
Appendix for Paper 8410

Anonymous Author(s)
Affiliation
Address
email

1 Appendix1

1.1 Open source2

To replicate the training pipeline for the STGCN-3-256 model, please look into the attached folder3

entitled "NEURIPS-LinGCN-cleaned". For your convenience, we have provided the model and test4

code for the 4-STGCN-3-256 model in the aforementioned folder. Additionally, the test result logger5

file can be located within the directory at "NEURIPS-LinGCN-cleaned\work_dir\tmp\log.txt". These6

resources have been made accessible to promote clarity and ease of reproduction for those interested7

in building upon this work.8

1.2 HE encoding with AMA format9

Prior to encoding input data into polynomials, it is necessary to map the four-dimensional tensor10

X ∈ RB×C×T×J to a one-dimensional vector in RN/2 using the AMA format, as proposed in [1].11

This transformation allows for more efficient execution of STGCN forward-computation in the HE12

domain. Below, we present the definition of the V ec function employed to map tensor X to a vector13

in RN/2:14

V ec(X) = yj = (y0,j , . . . , yi,j , . . . , yN/2,j) ∈ RN/2

s.t. yi,j = X((i mod T )%B)×(i mod B·T )×(i % T )×j

j ∈ J

(1)

Following the mapping process, the vectors yj are encoded into polynomials with degree N and15

subsequently encrypted into ciphertext ctj , as detailed in [2]. In this study, when N is set to 216,16

all tensors, including intermediate tensors, can be encrypted and packed into 25 ciphertexts, which17

corresponds to the number of nodes. For cases where N = 215 (214) the number of ciphertexts18

is 50(100). By selecting an appropriate value for N, the encryption and packing processes can be19

optimized to maintain performance and efficiency.20

1.3 HE Setting Details21

In Table 1, we furnish comprehensive details regarding the HE inference parameters. Specifically,22

i-STGCN-3 denotes a 3-layer STGCN model with i effective non-linear layers, while i-STGCN-623

signifies a 6-layer STGCN model with i effective non-linear layers. In this context, N represents the24

polynomial degree, and Q corresponds to the coefficient modulus.25

To guarantee computation precision utilizing a one-time rescale operation, we assign the scale factor26

p for both ciphertext and plaintext to 233. This allocation results in a reduction of the current Q of27

ciphertext by p bits. This setup ensures that the overall performance and accuracy conform to the28

desired criteria while capitalizing on the security and resilience advantages conferred by HE.29

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



Table 1: HE parameter settings in detail.

Model Encryption Parameters Mult
N Q p q0 Level

6-STGCN-3 32768 509 33 47 14
5-STGCN-3 32768 476 33 47 13
4-STGCN-3 32768 443 33 47 12
3-STGCN-3 16384 410 33 47 11
2-STGCN-3 16384 377 33 47 10
1-STGCN-3 16384 344 33 47 9

12-STGCN-6 65536 932 33 41 27
11-STGCN-6 65536 899 33 41 26
7-STGCN-6 32768 767 33 41 22
5-STGCN-6 32768 701 33 41 20
4-STGCN-6 32768 668 33 41 19
3-STGCN-6 32768 635 33 41 18
2-STGCN-6 32768 602 33 41 17
1-STGCN-6 32768 569 33 41 16

Table 2: Comparison of latency breakdown between the non-reduced model with optimized model.

Model HE Operators latency (s) Total Latency Speedup
Rot PMult Add CMult (s) (×)

6-STGCN-3-128 1336.25 378.25 99.65 37.45 1851.60 -
2-STGCN-3-128 392.21 266.13 68.90 14.31 741.55 2.50
6-STGCN-3-256 2641.09 1508.19 397.17 74.90 4621.36 -
2-STGCN-3-256 777.68 1062.21 274.96 28.63 2143.47 2.16

