
CS4ML: A general framework for active learning with
arbitrary data based on Christoffel functions

Ben Adcock
Department of Mathematics

Simon Fraser University
ben_adcock@sfu.ca

Juan M. Cardenas
Department of Mathematics

Simon Fraser University
juan_manuel_cardenas@sfu.ca

Nick Dexter
Department of Scientific Computing

Florida State University
nick.dexter@fsu.edu

Abstract

We introduce a general framework for active learning in regression problems. Our
framework extends the standard setup by allowing for general types of data, rather
than merely pointwise samples of the target function. This generalization covers
many cases of practical interest, such as data acquired in transform domains (e.g.,
Fourier data), vector-valued data (e.g., gradient-augmented data), data acquired
along continuous curves, and, multimodal data (i.e., combinations of different
types of measurements). Our framework considers random sampling according to
a finite number of sampling measures and arbitrary nonlinear approximation spaces
(model classes). We introduce the concept of generalized Christoffel functions
and show how these can be used to optimize the sampling measures. We prove
that this leads to near-optimal sample complexity in various important cases. This
paper focuses on applications in scientific computing, where active learning is often
desirable, since it is usually expensive to generate data. We demonstrate the efficacy
of our framework for gradient-augmented learning with polynomials, Magnetic
Resonance Imaging (MRI) using generative models and adaptive sampling for
solving PDEs using Physics-Informed Neural Networks (PINNs).

1 Introduction

The standard regression problem in machine learning involves learning an approximation to a function
f∗ : D ⊆ Rd → R from training data {(θi, f∗(θi))}mi=1 ⊂ D × R. The approximation is sought in
a set of functions F, typically termed a model class, hypothesis set or approximation space, and is
often computed by minimizing the empirical error (or risk) over the training set, i.e.,

f̂ ∈ argmin
f∈F

1

m

m∑
i=1

|f∗(θi)− f(θi)|2.

In this paper, we develop a generalization of this problem. This allows for general types of data (i.e.,
not just discrete function samples), including multimodal data, and random sampling from arbitrary
distributions. In particular, this framework facilitates active learning by allowing one to optimize the
sampling distributions to obtain near-best generalization from as few samples as possible.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

1.1 Motivations

Typically, the sample points θi in the above problem are drawn i.i.d. from some fixed distribution. Yet,
in many applications of machine learning there is substantial freedom to choose the sample points in
a more judicious manner to increase the generalization performance of the learned approximation.
These applications are often highly data starved, thus making a good choice of sample points
extremely valuable. Notably, many recent applications of machine learning in scientific computing
often have these characteristics. An incomplete list of such applications include: Deep Learning (DL)
for Partial Differential Equations (PDEs) via so-called Physics-Informed Neural Networks (PINNs)
[39, 61, 83, 105, 112]; deep learning for parametric PDEs and operator learning [17, 49, 53, 66, 73,
75, 118]; machine learning for computational imaging [5, 79, 84, 88, 100, 107, 110]; and machine
learning for discovering dynamics of physical systems [24, 25, 109].

In many such applications, the training data does not consist of pointwise samples of a target function.
For example, in computational imaging, the samples are obtained through an integral transform such
as the Fourier transform in Magnetic Resonance Imaging (MRI) or the Radon transform in X-ray
Computed Tomography (CT) [5, 13, 21, 45]. In other applications, each sample may correspond to
the value of f∗ (or some integral transform thereof) along a continuous curve. Applications where this
occurs include: seismic imaging, where physical sensors record continuously in time but at discrete
spatial locations; discovering governing equations of physical systems, where each sample may be a
full solution trajectory [109]; MRI, since the MR scanner samples along a sequence of continuous
curves in k-space [80, 89]; and many more. In other applications, each sample may be a vector. For
instance, in gradient-augmented learning problems – with applications to PINNs for PDEs [54, 120]
and learning parametric PDEs in Uncertainty Quantification (UQ) [9, 56, 78, 82, 103, 98, 99], as well
as various other DL settings [36] – each sample is a vector in Rd+1 containing the values of f and
its gradient at θi. In other applications, each sample may be an element of a function space. This
occurs in parametric PDEs and operator learning, where each sample is the solution of a PDE (i.e.,
an element of a Hilbert space) corresponding to the given parameter value. Finally, many problems
involve multimodal data, where one has C > 1 different types of training data. This situation occurs
in various applications, including: multi-sensor imaging systems [33] such as parallel MRI (which
is ubiquitous in modern clinical practice) [5, 89]; PINNs for PDEs, where the data arises from the
domain, the initial conditions and the boundary conditions; and multifidelity modelling [44, 102].

1.2 Contributions

In this paper, we introduce a general framework for active learning in which

1. f∗ need not be a scalar-valued function, but simply an element of a Hilbert space X;
2. the data arises from arbitrary linear operators, which may be scalar- or vector-valued;
3. the data may be multimodal, arising from C ≥ 1 of different types of linear operators;
4. the approximation space F may be an arbitrary linear or nonlinear space;
5. sampling is random according to arbitrary probability measures;
6. the sample complexity, i.e., the relation between F and the number of samples required to

attain a near-best generalization error, is given explicitly in terms of the so-called generalized
Christoffel functions of F;

7. using this explicit expression, the sampling measures can be optimized, leading to essentially
optimal sample complexity in various cases.

This framework, Christoffel Sampling for Machine Learning (CS4ML), is very general. Indeed, we
are unaware of any other active learning strategy that can simultaneously address such a broad class
of problems. It is inspired by previous work on function regression in linear spaces [2, 34, 57, 60]
and is also a generalization of leverage score sampling [11, 30, 32, 41, 46, 50, 85] for active learning.
See Appendix A for further discussion. It generalizes these approaches by (a) considering abstract
objects in Hilbert spaces, (b) allowing for arbitrary linear sampling operators, as opposed to just
function samples, (c) allowing for multimodal data, and (d) considering general linear or nonlinear
approximation spaces. We demonstrate its practical efficacy on a diverse set of test problems. These
are: (i) Polynomial regression with gradient-augmented data, (ii) MRI reconstruction using
generative models and (iii) Adaptive sampling for solving PDEs with PINNs. Our solution to (iii)
introduces a general adaptive sampling strategy, termed Christoffel Adaptive Sampling, that can be
applied to any DL-based regression problem (i.e., not simply PINNs for PDEs).

2

2 The CS4ML framework and main results

2.1 Main definitions

Let (Ω,F ,P) be a probability space, which is the underlying probability space of the problem. In
particular, our various results hold in probability with respect to the probability measure P. Let X be
a separable Hilbert space and X0 ⊆ X be a normed vector subspace of X, termed the object space.
Our goal is to learn an element (the object) f∗ ∈ X0 from training data. We consider a multi-modal
measurement model in whichC ≥ 1 different processes generate this data. For each c = 1, . . . , C, we
assume there is a measure space (Dc,Ac, ρc), termed the measurement domain, which parametrizes
the possible measurements. We will often consider the case where this is a probability space, but this
is not strictly necessary for the moment. Next, we assume there are semi-inner product spaces Yc,
c = 1, . . . , C, termed measurement spaces, to which the measurements belong, and mappings

Lc : Dc → B(X0,Yc), c = 1, . . . , C,

where B(X0,Yc) denotes the space of bounded linear operators X0 → Yc. We refer to Lc as sampling
operator for the cth measurement process. Note that we consider the sampling operators Lc as fixed
and specified by the problem under consideration. However, we make the following assumption,
which states that we have the flexibility to query each sampling operator at an arbitrary point in the
measurement domain.

Assumption 2.1 (Active learning) For each c, we may query Lc(θ)(f
∗) at any θ ∈ Dc.

This assumption is a direct extension of that made in standard active learning (see Example 2.3
below). It holds in all our main examples. Given this assumption, our approach is to selecting sample
points is to draw them randomly according to certain sampling measures µ1, . . . , µC (defined on
D1, . . . , DC , respectively), which can then be optimized to ensure as good generalization as possible.
To this end, we also make the following assumption.

Assumption 2.2 (Sampling measures) Each sampling measure µc is a probability measure on
(Dc,Ac) that is absolutely continuous with respect to ρc and its Radon–Nikodym derivative is
positive almost everywhere. In other words, dµc(θ) = νc(θ) dρc(θ) for some measurable function
νc : Dc → R that positive almost everywhere and satisfies

∫
Dc
νc(θ) dρc(θ) = 1.

We now define the training data. Let m1, . . . ,mC be the (not necessarily equal) measurement
numbers, i.e., mc is the number of measurements from the cth measurement process. Let Θc : Ω →
Dc be independent Dc-valued random variables, where Θc ∼ µc for each c. For each c = 1, . . . , C,
let Θic, i = 1, . . . ,mc, be independent realizations of Θc. Then the training data is

{(Θic, yic)}mc,C
i,c=1 , where yic = Lc(Θic)(f

∗) ∈ Yc, i = 1, . . . ,mc c = 1, . . . , C. (2.1)

Later, in Section 4.3 we also allow for noisy measurements. Note that we consider the agnostic
learning setting, where f∗ /∈ F and the noise can be adversarial, as this setting is most appropriate to
the various applications considered (see also [50]).

Example 2.3 (Active learning in standard regression) The above framework extends the standard
active learning problem in regression. In the classic regression problem, D ⊆ Rd is a domain and
X = L2

ρ(D) is the space of square-integrable functions f∗ : D → R with respect to a measure
ρ. Note that ρ is considered fixed – it is the measure with respect to which we measure the error.
To embed this problem into the above framework, we let X0 = C(D) be the space of continuous
functions on D, C = 1, the measurement domain Dc = D be equal to the domain of the function,
ρ1 = ρ and the measurement space Y1 = R (with the Euclidean inner product). We then define
the sampling operator L1(θ)(f

∗) = f∗(θ) as the pointwise evaluation operator. In particular, for a
measure µ = µ1 satisfying Assumption 2.2, the training data (2.1) is (Θi, f

∗(Θi)) with Θi ∼i.i.d. µ.
Hence, the aim is to choose the measure µ (or equivalently, its Radon-Nikodym derivative ν) to
ensure as good generalization as possible.

Next, we let F ⊆ X0 be a subset within which we seek to learn f∗. We term F the approximation
space. Note this could be a linear space such as a space of algebraic or trigonometric polynomials,
or a nonlinear space such as the space of sparse Fourier functions, a space of functions with sparse

3

representations in a multiscale system such as wavelets, the space corresponding to a single neuron
model, or a space of deep neural networks. We discuss a number of examples later. Given F and
f∗ ∈ X0, in this work we consider an approximation f̂ ∈ F defined via the empirical least-squares fit

f̂ ∈ argmin
f∈F

C∑
c=1

1

mc

mc∑
i=1

1

νc(Θic)
∥yic − Lc(Θic)(f)∥2Yc

. (2.2)

However, regardless of the method employed, one cannot expect to learn f∗ from (2.1) without
an assumption on the sampling operators. Indeed, consider the case Lc ≡ 0, ∀c. The following
assumption states that the sampling operators should be sufficiently ‘rich’ to approximately preserve
the X-norm. As we see later, this is a natural assumption, which holds in many cases of interest.

