setup, forward dynamics modeling163

aims to predict the next world state x̂t+1 given the current world state xt and the action ut. Inverse164

dynamics modeling aims to predict the current action ût given the current and next world state165

xt, xt+1. Given video frame as a representation of the world states, existing work usually formulates166

forward dynamics modeling as a generative task [1, 38, 14], directly reconstructing the pixels or167

the latent embedding of the next frame. For inverse dynamics modeling, the action class is usually168

predicted using a dedicated classification layer [4, 22, 1]. However, our preliminary experiments169

show that the existing formulation cannot be directly applied in our setting due to the following170

unique challenges: (1) Real world videos are much more complex than videos in a lab setting,171

with constantly changing backgrounds and moving camera angles, causing a large portion of visual172

features to be unrelated to the main objects and actions. Furthermore, without additional annotation,173

it is difficult to identify the frames corresponding to the “current” and “next” states, as actions may174

be continuous (e.g., "walking") or repetitive (e.g., “doing push-ups”) within a video. Thus, the175

training signal from a regression loss becomes extremely noisy. (2) Unlike previous work that has a176

small fixed number of action classes, we model actions as natural language phrases, making direct177

classification inapplicable.178

To address these unique challenges, we propose a novel “relaxed” formulation of dynamics mod-179

eling, dubbed Discriminative Video Dynamics Modeling (DVDM), which contains two losses:180

Video-Action Contrastive (VAC) and Action-Temporal Matching (ATM). Both VAC and ATM181

can be directly incorporated into the Video-Text Contrastive (VTC) loss without any additional182

parameters. As illustrated in Figure 3 Losses , the VAC loss aims to encourage the model to learn183

the correlation between the visual observations and the actual actions. We formulate the VAC loss184

as adding action antonym texts as hard negatives. The ATM loss encourages the model to consider185

the temporal ordering of the visual observations (video frames). Instead of directly generating the186

next state frames, we formulate ATM as a discriminative task similar to Video Reversal in § 2, where187

the model distinguishes reversed videos from the original videos, alleviating the need for explicit188

state annotations. In order to make sure that the reversed videos are indeed distinguishable from189

the original ones, we further introduce a method (Appendix C) for identifying videos with salient190

state-changes by leveraging image-language foundation models [27]. The idea is to measure the191

frame-text and frame-frame similarity between the first and second half of a video. We compute192

ATM loss only on the videos that have salient state-changes between frames. Experimental results, as193

shown in Table 1 and Figure 3, indicate that adding the DVDM objectives significantly improves194

the performance on both probing tasks, suggesting that the resulting representation from the195

Knowledge Patcher demonstrates a stronger understanding of action knowledge.196

4 Leveraging Patched Action Knowledge for Downstream Tasks197

In § 3, we showed that the Knowledge Patcher (KP) and DVDM objectives together effectively learn198

action knowledge-specific representations. However, these representations are highly specialized to199

action understanding, which may not be optimal for general downstream tasks that require both object200

and action understanding. Thus, the remaining challenge is to retain the general VL capabilities of201

the backbone while leveraging the newly learned action knowledge.202

One naive idea is to simply use the backbone embeddings whenever the task is less action-centric.203

However, it is difficult to decide when to use the backbone without prior knowledge of a given task.204
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Further, using the backbone embeddings alone gives up the205

patched action knowledge that can be essential for certain down-206

stream tasks, such as action recognition. In this section, we207

demonstrate that we can get the best of both worlds by fusing208

the action-centric representation from the Knowledge Patcher209

with the object-centric representation from the frozen backbone.210

For this we introduce the second component of PAXION, the211

Knowledge Fuser (KF), illustrated in Figure 4 . The KF212

takes the pooled visual feature (v∗) from the frozen VL back-213

bone as the input query, and performs cross-attention with the214

extracted visual tokens (V) from the Knowledge Patcher.215

4.1 Experimental Setup216

To evaluate the model’s ability to retain general visual-linguistic capabilities while leveraging newly217

learned action knowledge, we consider a spectrum of video-language tasks with different emphases218

on object and action understanding. Specifically, we consider Video-Text Retrieval (SSv2-label [23]),219

which is object-centric and biased towards static appearances [58, 23]; Causal-Temporal VQA220