12-STGCN-6-256 18955.09 1545.09 396.23 275.39 21171.80 -
2-STGCN-6-256 4090.08 1006.79 244.19 115.05 5456.12 3.88

1.4 HE inference on GCNConv and Temporal-Conv Layer30

Upon obtaining the AMA-packed ciphertexts ctj , the adjacency matrix multiplication A ·X can be31

decomposed into a series of plaintext multiplications, PMult, in the HE domain. This decomposition32

accelerates HE-inference without necessitating rotations. Furthermore, the subsequent temporal33

convolution is performed solely on the temporal dimension T , utilizing 1× 9 kernels.34

ct′k = A ·X =

m∑
i=1

ctkAi =

m∑
i=1

J∑
k=1

PMult(ctik , aikk) (2)

The AMA-packed ciphertexts allow for natural temporal convolution by single-node ciphertext ctj ,35

facilitating independent computation. This approach results in a ReLU-reduction design through36

structural pruning of ReLUs. The primary constraint to consider in this context is ensuring that the37

level consumption of each ciphertext remains equal prior to the GCNConv layer (node aggregation).38

1.5 Further Detail of Operator Fusion39

During the HE-inference process, employing weight fusion conserves the multiplicative depth,40

consequently reducing the ciphertext level budget. For instance, batch normalization, defined by41

an affine transformation a′x+ b′, and a polynomial activation function, defined by (ax+ b)2 + c,42

can be readily fused into the corresponding temporal convolution layer wx+ b′′ with the function43

w(a(a′x+ b′)+ b)+ b′′ = (w ·a ·a′)x+ab′+wb+ b′′. As a result, three consecutive multiplications44

are consolidated into a single multiplication (pre-computing w · a · a′), thereby reducing the level45

consumption of ciphertext from 4 to 2 (1 × 9 convolution, batch normalization, and polynomial46

activation).47

Analogous to the temporal-convolutional layer, the same fusion strategies can be applied to the48

polynomial activation and batch normalization of the GCNConv layer. Utilizing AMA-packed49

2



0 10000 20000 30000 40000 50000
Iteration

2

4

6

Tr
ai

ni
ng

 lo
ss

0.3

0.5

0.7

0.9

Va
lid

at
io

n 
ac

cu
ra

cy

TensorBoard logged statistics

train/loss
val/top1
val/top5

(a)

0 10000 20000 30000 40000 50000
Iteration

2

4

6

Tr
ai

ni
ng

 lo
ss

0.3

0.5

0.7

0.9

Va
lid

at
io

n 
ac

cu
ra

cy

TensorBoard logged statistics

train/loss
val/top1
val/top5

(b)

0 10000 20000 30000 40000 50000
Iteration

2

4

6

Tr
ai

ni
ng

 lo
ss

0.3

0.5

0.7

0.9

Va
lid

at
io

n 
ac

cu
ra

cy

TensorBoard logged statistics

train/loss
val/top1
val/top5

(c)

0 10000 20000 30000 40000 50000
Iteration

2

4

6

Tr
ai

ni
ng

 lo
ss

0.3

0.5

0.7

0.9

Va
lid

at
io

n 
ac

cu
ra

cy

TensorBoard logged statistics

train/loss
val/top1
val/top5

(d)

0 10000 20000 30000 40000 50000
Iteration

2

4

6

Tr
ai

ni
ng

 lo
ss

0.3

0.5

0.7

0.9

Va
lid

at
io

n 
ac

cu
ra

cy

TensorBoard logged statistics

train/loss
val/top1
val/top5

(e)

0 10000 20000 30000 40000 50000
Iteration

2

4

6

Tr
ai

ni
ng

 lo
ss

0.3

0.5

0.7

0.9

Va
lid

at
io

n 
ac

cu
ra

cy

TensorBoard logged statistics

train/loss
val/top1
val/top5

(f)

Figure 1: Polynomial replacement training curves for (a) 6-STGCN-3-128 (b) 5-STGCN-3-128 (c)
4-STGCN-3-128 (d) 3-STGCN-3-128 (e) 2-STGCN-3-128 (f) 1-STGCN-3-128