Assumption 2.4 (Nondegeneracy of the sampling operators) The mappings Lc are such that the
maps Dc → Yc, θ 7→ Lc(θ)(f) are measurable for every f ∈ X0. Moreover, the functions
Dc → C, θ 7→ ∥Lc(θ)(f)∥2Yc

are integrable and satisfy, for constants 0 < α ≤ β <∞,

α∥f∥2X ≤
C∑

c=1

∫
Dc

∥Lc(θ)(f)∥2Yc
dρc(θ) ≤ β∥f∥2X, ∀f ∈ X0. (2.3)

In order to successfully learn f∗ from the samples (2.1), we need to (approximately) preserve
nondegeneracy when the integrals in (2.3) are replaced by discrete sums. Notice that

α∥f∥2X ≤ E

(
C∑

c=1

1

mc

mc∑
i=1

1

ν(Θic)
∥Lc(Θic)(f)∥2Yc

)
≤ β∥f∥2X, ∀f ∈ X0, (2.4)

where E denotes the expectation with respect to all the random variables (Θic)i,c. Our subsequent
analysis involves deriving conditions under which this holds with high probability. We shall say that
empirical nondegeneracy holds with constant 0 < ϵ < 1 for a draw (Θic)i,c if

(1− ϵ)α∥f∥2X ≤
C∑

c=1

1

mc

mc∑
i=1

1

ν(Θic)
∥Lc(Θic)(f)∥2Yc

≤ (1 + ϵ)β∥f∥2X, ∀f ∈ F− F, (2.5)

where F− F = {f1 − f2 : f1, f2 ∈ F}. See Appendix A for some background on this definition.

Finally, we need one further assumption. This assumption essentially says that the action of the
sampling operator Lc on F is nontrivial, in the sense that, for almost all θ ∈ Dc, there exists a f ∈ F
that has a nonzero measurement Lc(θ)(f). This assumption is reasonable, since without it, there is
little hope to fit the measurements with an approximation from the space F.

Assumption 2.5 (Nondegeneracy of F with respect to Lc) For each c = 1, . . . , C and almost ev-
ery θc ∈ Dc, there exists an element fc ∈ F such that Lc(θc)(fc) ̸= 0.

2.2 Summary of main results

The goal of this work is to derive sampling measures that ensure a quasi-optimal generalization bound
from as little training data as possible. These measures are given in terms of the following function.

Definition 2.6 (Generalized Christoffel function). Let X0 be normed vector space, Y be a semi-
inner product space, (D,A, ρ) be a measure space, L : D → B(X0,Y) be such that the function
D → Y, θ 7→ L(θ)(f) is measurable for every f ∈ X0 and F ⊆ X0, F ̸= {0}. The Generalized
Christoffel function of F with respect to L is the function

K(F)(θ) = sup{∥L(θ)(f)∥2Y/∥f∥
2
X : f ∈ F, f ̸= 0}, θ ∈ D.

If F = {0}, then we set K(F)(θ) = 0. Further, we also define κ(F) =
∫
D
K(F)(θ) dρ(θ).

In the standard regression problem (see Example 2.3), Definition 2.6 reduces to

K(F)(θ) = sup{|f(θ)|2/∥f∥2L2
ρ(D) : f ∈ F, f ̸= 0}, θ ∈ D. (2.6)

4

This is a well-known object, which is often referred to as the Christoffel function when F is a linear
subspace. It is also equivalent (up to a scaling) to the leverage score function. See Appendix A.2 for
further discussion. Definition 2.6 extends these notions from linear subspaces to nonlinear spaces
and from pointwise samples to arbitrary sampling operators L.

To state our main result, we also need the following. Given σ > 0 we define the shrinkage operator
Tσ : X → X by Tσ(f) = min {1, σ/∥f∥X} f , ∀f ∈ X.

Theorem 2.7. Consider the setup of Section 2.1, where F − F = ∪d
j=1Fj is a union of d ∈ N

subspaces of dimension at most n ∈ N. Let Kc, c = 1, . . . , C, be as in Definition 2.6 for (D,A, ρ) =
(Dc,Ac, ρc) and L = Lc. Suppose that the Kc(F− F) are integrable, define

dµ⋆
c(θ) = Kc(F− F)(θ) dρc(θ)/κc(F− F), c = 1, . . . , C, (2.7)

and suppose that
mc ≍ α−1 · κc(F− F) · log(2nd/δ), c = 1, . . . , C (2.8)

for some 0 < δ < 1. Then the following hold.

(i) Empirical nondegeneracy (2.5) holds with ϵ = 1/2 with probability at least 1− δ.
(ii) For any f∗ ∈ X0, ∥f∗∥X ≤ 1, the estimator f̌ = T1(f̂), where f̂ is as in (2.2), satisfies

E∥f∗ − f̌∥2X ≲ (β/α) · inf
f∈F

∥f∗ − f∥2X + δ. (2.9)

(iii) The total number of samples m = m1 + · · ·+mC is at most log-linear in nd, namely,

m ≲ (β/α) · nd · log(2nd/δ). (2.10)

The choice (2.7) is a particular type of importance sampling, which we term Christoffel Sampling
(CS). In particular, for the standard regression problem (see Example 2.3) the resulting measure is

dµ⋆(y) ∝ K(F− F)(y) dρ(y), (2.11)

where K(F − F)(y) is as in (2.6) with F replaced by F − F. As we discuss in Appendix A.2, this
is equivalent to leverage score sampling for the standard regression problem (see, e.g., [2, 12, 34,
32, 46, 60]). Therefore, Theorem 2.7 can be considered a generalization of leverage score sampling
from standard regression to significantly more general types of linear, multimodal measurements.
Specifically, it considers the general setting of arbitrary Hilbert spaces X, nonlinear approximation
spaces F, and C > 1 arbitrary, linear sampling operators Lc taking values in arbitrary semi-inner
product spaces Yc. To the best of our knowledge this generalization is new. We remark, however,
that Theorem 2.7 is also related to the recent work [43]. See Appendix A.3 for further discussion.

The sampling measure (2.7) is ‘optimal’ in the sense that it minimizes a sufficient condition over
all possible sampling measures µc (see Lemma 4.6). Doing so leads to CS and Theorem 2.7. The
measurement condition (2.10) states that CS leads to a desirable sample complexity bound (2.10)
that is at worse log-linear in nd. In particular, when d = 1 (i.e., F is a linear space) the sample
complexity is near-optimal (and in this case, one also has F− F = F). In general, the bound (2.10) is
near-optimal in terms of n when d is small (and independent of n). Unfortunately, d can be large
in important cases such as sparse regression. In this case, however, the linear dependence on d in
(2.10) – which follows from (2.8) via the crude estimate

∑C
c=1 κc(F− F) ≤ βnd – can be lessened

by using the specific structure of the approximation space. See Appendix A.4.

Theorem 2.7 is a simplification and combination of our several main results. In Theorem 4.2
we consider more general approximation spaces, which need not be unions of finite-dimensional
subspaces. See also Remark 4.5. Finally, we note that f̌ only differs from f̂ by a shrinkage operator,
which is a technical step needed to bound the error in expectation. See Section 4.3. An ‘in probability’
bound can be obtained without this additional complication, albeit with less succinct right-hand side.

3 Examples and numerical experiments

Theorem 2.7 shows that CS can be a near-optimal active learning strategy. We now show its efficacy
via a series of examples. These examples also highlight how the generality of the framework allows
it to tackle a wide range of problems. We consider cases where the theory applies directly and others

5

Figure 1: CS for gradient-augmented polynomial regression. Plots of the average regression error versus m for
MCS and CS for gradient-augmented polynomial regression of the function f∗(θ) = exp(−(θ1+. . .+θd)/(2d))
for d = 2, 4, 8 (left to right). In both cases, we use the scaling m = ⌈max{n, n log(n)}/(d+ 1)⌉. In this and
other figures, the solid lines show the mean value and the shaded region indicates one standard deviation. See
Section B.5 for further details.

where it does not. In all cases, we present performance gains over inactive learning, i.e., Monte
Carlo Sampling (MCS) from the underlying probability measure. Another matter we address is
how to sample from the measures (2.7) in practice, this being very much dependent on the problem
considered. Full experimental details for each application can be found in Appendices B–D.

3.1 Polynomial regression with gradient-augmented data

Many machine learning applications involve regressing a smooth, multivariate function using a model
class consisting of algebraic polynomials. Often, the training data consists of function values. Yet, as
noted in Section 1.1, there are many settings where one can acquire both function values and values
of its gradient. In this case, the training data takes the form {(θi, f(θi),∇f(θi))}mi=1 ⊂ Rd × Rd+1.
As we explain in Appendix B.1, this problem fits into our framework with C = 1, where ρ is the
standard Gaussian measure on Rd, X = H1

ρ(Rd) is the Sobolev space of weighted square-integrable
functions with weighted square-integrable first-order derivatives and Y = Rd+1 with the Euclidean
inner product. It therefore provides a first justification for allowing non-scalar valued sampling
operators. Note that several important variations on this problem also fit into our general framework
with C > 1. See Appendix B.7.

We consider learning a function from such training data in a sequence of nested polynomial spaces
F1 ⊂ F2 ⊂ · · · . These spaces are based on hyperbolic cross index sets, which are particularly useful
in multivariate polynomial regression tasks [1, 37]. See Appendix B.2 for the formal definition.

In Fig. 1 we compare gradient-augmented polynomial regression with CS versus MCS from the
Gaussian measure ρ. See Appendices B.3–B.5 for details on how we implement CS in this case. CS
gives a dramatic improvement over MCS. CS is theoretically near-optimal in the sense of Theorem
2.7 – i.e., it provably yields a log-linear sample complexity – since the approximation spaces are
linear subspaces in this example. On the other hand, MCS fails, with the error either not decreasing
or diverging. The reason is the log-linear scaling, which is not sufficient to ensure a generalization
error bound of the form (2.9) for MCS. As we demonstrate in Appendix B.6, MCS requires a much
more severe scaling of m with n to ensure a generalization bound of this type.

3.2 MRI reconstruction using generative models

Reconstructing an image from measurements is a fundamental task in science, engineering and
industry. In many applications – in particular, medical imaging modalities such as MRI – one wishes
to reduce the number of measurements while still retaining image quality. As noted, techniques
based on DL have recently led to significant breakthroughs in image recovery tasks. One promising
approach involves using generative models [16, 20, 67]. First, a generative model is trained on a
database of relevant images, e.g., brain images in the case of MRI. Then the image recovery problem
is formulated as a regression problem, such as (2.2), where F is the range of the generative model.
Note that in this problem, the training data consists of a finite set of frequencies and the corresponding
values of the Fourier transform of the unknown image.