(NExT-QA [53]), which requires joint understanding of static objects and dynamic events; and Video-221

to-Action Retrieval (SSv2-template [23], Temporal-SSv2 [44]), which is highly action-centric and222

temporal-intensive. A task is considered to be temporal-intensive if it cannot be solved without correct223

temporal information [44], e.g., reversed or shuffled frames. For example, as illustrated in Figure 5,224

the Video-to-Action Retrieval task obscures object names in the text, making it impossible to align225

text with a video based solely on objects. Moreover, it is impossible to distinguish “approaching” and226

“moving away” without considering the temporal ordering of the frames.227

For PAXION, we finetune the Knowledge Fuser jointly with the Knowledge Patcher on downstream228

tasks using VTC loss. By default, the KP in PAXION is trained with VTC and DVDM losses (§ 3.1).229

We include the baselines KP-Transformer FT [VTC] and KP-Perceiver FT [VTC], which are both230

obtained by continuing to finetune the VTC-only KPs from Table 1 on downstream tasks. Additionally,231

we compare PAXION with Side-Tuning [60], a Parameter-Efficient Finetuning (PEFT) method that232

could serve as an alternative to the KF. For the Side-Tuning variant, we initialize the "side-model"233

using the same Knowledge Patcher as in PAXION and do alpha blending with the frozen backbone.234

Implementation and configuration details for each method and task can be found in Appendix D. The235

results are shown in Tables 2 and 3.236

Table 2: Video-Text Retrieval and Video-to-Action Retrieval results. R1 and R5 represent Recall@1
and Recall@5 (in %) respectively. Subscripts vt2 and t2v represent video-to-text and text-to-video,
respectively.

Method [Patcher Training Loss]
Video-Text Retrieval Video-to-Action Retrieval

SSv2-label SSv2-template Temporal-SSv2
R1v2t R5v2t R1t2v R5t2v R1 R5 R1 R5

InternVideo Backbone 18.8 39.9 19.9 40.0 5.6 15.9 11.2 35.8
KP-Transformer FT [VTC] 24.1 50.0 21.7 46.0 21.1 55.9 41.1 88.9
KP-Perceiver FT [VTC] 27.0 57.4 27.1 56.8 24.8 59.7 42.5 91.3
Side-Tuning [60] [VTC+DVDM] 30.9 59.2 26.6 53.1 22.2 55.1 50.2 90.9
PAXION [VTC+DVDM] 32.3 61.2 28.0 54.3 26.9 61.5 51.2 91.9

Table 3: Causal-Temporal VQA results (in accurarcy %).

Method [Patcher Training Loss]
Causal-Temporal VQA

NExT-QA
Val (Acc) Test (Acc)

InternVideo Backbone 43.2 44.3
KP-Transformer FT [VTC] 48.1 49.6
KP-Perceiver FT [VTC] 48.0 49.5
Side-Tuning [60] [VTC+DVDM] 56.3 56.4
PAXION [VTC+DVDM] 56.9 56.6
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Figure 5: Qualitative examples on Temporal-SSv2 [44] and NExT-QA [53]. VTC-Finetune and
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more
action-
centric

more
object-
centric

Finetune  v.s.  Fuse VTC  v.s.  VTC+DVDM

Figure 6: Left: Impact of the Knowledge Fuser. Comparing finetuning or fusing the same Knowledge
Patcher trained with VTC+DVDM losses. Right: Impact of action knowledge patching (DVDM)
on downstream tasks. Comparing fusing with the Knowledge Patcher trained with VTC loss only
or VTC+DVDM losses. The ∆ score indicates the relative difference in terms of downstream task
accuracy between our original PAXION and the ablated settings (detailed in §4.2).

4.2 Analysis237

PAXION improves joint understanding of objects and actions. Tables 2 and 3 show that PAXION238

outperforms both the Backbone and the VTC-only baselines (KP-*). This indicates that PAXION239

not only retains the original VL capabilities of the backbone, but also fills in the gap of the missing240

action knowledge by fusing the original representations with the patched ones. We corroborate this241

finding by observing more significant improvements on action-centric and temporal-intensive tasks,242

such as Temporal-SSv2 (+20% @R1), compared to object-centric tasks, such as SSv2-label (+11%243

@R1)2. PAXION also outperforms Side-Tuning, highlighting the effectiveness of cross-attention for244

deep fusion. Specifically, the Knowledge Fuser allows us to attend to all extracted visual tokens from245

the Knowledge Patcher instead of only blending with pooled representations as in Side-Tuning.246