0 10000 20000 30000 40000 50000
Iteration

2

4

6

Tr
ai

ni
ng

 lo
ss

0.3

0.5

0.7

0.9

Va
lid

at
io

n 
ac

cu
ra

cy

TensorBoard logged statistics

train/loss
val/top1
val/top5

(a)

0 10000 20000 30000 40000 50000
Iteration

2

4

6

Tr
ai

ni
ng

 lo
ss

0.3

0.5

0.7

0.9

Va
lid

at
io

n 
ac

cu
ra

cy

TensorBoard logged statistics

train/loss
val/top1
val/top5

(b)

0 10000 20000 30000 40000 50000
Iteration

2

4

6

Tr
ai

ni
ng

 lo
ss

0.3

0.5

0.7

0.9

Va
lid

at
io

n 
ac

cu
ra

cy

TensorBoard logged statistics

train/loss
val/top1
val/top5

(c)

Figure 2: Polynomial replacement training curves for (a) 12-STGCN-6-256 (b) 4-STGCN-6-256 (c)
2-STGCN-6-256

ciphertexts, the node aggregation in GCNConv is translated as depicted in Equation 2, where each50

ciphertext carries out scalar multiplication with the plaintext of matrix elements aik,k. Consequently,51

these plaintext matrix elements aik,k are fused with the primary 1 × 1 convolutional kernels to52

conserve the multiplicative level, reducing the total level consumption of the GCNConv layer from53

4 to 2 (1 × 1 convolution, adjacency matrix multiplication, batch normalization, and polynomial54

activation).55

1.6 Operator latency breakdown56

Table 2 presents a comprehensive operator latency breakdown encompassing Rot, PMult, Add, and57

CMult operations. The designation i-STGCN-3-128 refers to an STGCN-3-128 model with i residual58

non-linear layers. As indicated in the table, the non-linear reduction contributes to a significant59

reduction in latency. By leveraging a smaller polynomial degree N, the overall latency experiences60

substantial improvement.61

1.7 More Training Details and Insight62

In this section, we present the training curves for the STGCN-3-256 model, which employs 6 to 163

effective second-order polynomial (non-linear) layers. Figures 1(a) through Figure 1(f) depict the64

training curve progression. During the training process, we utilized mixed-precision training for the65

polynomial model, which led to occasional instability in some iterations, as evidenced by spikes in66

the loss values. Nevertheless, the training process demonstrated rapid recovery following such loss67

spikes.68

3



As demonstrated in training curve, a smaller number of second-order polynomial (non-linear) layers69

contribute to a more stable training process and facilitate smoother convergence. This finding70

explains the enhanced performance of the STGCN-6-256 model, which features a reduced number of71

non-linear layers, as compared to the full-polynomial model baseline.72

To substantiate our hypothesis, we plot the polynomial replacement training curve for the STGCN-6-73

256 model in Figure 2. The training curves for 12 effective non-linear layers (12-STGCN-6-256), four74

effective non-linear layers (4-STGCN-6-256), and two effective non-linear layers (2-STGCN-6-256)75

are presented. As the number of non-linear layers increases, the model achieves greater expressivity;76

however, the polynomial replacement process becomes increasingly unstable. Consequently, for the77

STGCN-6-256 model with only 4 non-linear layers, a more stable replacement process facilitates78

better convergence, ultimately leading to improved accuracy performance.79

References80

[1] Ran Ran, Wei Wang, Quan Gang, Jieming Yin, Nuo Xu, and Wujie Wen. Cryptogcn: Fast and81

scalable homomorphically encrypted graph convolutional network inference. Advances in Neural82

Information Processing Systems, 35:37676–37689, 2022.83

[2] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song. A full rns84

variant of approximate homomorphic encryption. In International Conference on Selected Areas85

in Cryptography, pages 347–368. Springer, 2018.86

4


	Appendix
	Open source
	HE encoding with AMA format
	HE Setting Details
	HE inference on GCNConv and Temporal-Conv Layer
	Further Detail of Operator Fusion
	Operator latency breakdown
	More Training Details and Insight