As we explain in Appendices C.1–C.3, this problem fits into our general framework. In Fig. 2 we
demonstrate the efficacy of CS for Fourier imaging with generative models. In this example, the

6

30 40 50 60 70 80 90
5

10

15

20

25

30

35

40

45

0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0
15

20

25

30

35

40

45

10-1

100

101

102

103

Figure 2: CS for MRI reconstruction using generative models. Plots of (left) the average PSNR vs. image
number of the 3-dimensional brain MR image for both CS and MCS methods at 0.125%, 0.375%, and 0.625%
sampling percentages, (middle) the average PSNR computed over the frames 30 to 90 of the image vs. sampling
percentage for both CS and MCS methods, and (right) the empirical function K̃ used for the CS procedure.

generative model was trained on a database of 3D MRI brain images (see Appendix C.5). This
experiment simulates a 3D image reconstruction problem in MRI, where the measurements are
samples of the Fourier transform of the unknown image taken along horizontal lines in k-space
(a sampling strategy commonly known as phase encoding). The active learning problem involves
judiciously choosing m horizontal lines in k-space to enhance the generalization performance of
the learning procedure. In Fig. 2, we compare the average Peak Signal-to-Noise Ratio (PSNR)
versus frame (i.e., 2D image slice) number for CS versus MCS (i.e., uniform random sampling)
for reconstructing an unknown image. We observe a significant improvement, especially in the
challenging regime where the sampling percentage (the ratio of the number of measurements to the
image size) is low.

This example lies close to our main theorem, but is not fully covered by it. See Appendix C.3. The
space F (the range of a generative model) is not a finite union of subspaces. However, it is known that
certain generative models (namely, those based on ReLU activation functions) are subsets of unions
of subspaces of controllable size [16]. Further, we do not sample exactly from (2.7) in this case, but
rather an empirical approximation to it (see Appendix C.4). Nevertheless, our experiments show a
significant performance gain from CS in this case, despite it lying strictly outside of our theory.

This application justifies the presence of arbitrary (i.e., non-pointwise) sampling operators in our
framework. It is another instance of non-scalar valued sampling operators, since each measurement
is a vector of frequencies values along a horizontal line in k-space. Fig. 2 considers C = 1 sampling
operators. However, as we explain Appendix C.7, the important extension of this setup to parallel
MRI (which is standard in clinical practice) can be formulated in our framework with C > 1.

3.3 Adaptive sampling for solving PDEs with PINNs

In our final example, we apply this framework to solving PDEs via Physics-Informed Neural Networks
(PINNs). PINNs have recently shown great potential and garnered great interest for approximating
solutions of PDEs [42, 105, 112]. It is typical in PINNs to generate samples via Monte Carlo
Sampling (MCS). Yet, this suffers from a number of limitations, including low accuracy.

We use this general framework combined with the adaptive basis viewpoint [35] to devise a new
adaptive sampling procedure for PINNs. Here, a Deep Neural Network (DNN) with n nodes in its
penultimate layer is viewed as an element of the linear subspace spanned the n functions defined
by this layer’s nodes. Our method then proceeds as follows. First, we use an initial set of m = m1

samples and train the corresponding PINN Ψ = Ψ1. Then, we use the adaptive basis viewpoint to
construct a subspace F1 with Ψ1 ∈ F1. Next, we draw m2 −m1 samples using CS for the subspace
F1, and use the set of m = m2 samples to train a new PINN Ψ = Ψ2, using the weights and biases of
Ψ1 as the initialization. We then repeat this process, alternating between generating new samples via
CS and retraining the network, to obtain a sequence of PINNs Ψ1,Ψ2, . . . approximating the solution
of the PDE. We term this procedure Christoffel Adaptive Sampling (CAS). See Appendices D.1–D.4
for further information.

7

Figure 3: CAS for solving PDEs with PINNs. Plots of (left) the average test error E(u∗) versus the number
of samples used for training tanh and sigmoid 5× 50 DNNs using CAS (solid line) and MCS (dashed line),
(middle) the samples generated by the CAS for the tanh 5× 50 DNN and (right) the samples generated by CAS
for the sigmoid 5× 50 DNN. The colour indicates the density of the points.

In Fig. 3 we show that this procedure gives a significant benefit over MCS in terms of the number of
samples needed to reach a given accuracy. See Appendix D.5 for further details on the experimental
setup. Note that both approaches use the same DNN architecture and are trained in exactly the same
way (optimizer, learning rate schedule, number of epochs). Thus, the benefit is fully derived from
the sampling strategy. The PDE considered (Burger’s equations) exhibits shock formation as time
increases. As can be seen in Fig. 3, CAS adapts to the unknown PDE solution by clustering samples
near this shock, to better recover the solution than MCS.

As we explain in Appendix D.2, this example also justifies C > 1 in our general framework, as
we have three sampling operators related to the PDE and its initial and boundary conditions. We
note, however, that this example falls outside our theoretical analysis, since the sampling operator
stemming from the PDE is nonlinear and the method is implemented in an adaptive fashion. In spite
of this, however, we still see a nontrivial performance boost from the CS-based scheme.

4 Theoretical analysis

In this section, we present our theoretical analysis. Proofs can be found in Appendix E.

4.1 Sample complexity

We first establish a sufficient condition for empirical nondegeneracy (2.5) to hold in terms of the
numbers of samples mc and the generalized Christoffel functions of suitable spaces.
Definition 4.1 (Subspace covering number). Let (X, ∥·∥X) be a quasisemi-normed vector space, F
be a subset of X, n ∈ N0 and t ≥ 0. A collection of subspaces F1, . . . ,Fd of X of dimension at
most n is a (∥·∥X, n, t)-subspace covering of F if for every f ∈ F there exists a j ∈ {1, . . . , d} and a
fj ∈ Fj ∩ F such that ∥f − fj∥X ≤ t. The subspace covering number N (F, ∥·∥X, n, t) of F is the
smallest d such that there exists a (∥·∥X, n, t)-subspace covering of F consisting of d subspaces.

In this definition, we consider a zero-dimensional subspace as a singleton {x} ⊆ X. Therefore, the
subspace covering number N (F, ∥·∥X, 0, t) is precisely the classical covering number N (F, ∥·∥X, t).
We also remark that if F = ∪d

j=1Fj is itself a union of d subspaces of dimension at most n, then
N (F, ∥·∥X, n′, t) = d for any t ≥ 0 and n′ ≥ n.

We now also require the following notation. If F ⊆ X, we set B(F) = {f/∥f∥X : f ∈ F\{0}}.
Theorem 4.2 (Sample complexity for empirical nondegeneracy). Consider the setup of Section 2.1.
Let F ⊆ X0, n ∈ N0, 0 < ϵ, δ < 1 and F1, . . . ,Fd be a (|||·|||, n, t)-subspace covering of B(F− F),
where t =

√
αϵ/2 and |||·|||2 =

∑C
c=1 ess supθc∼ρc

{∥Lc(θc)(·)∥2Yc
/ν(θc)}. Suppose that

mc ≥ cϵ/2 · α−1 · ess sup
θ∼ρc

{
Kc(F̃)(θ)/νc(θ)

}
· log(2dmax{n, 1}/δ), ∀c = 1, . . . , C, (4.1)

where cϵ/2 is as in (E.6) and F̃ = ∪d
i=1Fi. Then (2.5) holds with probability at least 1− δ.

8

This theorem gives the desired condition (4.1) for empirical nondegeneracy (2.5). It is interesting
to understand when this condition can be replaced by one involving the function Kc evaluated over
F− F rather than its cover F̃. We now examine two important cases where this is possible.
Corollary 4.3 (Sample complexity for unions of subspaces). Suppose that F − F = ∪d

j=1Fj is a
union of d subspaces of dimension at most n ∈ N. Then (4.1) is equivalent to

mc ≥ cϵ/2 · α−1 · ess sup
θ∼ρc

{Kc(F− F)(θ)/νc(θ)} · log(2nd/δ), c = 1, . . . , C.

Corollary 4.4 (Sample complexity for classical coverings). Consider Theorem 4.2 with n = 0. Then
(4.1) is implied by the condition

mc ≥ cϵ/2 · α−1 · ess sup
θ∼ρc

{Kc(F− F)(θ)/νc(θ)} · log(2d/δ), c = 1, . . . , C.

Remark 4.5 Theorem 4.2 is formulated generally in terms of subspace coverings. This is done so
that the scenarios covered in Corollaries 4.3 and 4.4 are both straightforward consequences. Our
main examples in Section 3 are based on the (unions of) subspaces case. While this assumption is
relevant for these and many other examples, there are some key problems that do not satisfy it. For
example, in low-rank matrix (or tensor) recovery [27, 38, 108, 117], the space F of rank-r matrices
(or tensors) is not a finite union of finite-dimensional subspaces. But tight bounds for its covering
number are known [26, 106], meaning it fits within the setup of Corollary 4.4.

4.2 Christoffel sampling

Theorem 4.2 reduces the question of identifying optimal sampling measures to that of finding weight
functions νc that minimize the corresponding essential supremum in (4.1). The following lemma
shows that this is minimized by choosing νc proportional to the generalized Christoffel function.
Lemma 4.6 (Optimal sampling measure). Let L, F, K(F) and κ(F) < ∞ be as in Definition 2.6.
Suppose that for almost every θ ∈ D there exists a f ∈ F such that L(θ)(f) ̸= 0. Then

ess sup
θ∼ρ

{K(F)(θ)/ν(θ)} ≥ κ(F)

for any measurable ν : D → R that is positive almost anywhere and satisfies
∫
D
ν(θ) dρ(θ) = 1.

Moreover, this optimal value is attained by the function ν⋆(θ) = K(F)(θ)/κ(F), θ ∈ D.

In view of this lemma, to optimize the sample complexity bound (4.1) we choose sampling measures

dµ⋆
c(θ) = Kc(F̃)(θ) dρc(θ)/κc(F), c = 1, . . . , C. (4.2)

As noted, we term this Christoffel Sampling (CS). This leads to a sample complexity bound

mc ≥ cϵ/2 · α−1 · κc(F̃) · log(2dmax{n, 1}/δ), c = 1, . . . , C. (4.3)
In the case of subspaces (or union thereof with small d), this approach leads to a near-optimal sample
complexity bound for the total number of measurements m := m1 + · · ·+mC .
Corollary 4.7 (Near-optimal sampling for unions of subspaces). Suppose that F − F = ∪d

j=1Fj

is a union of d subspaces of dimension at most n ∈ N. Then
∑C

c=1 κc(F − F) ≤ βdn. Therefore,
choosing the sampling measures as in (4.2) with F̃ = F − F and the number of samples mc ≤
cϵ/2 · α−1 · κc(F− F) · log(2nd/δ) leads to the overall sample complexity bound

m ≤ cϵ/2 · (β/α) · n · d · log(2nd/δ).

