1 **1 Data Ingestion**

Figure 1: TotalSegmentator Dataset Ingestion: Selection of Samples was based on whether it contained a reasonable number of voxels (threshold defined individually for each anatomy) and then visually rejecting the remaining samples that contained only partial bones. Ribs were selected based on whether a full set of ribs were present.

Figure 2: Data Ingestion: Various data preprocessing scenarios for Ingesting CT Segmentation Datasets for Biplanar X-ray to 3D Bone Shape Dataset

2 2 Benchmarking Tasks

Table 1: Benchmarking Tasks						
Benchmarking Evaluation Task	Training Dataset	Testing Dataset				
Architecture Comparison						
Femur	TotalSeg-Femur	TotalSeg-Femur				
Hip	TotalSeg-Pelvic	TotalSeg-Pelvic				
Vertebra	Verse2019	VerSe2019				
Rib	TotalSeg-Ribs	TotalSeg-Ribs				
Domain Shift: Fractured Bone	TotalSeg-Pelvic	CTPelvic1k-CLINIC				
	Verse2019	RSNA Cervical Fracture				
Domain Shift: X-ray with Bone Implants	TotalSeg-Pelvic	CTPelvic1k-CLINIC-Metal				
Domain Shift: Cohort Shift (Population, Scanner etc.)	TotalSeg-Pelvic	CTPelvic1k-KITS19				
Domain Shift: X-ray misalignment	TotalSeg-*, Verse2019	TotalSeg-*, Verse2019				

3 3 Hyperparameter Tuning

We split the dataset into train-val-tests by first splitting the whole dataset into the train-test split
in the 85:15 ratio and then again splitting the train-split into the train-val split in the 85:15 ratio.
We considered model selection for each of the models using the Dice Score metric on the train-val

7 split. We used this validation performance to select the best hyperparameter setting and estimate the

8 model training epochs. We then retrain the model using both train- and val-split as training data for

- 9 a fixed number of epochs determined during model selection and report metrics on test-split using
- ¹⁰ the last epoch checkpoint. We choose the last epoch checkpoint since choosing the epoch with the
- ¹¹ best test-split metric would result in test-split leakage. We use default model sizes for off-the-shelf architectures such as AttentionUNet, UNETR and UNet.

		Metho	d 7	ask	Encoder Ch	annels	Kernel S	Size lr		
		TLPre	dictor f	emur	8,16,32 8,16,32, 16,32,64,12	2 64 .8,256	3 ,5	2e-3 2e-4		
Method	Task	c E	ncoder Ch	nannels	s Deco	der Chan	inels	latent dim	kernel size	lr
			4,8,16,	32	4	,8,16,32				
AutoEnco	dar rib	8,16,32,64			8,	8,16,32,64			2	2e-3
AutoEnco	del IID		3,16,32,64,128		8,16	8,16,32,64,128			5	2e-4
		16,3	16,32,64,128,256,128 16,32,64,128,256,128							
Method		Task	Encoder	Channe	els Decoder	Channels	fusion	channels,depth	n kernel size	lr
MultiScale2DConcat femur		femur	4,8,16 8,16,32 4,8,16,32 8,16,32,64 8,16,32,64,128 4,8,16,32,64,128		4,8 8,16 4,8,1 8,16,3 8,16,32 8 4,8,16,3	4,8,16 8,16,32 4,8,16,32 8,16,32,64 8,16,32,64,128 4,8,16,32,64,128		32,2 32,3 32,4 32,5 32,6	3	1e-2 2e-3
Method	Task	Encoc	ler Chann	els	Decoder	r channel	ls	latent dim	kernel size	lr
1DConcat	femur	32,6 32,64,	5 4,128,25 ,128,256,5	28,256128,1024,512,8,4,43,256,512128,1024,512,256,128256,1024,512,256,128256,1024,512,256,128		4,4 3,64,32 3,64,32	128 256	3 ,5	2e-2	
-	Method		Task	Fe	ature Size	num h	eads	dropout rate	lr	
-	SwinUNETR vertebra		12 24 48	2,2,2,2 3,6,12,24		0.1	2e-3			
=	Method		Task	Enco	der Channels	Decode	er channe	els kernel siz	ze lr	
-	AttentionUnet/Unet 8,16, 32, 64, 128 128,64,32,16,8 3 2e-2					2e-2				
Table 2: Model Architecture and Hyperparameter tuning configurations										

12

4 Replicating reimplemented architectures

We performed an as-close-as-possible replication of Bayat et al and obtained comparable results 14 (95.31% DSC in the original work vs. 94.43% in our replication), which is reasonable given that 15 there is one important step without relevant information in the original paper that precludes exact 16 replication. The training set in the original work was not the full set of images in the dataset, but an 17 unknown subset. This is because the ground truth for the 3D reconstruction task in their case was a 18 silver standard mask predicted by a deep learning segmentation model, and a radiologist manually 19 went through the masks and removed 50 data points whose masks were deemed implausible. Original 20 work reported results on the manually cleaned silver-standard dataset, but the information regarding 21 22 the exact scans from the LIDC dataset that were discarded has not been made public.

