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1 Introduction

This supplementary material includes: 1) architecture details of USC-PFN, providing a comprehensive
understanding of its methodology and development processes; 2) training and inference details of
USC-PFN, providing a comprehensive understanding of its training and inference processes; and 3)
additional qualitative results from different models, offering further insights and examples related to
the research topic.
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Figure 1: Overview of our self-cycle consistency network: paired garment-person images (g, p) and
an arbitrary garment g′ serve as the training data. Left: Gθ is pre-trained using paired images to
obtain the ground-truth deformation field f̃ for the auxiliary deformer GA to optimize f̃A. Then, Gθ is
further trained by using f̃A of G∗

A with unpaired images. Right: Gφ takes unpaired (ĝ′, p) to generate
a fake person p̂′. Then, the real person p is reconstructed by re-feeding p̂′ and ĝ into Gφ, ensuring
self-cycle consistency p ≈ p̂. Ds is the discriminator that learns to distinguish real and fake images.
EPS represents enhanced pixel-level supervision and Det. represents detaching tensor p̂′ from the
computation graph.

2 Architecture Details

In our architecture, any encoder-decoder network can be used as our generator. In our experiments,
to achieve fast convergence of the network during the theoretical validation phase, we adopt Res-
UNet [1] as Non-rigid Garment Deformer Gθ (NGD), auxiliary deformer GA, and Self-cyclic Image
Generator Gφ (SIG). The discriminator is from pix2pixHD [2]. The complete code for Res-UNet can
be found in our open-source repository https://github.com/du-chenghu/USC-PFN/.
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3 Training and Inference Details

As shown in Figure 1, our framework consists of three generators (Gθ, GA, and Gφ) and one
discriminator (Ds).

3.1 Pre-trained Parser for Supervision

The first thing that needs to be specifically pointed out is that "Parser-Free Virtual Try-On" refers
to the training and inference stages, where in the input of the main generator, there is no need for
human parsing (i.e., using a parser-generated human semantic segmentation map). Because [3] has
confirmed that including human parsing in the generator’s input, and if there are errors in this parsing,
can negatively impact the results, eliminating human parsing (i.e. the parser) at the input end of the
generator, is highly beneficial.

In order to facilitate the accurate localization of different semantic parts of the human body during the
calculation of loss in the training stage, we utilized a pre-trained parser (denotes as τ ). This parser,
similar to the one used in [4, 5, 3, 6–8], is designed to predict a posterior "after-try-on" semantics,
which corresponds to the semantic map of the desired try-on result. Only by inputting the person
representation R and the target garment g′ into τ , the target semantic map δ′ ∈ {0, 1}21×H×W can
be generated, which can be represented as:

δ′ = τ (R,g′) . (1)

In the main text, we generate the result p̂′ using unpaired (p, ĝ′). With the help of δ′, p̂′
s can be

obtained through:
p̂′
s = (δ′arms ∪ δ′neck)⊙ p̂′, (2)

where ⊙ denotes entry-wise multiplication. p̂′
g can be obtained through:

p̂′
g = δ′garment ⊙ p̂′. (3)

p̂′
c can be obtained through:

δ′identity = 1−
(
δ′arms ∪ δ′neck ∪ δ′garment

)
, (4)

p̂′
c = δ′identity ⊙ p̂′, (5)

where − denotes entry-wise subtraction and 1 is all-ones tensor.

3.2 Non-rigid Garment Deformer Gθ (NGD)

Training. During the training phase, we first train Gθ based on Markov Random Field theory using
paired garment-person images:

f̃ = Gθ (p,g) . (6)
The reason for using paired (p,g) for training is that the clothes on p and g look the same in
appearance. Therefore, we can learn implicit correlations between the two during the deformation
process. These correlations could be related to color, shape, perspective changes, texture variations,
shadows and lighting, depth of field, etc. It is conceivable that if p is replaced with the person
representation R, no relevant information other than the shape can be extracted at all.

Unfortunately, Gθ does not need correlations in terms of color, shape, and texture. This results in a
significant entanglement of features between target clothing and clothing worn on the person in Gθ’s
feature space. Consequently, Gθ can only be effective when the input data is paired, and it fails to
deform properly when encountering unpaired samples.

We employ an auxiliary deformer, GA, to address this issue. Since R does not contain the aforemen-
tioned correlations except for the shape, we modify GA’s input from (p,g) to (R,g) to estimate the
target deformation field f̃A:

f̃A = GA (R,g) . (7)
However, the limited amount of information in R forces us to utilize previously pre-trained Gθ to
supplement the aforementioned correlations for GA. In other words, we optimize GA’s result f̃A by
leveraging the result f̃ from Gθ, minimizing the differences between f̃ and f̃A:

f̃∗A = argminf̃A

∥∥∥f̃A − f̃
∥∥∥ . (8)
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After obtaining the optimal G∗
A, we continue to train the deformer Gθ by taking unpaired (p,g′) as

input and fA as supervision, to disentangle the feature entanglement of Gθ:

f̃A ≈ f̂ , with f̂ = Gθ (p,g
′) , f̃A = G∗

A (R,g′) . (9)

Inference. During the inference phase, we exclusively utilize Gθ to warp arbitrary garment.

3.3 Self-cyclic Image Generator Gφ (SIG)

Training. During the training phase, we divided the training of Gφ into two steps as shown in
Figure 1. In the first step, we train Gφ taking unpaired (p, ĝ′) as input to obtain the fake result p̂′:

p̂′ = Gφ (p, ĝ′) . (10)

Then, in the second step, p̂′ detached from the computation graph and ĝ are used as input of Gφ to
reconstruct the real person:

p ≈ p̂, with p̂ = Gφ (p̂′, ĝ) . (11)

In order to accelerate the convergence of Gφ, p and p̂′ can be combined using τ and used as input in
the second step:

p̂′ = δsave ⊙ p+ (1− δsave)⊙ p̂′, (12)

where
δ = τ (R,g) , (13)

δidentity = 1− (δarms ∪ δneck ∪ δgarment) , (14)

δsave =
(
δidentity ∩ δ′identity

)
∪ (δarms ∩ δ′arms) ∪ (δneck ∩ δ′neck) . (15)

Additionally, parts of the skin sp can be obtained through:

sp = ((δarms ∩ δ′arms) ∪ (δneck ∩ δ′neck))⊙ p. (16)

Inference. During the inference phase, the warped garment image and the person image are fed to
Gφ to synthesize the try-on result.

4 More Qualitative Results

We show more qualitative comparisons of the try-on results among our proposed USC-PFN and
other cutting-edge methods (CP-VTON+[9], ACGPN[4], DCTON[5], PF-AFN[3], and FS-VTON[7])
on VITON Zalando dataset [10]. As shown in Figure 2. overall, our model generates better try-on
images.
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Figure 2: Qualitative results of different methods (CP-VTON+[9], ACGPN[4], DCTON[5], PF-
AFN[3], FS-VTON[7], and ours) in the unpaired setting.
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