Qualitative analysis. Figure 5 shows two qualitative examples on Temporal-SSv2 and NExT-QA.247

For the Temporal-SSv2 example, we find that the finetuned Knowledge Patcher trained with only248

VTC fails to distinguish “Moving away” from “Approaching,” while PAXION trained with DVDM249

successfully correlates the seemingly expanding object with the action “Approaching”. For the NExT-250

QA example, the question asks the model to identify what happens after the action “approached near251

the camera”. The VTC baseline incorrectly selects the action “turn back to the toy,” which happens252

before approaching the camera. On the other hand, PAXION successfully chooses “raised his hand to253

take the camera”. This indicates a stronger understanding of both action dynamics in words such254

as “approach” and the temporal ordering implied by words such as “after”. Additional qualitative255

examples and analysis of failure cases can be found in Appendix E.256

Disentangling the impact of Knowledge Patching and Fusing. We further investigate the dis-257

entangled impact of the Knowledge Fuser (KF) and the Knowledge Patcher (KP) with two ablation258

settings: (1) KP+Finetune, where instead of adding the KF, we directly finetune the KP trained with259

DVDM on downstream tasks; (2) KP[VTC]+KF, where we train the KP without DVDM and then add260

2The scores are calculated between PAXION and KP-Perceiver FT [VTC]. The improvement @R1 for SSv2-
label is averaged across R1v2t and R1t2v .
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the KF upon it. The results are shown in Figure 6, where the ∆ score represents the relative difference261

of downstream task performance between our original PAXION (Row 5 in Tables 2 and 3) and the two262

ablated settings. The key observations are as follows: (1) The Knowledge Fuser contributes more263

to object understanding. From Figure 6 Left, we find that the KF helps most when the tasks are more264

object-centric, e.g., SSv2-label. On highly action-centric tasks, e.g., Temporal-SSv2, directly using265

the action-knowledge-patched representation is preferable to fusing with the backbone representation.266

(2) Patching with action knowledge contributes more to action-centric understanding. From267

Figure 6 Right, we find that patching with action knowledge, i.e., training with DVDM objectives,268

contributes to better performance on downstream tasks that are more action-centric. Importantly,269

this result also indicates that the improvements observed in Tables 2 and 3 do not come solely from270

adding the KF. However, if the task is more object-centric, such as SSv2-label, VTC training alone is271

sufficient.272

Robustness to domain shift. Learned action knowledge should be generalizable to unseen tasks273

and domains. However, this goal is difficult to realize with only domain-specific datasets like274

SSv2[12] which contains only 174 actions. Therefore, in Appendix A we conduct experiments on275

zero-shot cross-domain transfer which demonstrate that the Knowledge Fuser in PAXION increases276

robustness to domain shift and can introduce positive transfer during zero-shot inference.277

5 Related Work278

Limitations of vision-language contrastive pretraining. Since CLIP [42], multimodal contrastive279

losses have been the major pretraining objective for almost all recent image-language [42, 27, 26,280

52, 50, 57] and video-language models [54, 34, 9, 59, 11, 49, 56, 51]. Previous work [16, 58, 23, 5]281

has revealed the limitation of contrastive pretraining on fine-grained compositional understanding,282

verb understanding, and temporal reasoning. Concurrent work [36] proposed mining hard verb-283

replaced negatives by large-language models [8] to improve verb understanding. In this work, we284

focus on general action knowledge which includes verb understanding as well as action temporal285

understanding. Instead of directly tuning the entire backbone as in [58, 36], PAXION enables fast286

action knowledge patching while also achieving improved performance on both object-centric and287

action-centric downstream tasks. It is worth noting that the hard negative mining method proposed by288

[36] can be easily incorporated with our VAC loss and could potentially result in stronger results.289

Parameter-efficient fine-tuning (PEFT). The recent surge in the size of large language models [6,290

40, 61, 39, 47] has spurred research on parameter-efficient fine-tuning [17, 30, 60, 45, 18, 32].291

Although current video-language models are smaller in scale, we aim to develop PAXION to be292

applicable to larger models that we anticipate will emerge in the near future. The most similar293