We note in passing that
∑C

c=1 κc(F−F) ≥ αn/p whenever dim(Yc) ≤ p ∈ N, ∀c. See Theorem E.4.
Therefore, the sample complexity bound is at least Oϵ,α,p(n log(nd/δ)).

It is worth comparing these bounds with MCS. Suppose that the ρc’s are probability measures, in
which case MCS is well defined. For MCS, we have νc ≡ 1, ∀c, and therefore the corresponding
measurement condition is

mc ≥ cϵ/2 · α−1 · λc(F̃) · log(2dmax{n, 1}/δ), c = 1, . . . , C,

where λc(F̃) = ess supθ∼ρc
Kc(F̃)(θ) ≥ κc(F̃). Comparing with (4.3), we conclude that the benefit

of CS over MCS in terms of sample complexity corresponds to the difference between the supremum
of the Christoffel function (i.e., λc(F̃)) and its average (i.e., κc(F̃)). Thus, if Kc has sharp peaks – as
it does, for instance, in Fig. 2 – one expects a significant improvement from CS over MCS.

9

4.3 Generalization error bound and noisy data

Thus far, we have derived CS and shown parts (i) and (iii) of Theorem 2.7. In this section we establish
the generalization bound in part (ii). For additional generality, we now consider noisy samples

yic = Lc(Θic)(f
∗) + eic ∈ Yc, i = 1, . . . ,mc c = 1, . . . , C, (4.4)

where the eic represent measurement noise (see Remark E.6 for some further discussion on the noise
term). We also consider inexact minimizers. Specifically, we say that f̂ ∈ F is a γ-minimizer of (2.2)
for some γ > 0 if it yields a value of the objective function that is within γ of the minimum value.
For example, f̂ may be the output of some training algorithm used to solve (2.2).
Theorem 4.8. Let 0 < ϵ, δ, γ < 1 and consider the setup of Section 2.1, except with noisy data (4.4).
Suppose that (4.1) holds and also that ρc(Dc) <∞, ∀c. Then, for any f∗ ∈ X0 and σ ≥ ∥f∗∥X, the
estimator f̌ = Tσ(f̂), where f̂ is a γ-minimizer of (2.2), satisfies

E∥f∗ − f̌∥2X ≤ 3

(
1 +

4β

(1− ϵ)α

)
inf
f∈F

∥f∗ − f∥2X + 4σ2δ +
12

(1− ϵ)α
N +

4

(1− ϵ)α
γ2,

where N =
∑C

c=1
ρc(Dc)
mc

∑mc

i=1 ∥eic∥
2
Yc

.

5 Conclusions, limitations and future work

We conclude by noting several limitations and areas for future work. First, in this work, we have
striven for breadth – i.e., highlighting the efficacy of CS4ML across a diverse range of examples
– rather than depth. Our aim is to show that the well-known ideas for active learning in standard
regression (e.g., leverage score sampling) can be extended to a very general setting. We do not claim
that CS is the best possible method for each example, and as such, our experimental results only
compare against (inactive) MCS. In each application considered, there are other domain-specific
strategies that are known to outperform MCS. See [5, 6, 22, 55, 74, 104, 111] and references therein
for Fourier imaging, and [10, 31, 52, 51, 86, 113] in the case of PINNs. CS is a general framework,
and is arguably more theoretically grounded and less heuristic than some such methods. Nonetheless,
further investigation is needed to ascertain which method is best in each setting. In a similar vein,
while Figs. 1–3 show significant performance gains from our method, the extent of such gains depends
heavily on the problem. In Appendices B.6 and D.6 we discuss cases where the gains are far more
marginal. In the PINNs example in particular, additional studies are needed to see if CAS leads to
benefits across a wider spectrum of PDEs. Moreover, there is the intriguing possibility of using CS
as the starting point for more advanced active learning schemes – for example, by generalizing the
linear-sample sparsification techniques of [32] or the ‘boosting’ techniques of [58].

Second, as noted previously, a limitation of our theoretical analysis is the log-linear scaling with
respect to the number of subspaces d (see Theorem 2.7, part (iii)). While this can be overcome in
cases such as sparse regression (see Appendix A.4), we expect a more refined theoretical analysis
may be able to tackle this problem in the general setting. Another limitation of our analysis is that the
sample complexity bound in Theorem 4.2 involves Kc evaluated over the subspace cover F̃, rather
than simply F − F itself. We anticipate this can also be improved through a more sophisticated
argument. This would help close the theoretical gap in the generative models example considered in
this paper. Another interesting theoretical direction involves reducing the sample complexity from
log-linear to linear (when F is a linear subspace), by extending, for example, [32].

Finally, we reiterate that our framework and theoretical analysis are both very general. Consequently,
there are many other potential problems to which we can apply this work. As noted, the main practical
hurdle in applying this framework to other problems is to determine how to sample from the optimal
measure (2.7), or some computationally tractable surrogate. Some other problems of interest include
low-rank matrix or tensor recovery, as mentioned briefly in Remark 4.5, sparse regression using
random feature models, as was recently developed in [64], active learning for single neuron models,
as developed in [50], and operator learning [17, 73]. These are interesting avenues for future work.

10

Acknowledgments and Disclosure of Funding

BA acknowledges the support of the Natural Sciences and Engineering Research Council of Canada
of Canada (NSERC) through grant RGPIN-2021-611675. ND acknowledges the support of Florida
State University through the CRC 2022-2023 FYAP grant program.

References
[1] B. Adcock, S. Brugiapaglia, and C. G. Webster. Sparse Polynomial Approximation of High-

Dimensional Functions. Comput. Sci. Eng. Society for Industrial and Applied Mathematics,
Philadelphia, PA, 2022.

[2] B. Adcock and J. M. Cardenas. Near-optimal sampling strategies for multivariate function
approximation on general domains. SIAM J. Math. Data Sci., 2(3):607–630, 2020.

[3] B. Adcock, J. M. Cardenas, and N. Dexter. CAS4DL: Christoffel adaptive sampling for function
approximation via deep learning. Sampl. Theory Signal Process. Data Anal., 20(21):1–29,
2022.

[4] B. Adcock, J. M. Cardenas, N. Dexter, and S. Moraga. Towards optimal sampling for learning
sparse approximation in high dimensions. In A. Nikeghbali, P. Pardalos, A. Raigorodskii, and
T. M. Rassias, editors, High Dimensional Optimization and Probability, volume 191. Springer
Optim. Appl., 2022.

[5] B. Adcock and A. C. Hansen. Compressive Imaging: Structure, Sampling, Learning. Cam-
bridge University Press, Cambridge, UK, 2021.

[6] B. Adcock, A. C. Hansen, C. Poon, and B. Roman. Breaking the coherence barrier: a new
theory for compressed sensing. Forum Math. Sigma, 5:e4, 2017.

[7] H. K. Aggarwal, M. P. Mani, and M. Jacob. MoDL: Model-based deep learning architecture
for inverse problems. IEEE transactions on medical imaging, 38(2):394–405, 2018.

[8] A. Alaoui and M. W. Mahoney. Fast randomized kernel ridge regression with statistical
guarantees. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc.,
2015.

[9] A. K. Alekseev, I. M. Navon, and M. E. Zelentsov. The estimation of functional uncertainty
using polynomial chaos and adjoint equations. Internat. J. Numer. Methods Fluids, 67(3):328–
341, 2011.

[10] A. C. Aristotelous, E. C. Mitchell, and V. Maroulas. ADLGM: An efficient adaptive sampling
deep learning Galerkin method. J. Comput. Phys, page 111944, 2023.

[11] H. Avron, M. Kapralov, C. Musco, C. Musco, A. Velingker, and A. Zandieh. Random Fourier
features for kernel ridge regression: approximation bounds and statistical guarantees. In Doina
Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 253–262.
PMLR, 2017.

[12] H. Avron, M. Kapralov, C. Musco, C. Musco, A. Velingker, and A. Zandieh. A Universal
Sampling Method for Reconstructing Signals with Simple Fourier Transforms. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, pages
1051–1063, New York, NY, USA, 2019. Association for Computing Machinery.

[13] H. H. Barrett and K. J. Myers. Foundations of Image Science. Wiley–Interscience, Hoboken,
NJ, 2004.

[14] C. Basdevant, M. Deville, P. Haldenwang, J. Lacrouix, J. Ouazzani, R. Peyret, P. Orlandi, and
A. Patera. Spectral and finite difference solutions of the Burgers equation. Comput. Fluids,
14(1):23–41, 1986.

11

[15] A. Berk. Deep generative demixing: Error bounds for demixing subgaussian mixtures of
Lipschitz signals. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 4010–4014. IEEE, 2021.

[16] A. Berk, S. Brugiapaglia, B. Joshi, Y. Plan, M. Scotte, and O. Yilmaz. A coherence parameter
characterizing generative compressed sensing with Fourier measurements. IEEE J. Sel. Areas
Inf. Theory, 3(3):502–512, 2023.

[17] K. Bhattacharya, N. Hosseini, B. Kovachki, and A. Stuart. Model reduction and neural
networks for parametric PDEs. J. Comput. Math., 7:121–157, 2021.

[18] J. Bigot, C. Boyer, and P. Weiss. An analysis of block sampling strategies in compressed
sensing. IEEE Trans. Inform. Theory, 62(4):2125–2139, 2016.

[19] J. Blechschmidt and O. G. Ernst. Three ways to solve partial differential equations with neural
networks—a review. GAMM-Mitteilungen, 44(2):e202100006, 2021.

[20] A. Bora, A. Jalal, E. Price, and A. G. Dimakis. Compressed sensing using generative models.
In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages
537–546. PMLR, 06–11 Aug 2017.

[21] C. A. Bouman. Foundations of Computational Imaging: A Model-Based Approach. SIAM,
Philadelphia, PA, 2022.

[22] C. Boyer, P. Weiss, and J. Bigot. An algorithm for variable density sampling with block-
constrained acquisition. SIAM J. Imaging Sci., 7(2):1080–1107, 2014.

[23] S. Brugiapaglia, S. Dirksen, H. C. Jung, and H. Rauhut. Sparse recovery in bounded Riesz
systems with applications to numerical methods for PDEs. Appl. Comput. Harmon. Anal.,
53:231–269, 2021.

[24] S. L. Brunton and J. N. Kutz. Data-Driven Science and Engineering. Cambridge University
Press, 2 edition, 2022.

[25] S. L. Brunton and J. N. Kutz. Machine learning for partial differential equations. CoRR,
abs/2303.17078, 2023.

[26] E. J. Candès and Y. Plan. Tight oracle inequalities for low-rank matrix recovery from a minimal
number of noisy random measurements. IEEE Trans. Inform. Theory, 57(4):2342–2359, 2011.