For all other remaining architectures, the reported results are from private datasets. Some of our key motivations for this work are because of these challenges. Lack of reproducibility and disparate dataset quality makes it difficult for new methods to be compared with existing ones, which could potentially continue for newer methods in future if a common setting is not made available.

27 5 Benchmark Framework Usage

28 Configuration File

```
___
1
2
    # subject-list
3
    subjects:
4
      subject_basepath: 2D-3D-Reconstruction-Datasets/lidc/subjectwise
5
      subject_list: configs/subjects_list/lidc_subject_list.lst
6
7
    # xray image properties
8
    xray_pose:
9
      _load: xray_pose_conf/${ROI_properties.axcode}_pose.yaml
10
11
      res: ${ROI_properties.res}
      size: ${ROI_properties.size}
12
      drr_from_ct_mask: ${ROI_properties.drr_from_ct_mask}
13
      drr_from_mask: ${ROI_properties.drr_from_mask}
14
15
    # output directories
16
    out_directories:
17
18
      _load: directory_conf/dir_ct.yaml
19
    # ROI extraction properties
20
    ROI_properties:
21
      axcode: PIR
22
      extraction_ratio:
23
        L: 0.5
24
        A: 0.5
25
        S: 0.5
26
      ct_padding: -1024
27
      seg_padding: 0
28
      drr_from_ct_mask: False
29
      drr_from_mask: False
30
      res: 1.0
31
      size: 96
32
33
    # filename conventions
34
    filename_convention:
35
      input:
36
        ct: "ct.nii.gz"
37
        seg: "seg.nii.gz"
38
      output:
39
        vert_xray_ap: "{id}_vert-{vert}_ap.png"
40
        vert_xray_lat: "{id}_vert-{vert}_lat.png"
41
        vert_centroid: "{id}_vert-{vert}_centroid.nii.gz"
42
        vert_centroid_xray_ap: "{id}_vert-{vert}_ap_centroid.png"
43
        vert_centroid_xray_lat: "{id}_vert-{vert}_lat_centroid.png"
44
        vert_ct: '{id}_vert-{vert}_ct.nii.gz' # add 'vert' for vertebra
45
        vert_seg: '{id}_vert-{vert}-seg-vert_msk.nii.gz'
46
        vert_overlay_ap: "{id}_vert-{vert}_ap_overlay.png"
47
        vert_overlay_lat: "{id}_vert-{vert}_lat_overlay.png"
48
49
```

29 6 Clinical Metrics

30 6.1 Vertebra Morphometry

Figure 3: Vertebra Morphometry Metrics

Femur Morphometry We automatically extract Femoral Head Radius(FHR) and Neck Shaft Angle 31 (NSA) from Femur Segmentation by adapting [?]. The following adaptations were made: i) Since 32 full-length femur bones were not available, automatic estimation of the diaphysis axis as described in 33 [?] was not possible. Hence, manual localization of the subtrochanteric region was performed on 34 groundtruth segmentation and then transferred to predicted segmentation. This localization allows 35 robust circle fitting to estimate the diaphysis axis. ii) Some of the samples do not even contain 36 enough subtrochanteric region to reliably estimate the femur diaphysis axis. For these examples, 37 Neck Shaft Angle(NSA) cannot be estimated. Additionally, [?] requires estimation of the diaphysis 38 axis for robust localization of the femoral head and neck region. As an alternative, for such cases, we 39 transfer femoral head and neck localization from the groundtruth. The manual localization of the 40

subtrochanteric region is provided in the Benchmarking Framework Repository.

- 42 We find that the variability due to these modifications is similar to the original method except for
- 43 slightly increased variability in estimating (Femur Diaphysis Axis) FDA as shown in fig 4. We think
- that this ambiguity is due to not having enough subtrochanteric and diaphysis regions to accurately estimate FDA.

Figure 4: Repeatability of the femur morphometry extraction method as measured by error distributions for a) the landmarks/anatomical sizes and b) axis alignment identified by the adapted method.

45

Method	In-domain	OOD	Δ	OOD	Δ	OOD	Δ	In-domain	OOD	Δ
	[TOTALSEG]	[KITS19]	Δ	[CLINIC]	Δ	[CLINIC-METAL]	Δ	[Verse19]	[RSNA]	
SwinUNETR	85.78	77.68	8.09	76.04	9.74	74.71	11.06	83.59	73.42	10.18
AttentionUnet	85.03	78.64	6.39	75.22	9.81	72.14	12.89	83.66	73.23	10.43
2DConcat	84.75	79.52	5.22	75.50	9.25	69.93	14.82	83.62	72.77	10.85
UNet	84.45	77.93	6.52	73.96	10.49	72.64	11.80	82.17	69.80	12.37
MultiScale2DConcat	84.48	73.48	11.00	73.83	10.65	68.79	15.69	81.85	70.83	11.03
UNETR	82.27	75.82	6.45	72.41	9.86	69.79	12.48	81.84	71.39	10.45
TLPredictor	79.33	61.00	18.33	66.92	12.41	67.07	12.26	79.20	65.74	13.46
OneDConcat	78.85	60.39	18.46	65.52	13.33	67.36	11.49	80.92	69.35	11.57

Table 3: Reduction in Performance due to Domain Shift: The reduction in DSC (represented by column Δ) when comparing In-Domain performance with Out-of-Domain(OOD) performance shows the need for robustness against relevant shifts for clinical acceptance.