PEFT-related work to ours is Side-Tuning [60], which we compare against in § 4.1. At a high-level,294

unlike existing PEFT methods that optimize for specific downstream tasks, PAXION is designed to295

learn a specific type of knowledge that can benefit various downstream tasks (§ 4.2). Furthermore, it296

is unclear how to aggregate the task-specific parameters, such as those in adapters [17] or low-rank297

layers [18], to perform multiple tasks. The versatility of PAXION allows for its use in learning various298

types of knowledge, each with its own Knowledge Patcher. Subsequently, the patched knowledge-299

specific representations can be fused together using one Knowledge Fuser. This work serves a300

proof-of-concept where we focus on action knowledge. We leave the exploration of other types of301

knowledge and a more comprehensive comparison with PEFT methods as future work.302

6 Conclusions and Future Work303

In this work we propose the ActionBench benchmark for evaluating models’ understanding of304

action knowledge, and reveal a major deficiency in state-of-the-art video-language foundation models305

in this area. We then propose PAXION to patch in such action knowledge without compromising306

models’ existing capabilities. We show that PAXION significantly improves the model’s action307

understanding while achieving competitive or superior performance on downstream tasks. One308

limitation of this work is that we only experimented with patching one type of knowledge. We intend309

to address this in future work, where we plan to expand PAXION to patch broader aspects of physical310

knowledge such as object affordances and mental simulation, and to explore fusion with multiple311

learned Knowledge Patchers.312
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A Robustness to Domain Shift: Zero-shot Cross-Domain Transfer492

Table 4: Evaluating robustness to domain shift. We train the models on SSv2-label and perform
zero-shot action classification on out-of-domain datasets, i.e., Moments-In-Time [37] and Temporal-
Kinetic [44]. ∆ indicates the relative increase/decrease compared to the backbone.

Method [Patcher Training Loss]
Zero-shot Cross-domain Transfer

Moments-In-Time Temporal-Kinetic
Val (Acc) ∆(%) Val (Acc) ∆(%)

InternVideo Backbone 23.3 - 57.7 -
KP-Transformer FT [VTC] 16.5 -29% 44.7 -23%
KP-Perceiver FT [VTC] 9.9 -58% 24.7 -57%
Side-Tuning [60] [VTC+DVDM] 21.2 -10% 54.5 -6%
PAXION [VTC+DVDM] 21.6 -7% 49.7 -14%

w/o Knowledge Fuser 4.3 -82% 16.3 -72%
w/ Backbone Ensemble 23.9 +3% 58.1 +1%

Humans acquire action knowledge through multisensory interactions, and have the remarkable ability493

to generalize to new objects and scenarios. Similarly, our ultimate goal is to learn the underlying494

rules of action knowledge that is generalizable to unseen domains. However, it is highly challenging495

when we are given only domain-specific datasets. For instance, the SSv2 dataset [12] only has 174496

action classes, which is insufficient to capture the full range of open-world actions. The Ego4d497

dataset is limited to ego-centric videos, making it difficult to generalize to other types of videos.498

Training on such domain-specific data can easily lead to overfitting to spurious features and introduce499

catastrophic forgetting of tasks from other domains. In this section, we further explore whether500

PAXION is robust to domain shift and whether the learned action knowledge can bring positive501

transfer to action-centric tasks on unseen domains.502

We consider a zero-shot cross-domain transfer setting where we directly apply the models trained503

on SSv2-label [23] to unseen domains. We consider two zero-shot action classification tasks based504

on Moments-In-Time [37]3 and Temporal-Kinetic [44]. Moments-In-Time contains 305 action505

classes with diverse types of videos that are distinct from SSv2, including movie clips, stock footages,506

and cartoons. Temporal-Kinetic contains 32 manually selected action classes from Kinetic-400,507

with a special focus on temporal reasoning. We directly use the action labels (e.g., “bouncing” and508

“kicking”), as the text candidates for the zero-shot classification [42], which introduces additional509

domain shifts in terms of text distribution compared with the annotations in SSv2-label (e.g., “book510

falling like a rock”).511

Fusing with the backbone improves robustness to domain shift. Table 4 shows the zero-shot512

action classification accuracy and the relative difference ∆(%) compared with the frozen backbone.513

We find that adding the Knowledge Fuser effectively increases robustness to domain shift, as reflected514

by a smaller negative ∆. The Side-tuning also demonstrate similar benefit via alpha blending between515

the Knowledge Patcher and the backbone.516

Positive transfer can be achieved by ensembling the Knowledge Fuser (KF) with the backbone.517