[27] E. J. Candès and B. Recht. Exact matrix completion via convex optimization. Found. Comput.
Math., 9(6):717–772, 2009.

[28] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang. Spectral methods: Fundamentals
in Single Domains. Springer, 2006.

[29] S. Chatterjee and A. S. Hadi. Influential observations, high leverage points, and outliers in
linear regression. Statist. Sci., 1(3):379–415, 1986.

[30] S. Chen, R. Varma, A. Singh, and J. Kovačcević. A statistical perspective of sampling scores
for linear regression. In 2016 IEEE International Symposium on Information Theory (ISIT),
pages 1556–1560, 2016.

[31] X. Chen, J. Cen, and Q. Zou. Adaptive trajectories sampling for solving PDEs with deep
learning methods. arXiv:2303.15704, 2023.

[32] X. Chen and E. Price. Active regression via linear-sample sparsification. In A. Beygelzimer and
D. Hsu, editors, Proceedings of the Thirty-Second Conference on Learning Theory, volume 99
of Proceedings of Machine Learning Research, pages 663–695. PMLR, 2019.

[33] I.-Y. Chun and B. Adcock. Compressed sensing and parallel acquisition. IEEE Trans. Inform.
Theory, 63(8):4860–4882, 2017.

12

[34] A. Cohen and G. Migliorati. Optimal weighted least-squares methods. SMAI J. Comput. Math.,
3:181–203, 2017.

[35] E. C. Cyr, M. A. Gulian, R. G. Patel, M. Perego, and N. A. Trask. Robust training and
initialization of deep neural networks: An adaptive basis viewpoint. In Jianfeng Lu and
Rachel Ward, editors, Proceedings of The First Mathematical and Scientific Machine Learning
Conference, volume 107 of Proceedings of Machine Learning Research, pages 512–536,
Princeton University, Princeton, NJ, USA, 2020. PMLR.

[36] W. M. Czarnecki, S. Osindero, M. Jaderberg, G. Swirszcz, and R. Pascanu. Sobolev training
for neural networks. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

[37] D. Dũng, V. Temlyakov, and T. Ullrich. Hyperbolic Cross Approximation. Adv. Courses Math.
CRM Barcelona. Birkhäuser, Basel, Switzerland, 2018.

[38] M. A. Davenport and J. Romberg. An overview of low-rank matrix recovery from incomplete
observations. IEEE J. Sel. Topics Signal Process., 10(4):602–622, 2016.

[39] T. De Ryck and S. Mishra. Generic bounds on the approximation error for physics-informed
(and) operator learning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho, editors, Advances in Neural Information Processing Systems, 2022.

[40] P. Deora, B. Vasudeva, S. Bhattacharya, and P. M. Pradhan. Structure preserving compressive
sensing MRI reconstruction using generative adversarial networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pages 522–
523, 2020.

[41] M. Derezinski, M. K. K Warmuth, and D. J. Hsu. Leveraged volume sampling for linear
regression. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

[42] W. E, J. Han, and A. Jentzen. Deep learning-based numerical methods for high-dimensional
parabolic partial differential equations and backward stochastic differential equations. Commun.
Math. Stat., 5(4):349–380, 2017.

[43] M. Eigel, R. Schneider, and P. Trunschke. Convergence bounds for empirical nonlinear
least-squares. ESAIM Math. Model. Numer. Anal., 56(1):79–104, 2022.

[44] M. S. Eldred, L. W. T. Ng, M. F. Barrone, and S. P. Domino. Multifidelity uncertainty
quantification using spectral stochastic discrepancy models. In Roger Ghanem, David Higdon,
and Houman Owhadi, editors, Handbook of Uncertainty Quantification, pages 991–1036.
Springer, Cham, Switzerland, 2017.

[45] C. L. Epstein. Introduction to the Mathematics of Medical Imaging. Other Titles in Applied
Mathematics. Society for Industrial and Applied Mathematics, 2nd edition, 2007.

[46] T. Erdelyi, C. Musco, and C. Musco. Fourier sparse leverage scores and approximate kernel
learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33, pages 109–122. Curran Associates,
Inc., 2020.

[47] M. Fanuel, J. Schreurs, and J. A. K. Suykens. Nyström landmark sampling and regularized
Christoffel functions. Mach. Learn., 111:2213–2254, 2022.

[48] S. Foucart and H. Rauhut. A Mathematical Introduction to Compressive Sensing. Appl. Numer.
Harmon. Anal. Birkhäuser, New York, NY, 2013.

[49] A. Gajjar, C. Hegde, and C. P. Musco. Provable active learning of neural networks for
parametric PDEs. In The Symbiosis of Deep Learning and Differential Equations II, 2022.

13

[50] A. Gajjar, C. Musco, and C. Hegde. Active Learning for Single Neuron Models with Lipschitz
Non-Linearities. In Francisco Ruiz, Jennifer Dy, and Jan-Willem van de Meent, editors,
Proceedings of The 26th International Conference on Artificial Intelligence and Statistics,
volume 206 of Proceedings of Machine Learning Research, pages 4101–4113. PMLR, 2023.

[51] Z. Gao, T. Tanf, L. Yan, and T. Zhou. Failure-informed adaptive sampling for PINNs, part II:
combining with re-sampling and subset simulation. arXiv:2302.01529, 2023.

[52] Z. Gao, L. Yan, and T. Zhou. Failure-informed adaptive sampling for pinns. SIAM Journal on
Scientific Computing, 45(4):A1971–A1994, 2023.

[53] M. Geist, P. Petersen, M. Raslan, R. Schneider, and G. Kutyniok. Numerical solution of the
parametric diffusion equation by deep neural networks. J. Sci. Comput., 88:22, 2021.

[54] X. Geng and L. Zeng. Gradient-enhanced deep neural network approximations. J. Mach.
Learn. Model. Comput., 3(4):73–91, 2022.

[55] B. Gözcü, R. J. Mahabadi, Y.-H. Li, E. Ilcak, T. Çukur, J. Scarlett, and V. Cevher. Learning-
based compressive MRI. IEEE Trans. Med. Imag., 37(6):1394–1406, 2018.

[56] L. Guo, A. Narayan, and T. Zhou. A gradient enhanced ℓ1-minimization for sparse approxima-
tion of polynomial chaos expansions. J. Comput. Phys., 367:49–64, 2018.

[57] L. Guo, A. Narayan, and T. Zhou. Constructing least-squares polynomial approximations.
SIAM Rev., 62(2):483–508, 2020.

[58] C. Haberstich, A. Nouy, and G. Perrin. Boosted optimal weighted least-squares. Math. Comp.,
91:1281–1315, 2022.

[59] K. Hammernik, T. Klatzer, E. Kobler, M. P. Recht, D. K. Sodickson, T. Pock, and F. Knoll.
Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med.,
79(6):3055–3071, 2018.

[60] J. Hampton and A. Doostan. Coherence motivated sampling and convergence analysis of least
squares polynomial chaos regression. Comput. Methods Appl. Mech. Engrg., 290:73–97, 2015.

[61] J. Han, A. Jentzen, and W. E. Solving high-dimensional partial differential equations using
deep learning. Proc. Natl. Acad. Sci. U.S.A., 115(34):8505–8510, 2018.

[62] B. Hanin. Which neural net architectures give rise to exploding and vanishing gradients?
Advances in Neural Information Processing Systems, pages 582–591, 2018.

[63] B. Hanin and D. Rolnick. How to start training: The effect of initialization and architecture.
In Advances in Neural Information Processing Systems, pages 571–581. 2018.

[64] A. Hashemi, H. Schaeffer, R. Shi, U. Topcu, G. Tran, and R. Ward. Generalization bounds for
sparse random feature expansions. Applied and Computational Harmonic Analysis, 62:310–
330, 2023.

[65] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

[66] C. Heiß, I. Gühring, and M. Eigel. A neural multilevel method for high-dimensional parametric
PDEs. In Advances in Neural Information Processing Systems, 2021.

[67] A. Jalal, M. Arvinte, G. Daras, E. Price, A. G. Dimakis, and J. Tamir. Robust Compressed
Sensing MRI with Deep Generative Priors. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S.
Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems,
volume 34, pages 14938–14954. Curran Associates, Inc., 2021.

[68] A. Jalal, S. Karmalkar, A. Dimakis, and E. Price. Instance-optimal compressed sensing
via posterior sampling. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th
International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 4709–4720. PMLR, 18–24 Jul 2021.

14

[69] X. Jin, S. Cai, H. Li, and George Em Karniadakis. Nsfnets (navier-stokes flow nets): Physics-
informed neural networks for the incompressible navier-stokes equations. J. Comput. Phys.,
426:109951, 2021.

[70] J. Kaczmarzyk, P. McClure, W. Zulfikar, A. Rana, H. Rajaei, A. Richie-Halford, S. Bansal,
D. Jarecka, J. Lee, and S. Ghosh. neuronets/nobrainer: 0.4.0, October 2022.

[71] T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive growing of GANs for improved
quality, stability, and variation. In International Conference on Learning Representations,
2018.

[72] D. P. Kingma and J. Ba. Adam: a method for stochastic optimization. arXiv:1412.6980, 2017.

[73] N. Kovachki, Z. Li, B. Liu, K. Azizzadnesheli, K. Bhattacharya, A. Stuart, and A. Anandkumar.
Neural operator: Learning maps between function spaces with applications to PDEs. J. Mach.
Learn. Res., 24:1–97, 2023.

[74] F. Krahmer and R. Ward. Stable and robust sampling strategies for compressive imaging. IEEE
Trans. Image Process., 23(2):612–622, 2013.

[75] G. Kutyniok, P. Petersen, M. Raslan, and R. Schneider. A theoretical analysis of deep neural
networks and parametric PDEs. Constr. Approx., 55:73–125, 2022.

[76] D. J. Larkman and R. G. Nunes. Parallel Magnetic Resonance Imaging. Phys. Med. Biol.,
52(7):R15, 2007.

[77] J. B. Lasserre and E. Pauwels. The empirical Christoffel function with applications in data
analysis. Adv. Comput. Math., 45:1439–1468, 2019.

[78] Y. Li, M. Anitescu, O. Roderick, and F. Hickernell. Orhogonal bases for polynomial regression
with derivative information in uncertainty quantification. Int. J. Uncertain. Quantif., 1(4):297–
320, 2011.

[79] D. Liang, J. Cheng, Z. Ke, and L. Ying. Deep Magnetic Resonance image reconstruction:
inverse problems meet neural networks. IEEE Signal Process. Mag., 37(1):141–151, 2020.

[80] Z. Liang and P. C. Lauterbur. Principles of Magnetic Resonance Imaging: A Signal Processing
Perspective. IEEE Press Series on Biomedical Engineering. Wiley–IEEE Press, New York,
2000.