46 7 Supplement to Quantitative Analysis of DSC vs clinical parameters

Figure 5: Relationship between Dice and Clinical Metrics across data samples on a single architecture(AttentionUnet): Top (Hip), Middle (Vertebra) and Bottom (femur)

47 8 Qualitative Visualization

Figure 6: Vertebra Qualitative Results: 1st, 3rd and 5th row are groundtruth for corresponding architectures, whereas 2nd, 4th and 6th row are model predictions. The vertical axis represents the best(75th percentile), median and worse(25th percentile) samples for each architectures.

Figure 7: Femur Qualitative Results: 1st, 3rd and 5th row are groundtruth for corresponding architectures, whereas 2nd, 4th and 6th row are model predictions. The vertical axis represents the best(75th percentile), median and worse(25th percentile) samples for each architecture.

Figure 8: Rib Qualitative Results: 1st, 3rd and 5th row are groundtruth for corresponding architectures, whereas 2nd, 4th and 6th row are model predictions. The vertical axis represents the best(75th percentile), median and worse(25th percentile) samples for each architecture.

Figure 9: Hip Qualitative Results: 1st, 3rd and 5th row are groundtruth for corresponding architectures, whereas 2nd, 4th and 6th row are model predictions. The vertical axis represents the 75th percentile, median, 25th percentile and worse samples for each architecture.

Figure 17: Hip/1DConcat

Figure 33: vertebra/1DConcat

48 Checklist

49	1. For all authors
50	(a) Do the main claims made in the abstract and introduction accurately reflect the paper's
51	contributions and scope? [Yes]
52	(b) Did you describe the limitations of your work? [Yes]
53	(c) Did you discuss any potential negative societal impacts of your work? [N/A]
54	(d) Have you read the ethics review guidelines and ensured that your paper conforms to
55	them? [Yes]
56	2. If you are including theoretical results
57	(a) Did you state the full set of assumptions of all theoretical results? [N/A]
58	(b) Did you include complete proofs of all theoretical results? [N/A]
59	3. If you ran experiments (e.g. for benchmarks)
60	(a) Did you include the code, data, and instructions needed to reproduce the main experi-
61	mental results (either in the supplemental material or as a URL)? [Yes] We will release
62	the GitHub repositories containing benchmarking framework and bone morphometry
63	extraction scripts.
64	(b) Did you specify all the training details (e.g., data splits, hyperparameters, now they were chosen)? [Vac] Details for hyperparameter tuning are attached in the supplementary
65 66	section. Data splits are available in the GitHub repository.
67	(c) Did you report error bars (e.g., with respect to the random seed after running ex-
68	periments multiple times)? [No] We perform hyperparameter tuning in preliminary
69	experiments and perform the main experiments with one seed and one set of hyperpa-
70	rameters because they are computationally expensive.
71	(d) Did you include the total amount of compute and the type of resources used (e.g.,
72	type of GPUs, internal cluster, or cloud provider)? [Yes] We used a single NVIDIA
73	RTX3090 and NVIDIA 108011 GPU to train models. 50 hyperparameter tuning runs
74 75	hours
75	4. If you are using existing assets (e.g. code, data, models) or curating/releasing new assets
76	4. If you are using existing assets (e.g., code, data, models) of curating/releasing new assets
77	(a) If your work uses existing assets, and you clie the creators? [res] (b) Did you mention the license of the essets? [Vec] Verse2010; CC DV SA 4.0 License
78 70	(b) Did you mention the ficense of the assets? [165] Verse2019. CC B 1-5A 4.0 License, TotalSegmentator: Anache-2 0 license, CTPelvic1k: no explicit licence mentioned but
80	made publicly available
81	(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
82	The filtered subject-id used from the original dataset and additional segmentation used
83	for bone morphometry will be provided in the GitHub repository.
84	(d) Did you discuss whether and how consent was obtained from people whose data you're
85	using/curating? [N/A] All datasets we used were publicly available and hence explicit
86	consent was not required.
87	(e) Did you discuss whether the data you are using/curating contains personally identifiable
88	identifiable information or offensive content
90	5. If you used crowdsourcing or conducted research with human subjects
91	(a) Did you include the full text of instructions given to participants and screenshots if
92	applicable? [N/A]
93	(b) Did you describe any potential participant risks, with links to Institutional Review
94	Board (IRB) approvals, if applicable? [N/A]
95	(c) Did you include the estimated hourly wage paid to participants and the total amount
96	spent on participant compensation? [N/A]