We further propose a simple inference trick, Backbone Ensemble, which combines the output518

probability from the KF and the backbone model through addition. Specifically, the final prediction of519

the action class index c ∈ 0, 1, ..., C is computed as c = argmaxi∈0,1,...,C (pa(i = c) + pb(i = c)),520

where C is the number of classes, pa and pb are the predicted probability distribution from the KF521

and the backbone respectively. We obtain the final prediction by ranking the combined probability of522

the action text candidates. Our experiments show that this simple inference technique can effectively523

enhance zero-shot performance and achieve positive transfer on unseen domains.524

B Details of Action Dynamics Benchmark (ActionBench)525

We construct ActionBench based on two existing video-language datasets with fine-grained action526

text annotation, Ego4d [13] and SSv2 [12]. To automatically generate the antonym text for the Action527

3We subsample 2k instances for doing this evaluation.
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Table 5: ActionBench Statistics

Dataset #Train #Eval Video Type
ActionBench-Ego4d 274,946 34,369 first-person
ActionBench-SSv2 162,475 23,807 first-person, third-person

Antonym task, we leverage WordNet [35]4 to find antonyms for verb text tokens. Additionally, we528

construct an additional verb-to-antonym mapping by leveraging ChatGPT5 and manual curation, since529

the WordNet database does not cover all verbs in the action taxonomy of the dataset. Furthermore, to530

ensure that the action antonym indeed forms a negative video-text pair with the original video, we531

exclude verbs that do not have a semantically reasonable antonym, such as “use” and “look”. For532

Ego4d, we consider a subset of EgoClip [31] annotations, for SSv2 we consider the entire dataset.533

The final statistics of the training and evaluation splits can be found in Table 5. For SSv2, since534

the test set does not provide label annotation, i.e., annotation with filled object names, we report535

scores on the validation set. For Ego4d, we evaluate on the test set. For results in Table 1, we train536

the Knowledge Patcher variants for one epoch on the training sets and report the accuracy on the537

evaluation sets. We downsampled the videos into 224x224 in scale with a frame rate of 8 fps for538

both training and evaluation. For human evaluation, we randomly sample 50 instances for the Action539

Antonym and the Object Replacement task, and another 50 instances for the Video Reversal task.540

The human evaluation is done by the authors.541

C Identifying State-change Salient Videos for Action-Temporal Matching542

(ATM)543

As detailed in § 3.1, we formulate the Action-Temporal Matching (ATM) loss as distinguishing544

reversed video from the original one given an action text. ATM requires the model to learn the545

correlation between the correct temporal ordering of the visual observations and the corresponding546

actions. However, some actions, such as “wiping” and “holding”, are repetitive or continuous and may547

not result in visible state-changes across the frames in the video clip. This can introduce additional548

noise for the ATM loss when the reversed video is indistinguishable from the original one. To549

address this issue, we propose two metrics to identify state-change salient videos by leveraging image-550

language foundation models. We use pretrained BLIP [27] to compute (1) frame-text semantic551

change δvt, which indicates how the frame-text alignment changes across the first half and second552

half of the video; (2) frame-frame similarity θvv , which indicates how different the frames from the553

first half and second half of the video are.554

δvt =

∣∣∣∣∣∣ 1

N/2

 ∑
i∈[0,N/2)

S(vi, t)−
∑

j∈[N/2,N)

S(vj, t)

∣∣∣∣∣∣ (1)

θvv = S

(∑
i∈[0,N/2) vi

N/2
,

∑
j∈[N/2,N) vj

N/2

)
(2)

where N is the total number of sampled frames6, v and t are the frame image embedding and the555

text embedding from pretrained BLIP encoders, S denotes cosine similarity.556

Intuitively, if we observe a large frame-text semantic change (δvt) and a small frame-frame similarity557

(θvv), we could expect to see salient state-changes between the first half and the second half frames.558

We empirically set a threshold for δvt and θvv. During training, we only compute ATM loss on559

videos that satisfy δvt > 0.003 and θvv < 0.95. The metrics are computed off-line thus do not bring560

computational overhead during training. Figure 7 shows an example of the videos that are kept and561

skipped based on the computed metrics.562

4We use the WordNet Interface from NLTK https://www.nltk.org/howto/wordnet.html.
5https://openai.com/blog/chatgpt.
6We use N = 8 in our experiments.
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"spreading margarine onto bread"

"holding bulb"

✔ Keep

✘ Skip

Figure 7: Example of identifying state-change saliency in videos for forward dynamics modeling. δvt
and θvv indicates frame-text semantic change and frame-frame similarity metrics.
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Knowledge Fuser and Side-Tuning fuser.