[81] J. Liu and Z. Liu. Non-iterative recovery from nonlinear observations using generative models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 233–243, 2022.

[82] B. Lockwood and D. Mavriplis. Gradient-based methods for uncertainty quantification in
hypersonic flows. Comput. & Fluids, 85:27–38, 2013.

[83] L. Lu, P. Jin, Z. Pang, G. Zhang, and G. E. Karniadakis. Learning nonlinear operators via
DeepONet based on the universal approximation theorem of operators. Nat. Mach. Intell.,
3:218–229, 2021.

[84] A. Lucas, M. Iliadis, R. Molina, and A. K. Katsaggelos. Using deep neural networks for inverse
problems in imaging: beyond analytical methods. IEEE Signal Process. Mag., 35(1):20–36,
2018.

[85] P. Ma, M. W. Mahoney, and B. Yu. A statistical perspective on algorithmic leveraging. J.
Mach. Learn. Res., 16:861–911, 2015.

[86] Z. Mao and X. Meng. Physics-informed neural networks with residual/gradient-based adaptive
sampling methods for solving partial differential equations with sharp solutions. Applied
Mathematics and Mechanics, 44(7):1069–1084, 2023.

[87] M. Mardani, E. Gong, J. Y. Cheng, S. S. Vasanawala, G. Zaharchuk, L. Xing, and J. M. Pauly.
Deep generative adversarial neural networks for compressive sensing MRI. IEEE transactions
on medical imaging, 38(1):167–179, 2018.

15

[88] M. T. McCann and M. Unser. Biomedical image reconstruction: From the foundations to deep
neural networks. Foundations and Trends® in Signal Processing, 13(3):283–359, 2019.

[89] D. W. McRobbie, E. A. Moore, M. J. Graves, and M. R. Prince. MRI: From Picture to Proton.
Cambridge University Press, Cambridge, 2nd edition, 2006.

[90] G. Migliorati. Polynomial approximation by means of the random discrete L2 projection and
application to inverse problems for PDEs with stochastic data. PhD thesis, Politecnico di
Milano, 2013.

[91] G. Migliorati. Adaptive approximation by optimal weighted least squares methods. SIAM J.
Numer. Anal, 57(5):2217–2245, 2019.

[92] G. Migliorati. Multivariate approximation of functions on irregular domains by weighted
least-squares methods. IMA J. Numer. Anal., 41(2):1293–1317, 2021.

[93] G. Migliorati, F. Nobile, and R. Tempone. Convergence estimates in probability and in
expectation for discrete least squares with noisy evaluations at random points. J. Multivariate
Anal., 142:167–182, 2015.

[94] C. Musco and C. Musco. Recursive Sampling for the Nyström Method. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[95] A. Naderi and Y. Plan. Beyond independent measurements: General compressed sensing with
gnn application. In NeurIPS 2021 Workshop on Deep Learning and Inverse Problems, 2021.

[96] A. Narayan. Computation of induced orthogonal polynomial distributions. Electron. Trans.
Numer. Anal., 50:71–97, 2018.

[97] P. Nevai. Géza Freud, orthogonal polynomials and Christoffel functions. A case study. J.
Approx. Theory, 48(1):3–167, 1986.

[98] T. O’Leary-Roseberry, P. Chen, U. Villa, and O. Ghattas. Derivative-informed neural operator:
an efficient framework for high-dimensional parametric derivative learning. arXiv:2206.10745,
2022.

[99] T. O’Leary-Roseberry, U. Villa, P. Chen, and O. Ghattas. Derivative-informed projected neural
networks for high-dimensional parametric maps governed by PDEs. Comput. Methods Appl.
Mech. Engrg., 388(1):114199, 2022.

[100] G. Ongie, A. Jalal, C. A. Metzler, R. G. Baraniuk, A. G. Dimakis, and R. Willett. Deep learning
techniques for inverse problems in imaging. IEEE J. Sel. Areas Inf. Theory, 1(1):39–56, 2020.

[101] B. Ordozgoiti, A. Matakos, and A. Gionis. Generalized leverage scores: Geometric interpre-
tation and applications. In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and
S. Sabato, editors, Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pages 17056–17070. PMLR, 2022.

[102] B. Peherstorfer, K. Willcox, and M. Gunzburger. Survey of multifidelity methods in uncertainty
propagation, inference, and optimization. SIAM Rev., 60(3):550–591, 2018.

[103] J. Peng, J. Hampton, and A. Doostan. On polynomial chaos expansion via gradient-enhanced
l1-minimization. J. Comput. Phys., 310:440–458, 2016.

[104] C. Poon. On the role of total variation in compressed sensing. SIAM J. Imaging Sci., 8(1):682–
720, 2015.

[105] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: a deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. J. Comput. Phys., 378:686–707, 2019.

[106] H. Rauhut, R. Schneider, and Z. Stojanac. Low rank tensor recovery via iterative hard
thresholding. Linear Algebra Appl., 524:220–262, 2017.

16

[107] S. Ravishankar, J. C. Ye, and J. A. Fessler. Image reconstruction: from sparsity to data-adaptive
methods and machine learning. Proc. IEEE, 108(1):86–109, 2020.

[108] B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-rank solutions of linear matrix
equations via nuclear norm minimization. SIAM Rev., 52(3):471–501, 2010.

[109] S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz. Data-driven discovery of partial
differential equations. Sci. Adv., 3(4), 2017.

[110] C. M. Sandino, J. Y. Cheng, F. Chen, M. Mardani, J. M. Pauly, and S. S. Vasanawala. Com-
pressed sensing: from research to clinical practice with deep neural networks. IEEE Signal
Process. Mag., 31(1):117–127, 2020.

[111] F. Sherry, M. Benning, J. C. De los Reyes, M. J. Graves, G. Maierhofer, G. Williams, C.-B.
Schönlieb, and M. J. Ehrhardt. Learning the sampling pattern for MRI. IEEE Trans. Med.
Imag., 39(12):4310–4321, 2020.

[112] J. Sirignano and K. Spiliopoulos. DGM: A deep learning algorithm for solving partial
differential equations. J. Comput. Phys., 375:1339–1364, 2018.

[113] K. Tang, X. Wan, and C. Yang. Das: A deep adaptive sampling method for solving partial
differential equations. arXiv preprint arXiv:2112.14038, 2021.

[114] T. Tang and T. Zhou. On discrete least-squares projection in unbounded domain with random
evaluations and its application to parametric uncertainty quantification. SIAM J. Sci. Comput.,
36(5):A2272–A2295, 2014.

[115] J. A. Tropp. User-friendly tail bounds for sums of random matrices. Found. Comput. Math.,
12:389–434, 2012.

[116] M. Uecker. Parallel Magnetic Resonance Imaging. arXiv:1501.06209, 2015.

[117] M. Vidyasagar. An Introduction to Compressed Sensing. Comput. Sci. Eng. Society for
Industrial and Applied Mathematics, Philadelphia, PA, 2019.

[118] S. Wang, H. Wang, and P. Perdikaris. Learning the solution operator of parametric partial
differential equations with physics-informed DeepOnets. Sci. Adv., 7(40):eabi8605, 2021.

[119] D. P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends in
Theoretical Computer Science, 10(1-2):1–157, 2014.

[120] J. Yu, L. Lu, X. Meng, and G. E. Karniadakis. Gradient-enhanced physics-informed neural
networks for forward and inverse PDE problems. Comput. Methods Appl. Mech. Engrg.,
393:114823, 2022.

17

A Further literature and discussion

In this appendix, we provide some additional discussion that relates our work to existing literature.

A.1 Classical Christoffel functions

Let F be a linear subspace of the Hilbert space X = L2
ρ(D). The Christoffel function of F is the

function θ 7→ 1/K(F)(θ), where

K(F)(θ) = sup

{
|f(θ)|2

∥f∥2X
: f ∈ F, v ̸= 0

}
, θ ∈ D.

This is clearly a special case of Definition 2.6 with X0 = C(D) and L : D → B(X0,R) given
by L(θ)(f) = f(θ). The Christoffel function is a classical object in approximation theory, most
typically associated with the case where F is a space of algebraic polynomials [97]. Note that K(F)
is precisely the diagonal of the reproducing kernel of F in X. It also follows immediately from
Lemma E.1 that

K(F)(θ) =
n∑

i=1

|fi(θ)|2,

for any orthonormal basis {fi}ni=1 of F.

A.2 Relation to leverage scores and leverage score sampling

Let D be a domain with a measure λ (typically the Lebesgue measure), F be a class of functions
f : D → C and ρ be a probability measure over D with Radon-Nikodym derivative p = dρ/ dλ.
Then the leverage score is defined as

τ(θ) = τ(F, p)(θ) = sup

{
|f(θ)|2p(θ)

∥f∥2p
: f ∈ F\{0}

}
, (A.1)

where ∥f∥2p =
∫
D
|f(θ)|2p(θ) dλ(θ) =

∫
D
|f(θ)|2 dρ(θ). See, e.g., [46] and references therein.

Like with CS, leverage score sampling is a type of importance sampling where one draws samples
randomly according to the probability density proportional to τ (or, often in practice, some easy-to-
compute upper bound τ̃). We remark in passing that leverage score sampling is sometimes known as
effective resistance or coherence motivated sampling in the literature. Note that in the literature on
leverage scores, the empirical nondegeneracy condition (2.5) is sometimes referred to as the subspace
embedding condition (see, e.g., [119]).

It is readily seen that (A.1) a special case of Definition 2.6. Let X = L2
ρ(D). Then there are several

different ways to formulate this.

(i) Consider D equipped with the measure λ and set L(θ)(f) =
√
p(θ)f(θ). Then nondegen-

eracy (2.3) holds with α = β = 1 and we have

K(F)(θ) = sup

{
|f(θ)|2p(θ)

∥f∥2X
: f ∈ F, f ̸= 0

}
=: Ka(θ).

(ii) Alternatively, consider D equipped with the measure ρ and set L(θ)(f) = f(θ). Then
nondegeneracy (2.3) holds with α = β = 1 and we have

K(F)(θ) = sup

{
|f(θ)|2

∥f∥2X
: f ∈ F, f ̸= 0

}
=: Kb(θ).

Notice that Ka(θ) = τ(F, p)(θ) is precisely the leverage score (A.1). Conversely, Kb(θ) =
τ(F, p)(θ)/p(θ) differs from the leverage score (A.1) by the factor p(θ). Whether to include p(θ) in
the definition is one of convention. What is important is that both (i) and (ii) lead to exactly the same
Christoffel sampling sampling measure µ⋆ in (2.11), which is equivalent to leverage score sampling
for the standard regression problem. Indeed, this measure is

dµ⋆(θ) ∝ Ka(θ) dλ(θ) = τ(F, p)(θ) dλ(θ)

18

for case (i) or

dµ⋆(θ) ∝ Kb(θ) dρ(θ) =
τ(F, p)(θ)
p(θ)

p(θ) dλ(θ) = τ(F, p)(θ) dλ(θ)

for case (ii).