D Implementation Details563

D.1 Architecture Details.564

Figure 8 shows detailed architecture of the Knowledge Patcher and Knowledge Fuser in our PAXION565

framework, as well as the baseline variants being compared in Tables 1, 2 and 3.566

Knowledge Patcher (Perceiver). The Perceiver-based Knowledge Patcher contains a single cross-567

attention layer and a two-layer feedforward network. The Perceiver module performs cross-attention568

between a sequence of learnable latent queries Q ∈ Rl,d and the raw visual embeddings V∗ ∈ RP,D569

from the frozen backbone, where P denotes the visual token length and D represents the hidden570

dimension of the visual backbone. Since the user-defined sequence length l and hidden dimension d of571

the learnable latent queries are typically much smaller than P and D from the backbone, the Perceiver572

module serves as an information bottleneck that extracts knowledge-specific features from the raw573

visual features. For instance, in the case of InternVideo [51] backbone, we set l = 16, d = 768574

which is much smaller than P = 1576, D = 1024 for each video clip with 8 sampled frames.575

Similar to BLIP-2 [26], when computing the similarity between the visual tokens V ∈ Rl,d from576

the Knowledge Patcher and the single textual feature vector t∗ ∈ Rd, we first compute the pairwise577

similarity between each visual token and the text feature vector, and then take a maximum across all578

visual tokens as the final video-text similarity. The results in Table 1 demonstrate the Perceiver-based579

Knowledge Patcher achieves competitive or better performance compared to the Transformer variant580

while being 2-3 times smaller. Additionally, we measure the computation overhead of the two581

variants, and find that the Perceiver variant requires 10 times fewer multiply-add operations than582

the Transformer variant. This further demonstrate that Perceivers can serve as effective and efficient583

extractors for knowledge-specific features.584
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Table 6: Detailed configurations for methods in Tables 2 and 3, and Figure 6.

Method has Knowledge Trainable Patching Fusing/Finetuning
Fuser? Param# Objectives Objectives

KP-Transformer FT ✗ 8.4M (1.8%) VTC VTC
KP-Perceiver FT ✗ 4.2M (0.9%) VTC VTC
Side-Tuning ✗ 4.2M (0.9%) VTC + DVDM VTC
PAXION ✓ 8.2M (1.7%) VTC + DVDM VTC

KP+Finetune ✗ 4.2M (0.9%) VTC + DVDM VTC
KP[VTC]+KF ✓ 8.2M (1.7%) VTC VTC

Table 7: Detailed training configurations for tasks in Tables 2, 3, and 4.

Downstream Patching Patching Fusing/Finetuning Fusing/Finetuning
Task Dataset #Epochs Dataset #Epochs

SSv2-label [23] SSv2 1 SSv2 1
SSv2-template [23] SSv2 1 SSv2-template 2
Temporal-SSv2 [44] SSv2 1 SSv2-template 2
NExT-QA [53] NExT-QA 1 NExT-QA 4

Moments-In-Time [37] SSv2 1 SSv2 1
Temporal-Kinetic [44] SSv2 1 SSv2 1

Knowledge Patcher (Transformer). The Transformer variant of the Knowledge Patcher is a stan-585

dard Transformer Encoder which contains a self-attention layer and a feedforward layer. The586

Transformer Encoder performs self-attention on the raw visual embeddings V∗ ∈ RP,D from the587

frozen backbone and output an updated visual embedding V ∈ RP,D. To obtain video-text similarity,588

we first project the visual embeddings into the same dimension as the textual feature vector t∗ ∈ Rd589

and then do mean pooling before computing dot product.590

Knowledge Fuser. The Knowledge Fuser has the same architecture as the Knowledge Patcher591

which contains a single cross-attention layer and a two-layer feedforward network. In this case, we592

use the pooled visual feature from the backbone v∗ ∈ Rd to provide query and the Knowledge Patcher593

output V ∈ RP,D to provide key and value for the cross-attention. The intuition is to obtain a balanced594

representation for general downstream tasks by fusing the action-centric KP representation (V) with595

the object-centric backbone representation.596

Side-Tuning. As an alternative to the Knowledge Fuser, we consider Side-Tuning [60] for further597

integrating the Knowledge Patcher with the backbone. Side-Tuning contains a base-model and a598

side-model, where the base-model is pretrained and frozen and the side-model is trainable. In our599

setting, we treat the backbone as the base-model and initialize the side-model using the trained600

Knowledge Patcher. We then side-tune the Knowledge Patcher along with the backbone using alpha601

blending. Specifically, the final fused visual feature vf is obtained by vf = α(v∗) + (1− α)v, where602

v∗ is the mean-pooled backbone visual feature, and the v is the mean-pooled Knowledge Patcher603

feature. And α = Sigmoid(a) ∈ [0, 1], where a a learnable scalar.604

D.2 Knowledge Patcher Training.605

We use two Nvidia Tesla V100 (16GB) GPUs for all experiments. For the Knowledge Patcher606

variants in Table 1, we train them on the training set of the datasets in the ActionBench for one epoch607

with either VTC loss only or VTC + DVDM (VAC + ATM) loss. We use AdamW [33] optimizer608

with a learning rate of 1e-5 and a weight decay of 0.05. For the transformer variant, we use a batch609

size of 8 per GPU. For the Perceiver variant, we are able to increase the batch size to 32 per GPU due610

to the reduced computation complexity.611
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D.3 Downstream Task Training.612

Tables 6 and 7 shows detailed configurations for downstream task training with methods described in613

Tables 2 and 3, and Figure 6.614

As shown in Table 7, the finetuning dataset for SSv2-label is identical to the SSv2 action knowledge615

patching dataset where the annotations are filled templates, such as “Book falling like a rock”. The616

SSv2-template dataset, on the other hand, contains the object-obscured version of the original SSv2617

annotations such as “Something falling like a rock”. For the Video-to-Action Retrieval tasks, we618

consider two different subsets from the SSv2 validation set with the object-obfuscated annotations:619

SSv2-template [23] and Temporal-SSv2 [44]. SSv2-template contains all 174 action classes while620

Temporal-SSv2 contains 18 manually selected action classes that require more temporally-demanding621

distinctions, and cannot be distinguished using shuffled frames, such as “Approaching” and “Moving622

away”. In order to investigate the impact of the action knowledge patching, we do not finetune a623

dedicated model for the 18 action classes for Temporal-SSv2, but instead use the model trained on624

SSv2-template to directly evaluate on Temporal-SSv2. Therefore, when observed larger improvements625

on Temporal-SSv2, we can draw the conclusion that patching with action knowledge contributes626

more to action-centric tasks (§ 4.2).627

The hyperparameters, such as the learning rate, are identical to those used during Knowledge Patching628

training. For Video-Text Retrieval (SSv2-label) and Video-to-Action Retrieval (SSv2-template,629

Temporal-SSv2), the DVDM (§ 3.1) objective includes VAC and ATM, while for Causal-Temporal630

VQA (NExT-QA), we only use VAC. This is because the training instances in NExT-QA are not631

formatted as video-text pairs but instead are in the format of multiple choice QA, making it not632

suitable for the ATM loss. Each video corresponds to one question and five candidate answers. We633

apply VAC to NExT-QA by adding action antonym text for each question as hard negative candidate634

answers.635

For the downstream tasks (in Appendix A) for zero-shot cross-domain transfer (Moments-In-636

Time [37] and Temporal-Kinetic [44]), we use the model trained on SSv2 to perform zero-shot637

evaluation.638

E Additional Qualitative Analysis639

Figures 9 and 10 show additional qualitative examples on downstream tasks. The examples in640

demonstrate that PAXION improves understanding of challenging actions that require fine-grained641

temporal reasoning on the frames. For example, whether it is “pretending” to do something or642

actually doing that, and whether an object is moving “towards” or “away” from the camera.643

In Figure 11, we show failure cases of PAXION to discuss remaining challenges. We find that644

PAXION still struggle to understand negation and spatial attributes. For example, both VTC-645

Finetune baseline and PAXION fail to distinguish “without letting it drop down” from “then646

letting it drop down”. For questions that require fine-grained spatial information of objects647

such as “how many goats can be spotted”, PAXION cannot perform well. Potential solutions648

including incorporating the patched VidLM with a code language model to disentangle perception649

and reasoning similar to ViperGPT [46]. By leveraging the strong logical reasoning ability of a code650

language model, we can easily solve the negation and counting problems by creating code scripts651

with booleans and loops, and then use the VidLMs as "API calls".652
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Figure 9: Additional qualitative examples (Retrieval).
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Figure 11: Failure examples.
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