(Statistical) leverage scores are an old concept [29] that have recently found many applications in
machine learning, including randomized numerical linear algebra [119], kernel methods [8, 12, 46,
47, 94], active learning [12, 30, 41, 46, 85], data analysis [77] and beyond. Leverage scores are
perhaps most commonly encountered in the discrete setting. Here the matrix leverage score of a
matrix a matrix A ∈ RN×n is defined as

τ(i) = τ(A)(i) = max
x∈Rd

Ax ̸=0

(Ax)2i

∥Ax∥22
= a⊤i (A

⊤A)−1ai, i = 1, . . . , N, (A.2)

where ai is the ith row of A. This is also a special case of Definition 2.6. Indeed, let X = RN and
Y = R, both equipped with the Euclidean inner product, D = {1, . . . , N} be equipped with the
uniform measure ρ, L(i)(x) = xi for a vector x = (xi)

N
i=1 ∈ RN and

F = {Ax : x ∈ Rn} ⊆ RN .

Then (2.3) holds with α = β = 1 (notice that ρ is the uniform measure, not the uniform probability
measure) and the generalized Christoffel function satisfies

K(F)(i) = sup

{
∥L(f)(i)∥2Y

∥f∥2X
: f ∈ F, f ̸= 0

}
= sup

{
(Ax)2i

∥Ax∥22
: x ∈ Rn, Ax ̸= 0

}
= τ(A)(i).

There are a number of generalizations of leverage scores in the literature. See, e.g., [101]. However,
to the best of our knowledge, none of these are similar to the setting considered in this paper (in
particular, Definition 2.6).

A.3 Other related work

Our general framework and results are related to recent work [43]. Here the authors consider
approximating functions in arbitrary (linear or nonlinear) approximation spaces (model classes) via
an empirical least-squares regression based on a semi-norm that depends on a (random) variable y ∈
Y ⊆ Rd. In a similar spirit to Theorem 4.2 and Theorem 4.8, [43] establishes sample complexity and
generalization error bounds, and then use the former to optimize the sampling measure. Specifically,
[43, Thm. 2.8 and Cor. 2.9] is similar to Theorem 4.2 with d = 0 (i.e., the case of classical coverings
as opposed to subspace coverings) and [43, Thm. 2.12] is similar to Theorem 4.8, albeit without
the additional technical steps used in the proof of Theorem 4.8 to obtain an expected error bound
involving only the X-norm on the left- and right-hand sides.

This framework is related to our framework with C = 1 sampling operators and with X being a
Banach space of functions. In fact, it is somewhat more general in this case: (i) no inner product
structure is assumed and, (ii) each measurement (which are implicit in the semi-norm in [43]) could
belong to a different space. Note that one could readily incorporate (ii) into our framework, by making
the target space Yc depend on θc. However, (i) leads to fundamentally weaker sample complexity
guarantees. For example, in the case of a linear subspace F, the bounds in [43] scale log-cubically
in n = dim(F), i.e., like c · n3 · log(n) (see [43, Sec. 3.1]), whereas the results in this work are
log-linear, i.e., c · n · log(n) (see Corollary 4.7), and therefore near-optimal. A similar suboptimal
log-cubic scaling also arises in the case where F is a nonlinear space of s-sparse expansions in an
orthonormal basis (see [43, Sec. 3.2]). See Appendix A.4 for more on this example.

As noted, the root cause of this suboptimal scaling is (i). In our framework, we impose that X is a
Hilbert space and each Yc is a semi-inner product space. This allows us to use matrix concentration
techniques (specifically, the matrix Chernoff bound [115]) in combination with the technique of
subspace coverings (Definition 4.1) to obtain better sample complexity bounds. We remark in passing
that the special case of d = 0 in our main sample complexity bound Theorem 4.2 (which, as noted
above, is similar to [43]) does not require an inner product structure, i.e., it holds if X is a Banach
space and each Yc is a semi-normed vector space. However, if applied to the case of linear subspaces,
it would also lead to suboptimal sample complexity estimates much as in [43, Sec. 3.1].

19

A.4 The case of sparse regression

In this section, we briefly discuss the application of our general framework to sparse regression. For
convenience, we shall assume that X = L2

ρ(D) is the space of weighted square-integrable functions
f : D → C, X = C(D), C = 1, Y = Y1 = C with the Euclidean inner product and L = L1 is the
pointwise evaluation operator L(θ)(f) = f(θ). However, the following discussion can be readily
generalized to general setting considered in Section 2.1.

Let Φ = {ϕi}Ni=1 ⊂ X be a collection of elements in X, where N ∈ N. We assume that this is a Riesz
system, i.e., there exist constants 0 < a ≤ b <∞ such that

a

N∑
i=1

|ci|2 ≤

∥∥∥∥∥
N∑
i=1

ciϕi

∥∥∥∥∥
2

L2
ρ(D)

≤ b

N∑
i=1

|ci|2, ∀ci ∈ C.

Note that a = b = 1 if and only if Φ is an orthonormal system. Now let 1 ≤ s ≤ N and define

F = Fs =

{∑
i∈S

ciϕi : ci ∈ C,∀i, S ⊆ {1, . . . , N}, |S| = s

}
.

Then F is the set of all s-sparse expansions in the system Φ. In this case, we refer to (2.2) as a sparse
regression problem. Notice that empirical nondegeneracy Eq. (2.5) is in this case equivalent to the
Restricted Isometry Property (RIP) [48] for the matrix A = 1√

m
(ϕj(Θi))

m,N
i,j=1 ∈ Cm×N .

Several remarks are in order. First, notice that Fs − Fs = F2s. Second, Fs is union-of-subspaces
model. Indeed, Fs is precisely a union of d =

(
N
s

)
subspaces, each corresponding to a particular

choice of support set S ⊆ {1, . . . , N}, |S| = s. When N and s are large, this is a large number,
which makes the bound in Corollary 4.7 meaningless.

However, in this case, we can obtain a more appealing bound. Notice that the generalized Christoffel
function

K(Fs)(θ) = max
S⊆{1,...,N}

|S|≤s

 |f(θ)|2

∥f∥2L2
ρ(D)

: f =
∑
i∈S

ciϕi, ci ∈ C,∀i

 .

It is a simple argument to see that

|f(θ)|2 ≤ s · a−1 · max
i=1,...,N

|ϕi(θ)|2 · ∥f∥2L2
ρ(D).

Therefore,
K(Fs)(θ) ≤ s · a−1 · K̃(θ), K̃(θ) := max

i=1,...,N
|ϕi(θ)|2.

The function K̃c serves two purposes. First, it can be used to upper bound κ(Fs) =∫
D
K(Fs)(θ) dρ(θ), i.e., the term appearing in the estimate in Corollary 4.7. Second, it can also be

used as a convenient surrogate from which to sample, as computing K̃(θ) is typically easier than
computing the true Christoffel function K(Fs)(θ).

Suppose now that ∥ϕi∥L∞
ρ (D) = ess supθ∼D |ϕi(θ)|2 ≤ K for all i = 1, . . . , N . In this case, Φ is

known as a bounded Riesz system [23]. Then

K(Fs)(θ) ≤ s · a−1 · K̃(θ) ≤ s ·K · a−1.

Using this and the well-known estimate d =
(
N
s

)
≤ (eN/s)s, we deduce from Corollary 4.3 the

sample complexity bound

m ≳ cϵ/2 · a−1 · s · (s · log(eN/s) + log(s/δ)) .

This is a substantial improvement on the bound implied directly by Corollary 4.7, which depends
linearly on d =

(
N
s

)
. It also improves the bound of [43, Sec. 3.2] from log-cubic to log-quadratic

(recall the discussion in Appendix A.3). However, the reader will note that it is not optimal, since m
scales log-quadratically in s. One can improve this bound to log-linear by using a more sophisticated
argument specific to the sparse regression case. See, e.g., [4, 23, 48] and references therein. The

20

extent to which this argument can be extended to the most general setting of our framework is a
problem for future work.

Unfortunately, many Riesz systems of practical interest are not bounded. In this case, one has the
sample complexity bound

m ≳ cϵ/2 · κ̃ · a−1 · s · (s · log(eN/s) + log(s/δ)) , (A.3)

where
κ̃ =

∫
D

max
i=1,...,N

|ϕi(θ)|2 dρ(θ).

The bound (A.3) grows log-quadratically in s, as desired (it can also be improved to log-linear as
mentioned above). However, the constant κ̃ may depend on N . We refer to [4] for an extensive
discussion on this issue. It is notable that κ̃ can be estimated numerically. In cases of interest such as
sparse multivariate polynomial regression, it is either bounded or mildly growing in N [4].

B Polynomial regression with gradient-augmented data

In this appendix, we describe the example considered in Section 3.1. Let f∗ : Rd → R. In the
gradient-augmented learning problem, we consider training data of the form{(

θi, (∂kf
∗(θi))

d
k=0

)}m

i=1
,

where (for convenience) ∂0f∗ = f∗ and ∂kf∗ = ∂f∗/∂θk otherwise.

B.1 Formulation in terms of the general sampling framework

We now describe how to formulate the gradient-augmented learning problem as a special case of
the general framework. Let C = 1, D = D1 = (Rd, ρ) where d ≥ 1 and ρ be the tensor-product
Gaussian measure on Rd, i.e. dρ = (2π)−d/2e−

1
2∥θ∥

2
2 dθ. Then we let

X = H1
ρ(Rd) =

{
∂kf ∈ L2

ρ(Rd)
}

be the Sobolev space of weighted square-integrable functions with respect to ρ with weak first-order
derivatives that are also square-integrable with respect to ρ. This is a Hilbert space with inner product

⟨f, g⟩X =

d∑
k=0

∫
Rd

∂kf(θ)∂kg(θ) dρ(θ).

Next, we let X0 = C1(D) and Y be the Hilbert space

Y = (Cd+1, ⟨·, ·⟩2),
where ⟨·, ·⟩2 is the Euclidean inner product. Then, we define the sampling operatorL : D → B(X0,Y)
as

L(θ)(f) = (∂kf(θ))
d
k=0 , (B.1)

Notice that∫
D

∥L(θ)(f)∥2Y dρ(θ) =

d∑
k=0

∫
Rd

|∂kf(θ)|2 dρ(θ) = ∥f∥2L2
ρ(D) +

d∑
k=1

∥∂kf∥2L2
ρ(D) = ∥f∥2H1

ρ(Rd).

Thus, Assumption 2.2 holds for this example with α = β = 1.

B.2 The approximation space: multivariate Hermite polynomials

The standard Hermite polynomials Hk(x) are eigenfunctions of the Sturm–Liouville problem

(wu′)′ + 2kwu = 0,

where w(x) = e−x2

. They are orthogonal on R with respect to this function, specifically,∫ ∞

−∞
Hn(x)Hm(x)w(x) dx =

√
π2nn!ϵn,m.

21

They satisfy the three term recurrence with H0(x) = 1, H1(x) = 2x and

Hn+1(x) = 2xHn(x)− 2nHn−1(x), n = 1, 2, . . . , (B.2)

and their derivatives satisfy the relation H ′
0 = 0 and

H ′
n = 2nHn−1, n = 1, 2, . . . (B.3)

See, e.g., [28, Sec. 2.6.2] for standard properties of Hermite polynomials.

It is more convenient for our purposes to consider the standard Gaussian (probability) measure R, i.e.,

dρ(θ) =
1√
2π

e−
1
2 θ

2

dθ.

Then the orthonormal Hermite polynomials (sometimes known as the “probabilists’ version”) are
given by

ψn(θ) =
1√
2nn!

Hn(θ/
√
2).

Manipulating (B.2), we see that the orthonormal Hermite polynomials satisfy ψ0(θ) = 1, ψ1(θ) = y
and

ψn+1(θ) =
θ√
n+ 1

ψn(θ)−
√

n

n+ 1
ψn−1(θ), n = 1, 2, . . . (B.4)

Also, we have ψ′
n = 1√

2nn!
1√
2
H ′

n(θ/
√
2) = 1√

2nn!
√
2
2nHn−1(θ/

√
2), and therefore ψ′

0 = 0 and

ψ′
n(θ) =

√
nψn−1(θ), n = 1, 2, (B.5)

Using this, we readily deduce that the functions

ϕn(θ) =
ψn(θ)√
1 + n

, n = 0, 1, . . . ,

form an orthonormal basis of the space

H1
ρ(R) = {f ∈ L2

ρ(R) : f ′ ∈ L2
ρ(R)},

i.e., the Sobolev space of square-integrable functions f : R → R (with respect to ρ) with square-
integrable (weak) first derivatives.

We extend to d dimensions via tensorization. We let

dρ(θ) =
1√
2π

e−
1
2∥θ∥

2
2 dθ

and consider the tensor Hermite polynomials

Ψν(θ) = ψν1(θ1) · · ·ψνd
(θd), ν = (νi)

d
i=1 ∈ Nd

0, θ = (θi)
d
i=1 ∈ Rd.

Leveraging what we did in the one-dimensional case, we can then construct an orthonormal basis of
the Sobolev space

H1
ρ(Rd) = {f ∈ L2

ρ(Rd) : ∂kf ∈ L2
ρ(Rd), k = 1, . . . , d}

as {Φν}ν∈Nd
0
, where

Φν =
Ψν√

1 + ν1 + . . .+ νd
, ν = (νi)

d
i=1 ∈ Nd

0.

We conclude by defining the approximation space F. Fix an index p ∈ N0 and let

S = Sp =

{
ν = (νi)

d
i=1 ∈ Nd

0 :

d∏
i=1

(νi + 1) ≤ p+ 1

}
⊂ Nd

0. (B.6)

This is the so-called hyperbolic cross index set, which is particularly well suited for multivariate
polynomial approximation [1, 37]. Using this, we define the linear approximation space

F = span{Φν : ν ∈ S} ⊂ H1
ρ(Rd).

Notice that Assumption 2.5 holds for this choice of F. Indeed, F contains the constant function
f(θ) = 1, ∀θ ∈ Rd, which satisfies L(θ)(f) = (1, 0, . . . , 0)⊤ ̸= 0.

22

B.3 Numerical solution of the regression problem

We now describe the numerical solution of the regression problem (2.2) in this case. Let θ1, . . . , θm ∈
Rd be sample points and ν : D → R be measurable and finite and positive almost everywhere. Then
this problem takes the form

f̂ ∈ argmin
f∈F

1

m

m∑
i=1

1

ν(θi)

d∑
k=0

|yik − ∂kf(θi)|2, (B.7)

where yik = ∂kf
∗(θi) + eik is the kth component of the ith measurement of f∗. For convenience,

we assume the ordering S = {ν1, . . . , νn}. Let f ∈ F be arbitrary and write f =
∑n

i=1 ciΦνi and
c = (ci)

n
i=1. Then

1√
ν(θi)m

∂kf(θi) = (Akc)i ,

where

Ak =

(
1√

ν(θi)m
∂kΦνj (θi)

)m,n

i,j=1

.

Also, let

bk =

(
1√

ν(θi)m
yik

)m

i=1

and set

A =

A0

...
Ad

 , b =

b0...
bd

 .
Then

1

m

m∑
i=1

1

ν(θi)

d∑
k=0

|yik − ∂kf(θi)|2 = ∥Ac− b∥22.

Thus, the algebraic least-squares problem

ĉ ∈ argmin
c∈Cn

∥Ac− b∥22, (B.8)

is equivalent to (B.7), in the sense that every solution of this problem yields a solution f̂ =∑n
i=1 ĉiΦνi of (B.7) and vice versa.

Notice (B.8) is an m(d+ 1)× n algebraic least-squares problem, which can be easily solved using
standard linear algebra software once the matrix A has been computed. This is done using the
relations (B.4) and (B.5).

B.4 Christoffel sampling

We now explain how to perform CS in this example. Directly sampling from the measure (2.7) is
potentially difficult for this problem, since a simple characterization of the generalized Christoffel
function K(F)(θ) is lacking. However, we observe that

1

d+ 1
K̃(F)(θ) ≤ K(F)(θ) ≤ K̃(F)(θ), (B.9)

where

K̃(F)(θ) =
∑
ν∈S

∥L(θ)(Φν)∥2Y =
∑
ν∈S

d∑
k=0

|∂kΦνi(θ)|2 =
∑
ν∈S

d∑
k=0

|ψ′
νk
(θk)|2

∏d
l=1
l ̸=k

|ψνl
(θl)|2

1 + ∥ν∥1
.

(B.10)
See Lemma E.1. Notice that∫

D

K̃(F)(θ) dρ(θ) =
∑
ν∈S

∫
Rd

d∑
k=0

|∂kΦν(θ)|2 dρ(θ) =
∑
ν∈S

∥Φν∥2H1
ρ(Rd) = n,

23

since the functions Φν are orthonormal. Therefore, we can use K̃(F)(θ) to construct a sampling
measure as

dµ̃(θ) = ν̃(θ) dρ(θ) =
K̃(F)(θ)

n
dρ(θ).

Since ess supθ∼ρ{K(F)(θ)/ν̃(θ)} ≤ n, Corollary 4.3 implies that sampling from µ̃ yields optimal,
log-linear sample complexity. As it is so closely related to the generalized Christoffel function (see
(B.9)), we continue to refer to this as Christoffel sampling.

One can sample from µ̃ by observing that it is an additive mixture [34] of tensor-product probability
measures, each of which can be sampled from efficiently [96]. However, we opt for a simpler
approach based on [2, 92] involving finite grids and discrete measures. Let Z = {zi}Ni=1 ⊂ D grid of
N ∈ N points, with each point zi drawn i.i.d. from the measure ρ. Then, we now replace the measure
ρ by the finite measure

ρ̄ =
1

N

N∑
i=1

δzi . (B.11)

After doing this, the Christoffel function becomes a discrete function supported on the grid Z, which
can be expressed as

K̃(F)(z) =
n∑

j=1

d∑
k=0

|∂kχj(z)|2, z ∈ Z,

where {χj}nj=1 is an orthonormal basis of F with respect to the discrete H1
ρ(R)-inner product. Now

define the matrix

B =

B0

...
Bd

 , Bk =

(
1√
N
∂kΦνj (zi)

)N,n

i,j=1

.

Consider the QR factorization B = QR, where Q = (qij) ∈ C(d+1)N×n has orthonormal columns
and R ∈ Cn×n is upper triangular. Then the jth column of Q contains precisely the values ∂kχj(zi),
i = 1, . . . , N , k = 0, . . . , d. Using this, we get

K̃(F)(zi) = N

n∑
j=1

d∑
k=0

|qi+kN,j |2, i = 1, . . . , N.

Notice that ∫
K̃(F)(z) dρ̄(z) =

N∑
i=1

n∑
j=1

d∑
k=0

|qi+kN,j |2 = n,

and therefore

ν(z) =
K̃(F)(zi)

n
.

Hence, we can compute the function K̃(F) over the grid Z and then use this to sample from the
optimal measure µ, which in this case is the discrete measure with θ ∼ µ if

P(θ = zi) =
K̃(F)(zi)
nN

, i = 1, . . . , N.

B.5 Additional experimental details

As described in Appendix B.4 we first draw a random grid from the measure ρ. In our experiments,
we choose the number of grid points as N = 50, 000. Note that this grid is drawn once, prior to any
subsequent computations. In Fig. 1 we compute a test error as the relative Sobolev norm error over
this grid. This is done using the following expression:

E(f∗) =
∥f∗ − f̂∥H1

ρ̄
(Rd)

∥f∗∥H1
ρ̄
(Rd)

=

√√√√∑d
k=0

1
N

∑N
i=1 |∂k(f∗ − f̂)(zi)|2∑d

k=0
1
N

∑N
i=1 |∂kf∗(zi)|2

. (B.12)

24

Figure 4: CS for gradient-augmented polynomial regression. Plots of the average condition number cond(A)
versus m for MCS and CS for gradient-augmented polynomial regression for d = 2, 4, 8 (left to right). In both
cases, we use the scaling m = ⌈max{n, n log(n)}/(d+ 1)⌉.

The experiments shown in Fig. 1 proceed as follows. First, we generate a sequence of hyperbolic
cross index sets (B.6) of orders 1 ≤ p1 < p2 < · · · < pL. Second, for each l = 1, . . . , L, we choose
m = ml according to the scaling

m = ⌈max{n, n log(n)}/(d+ 1)⌉, (B.13)

where n = nl = |Spl
|. Then, we draw m samples randomly using either MCS or CS (as described

above), compute the approximation f̂ using (B.8) and then compute the error using (B.12). We then
repeat this process for a total of T = 25 trials.

The graphs in Fig. 1 and this appendix show the geometric mean (the main curve) and plus/minus
one (geometric) standard deviation (the shaded region). The reason for using the geometric mean is
because the errors are plotted in log-scale on the y-axis. See [1, Sec. A.1] for further rationale behind
this choice of visualization.

These experiments were conducted on a 2012 MacBook Pro with a 2.7 GHz Intel Core i7 CPU and
16 GB of DDR3-1600 RAM running MATLAB R2020b. Total runtime for these experiments was
roughly three days.

B.6 Further experiments and discussion

Let 0 ≤ α′ ≤ β′ <∞ be the optimal constants in the empirical nondegeneracy condition (2.5). In
this example, for a collection of sample points θ1, . . . , θm, these are given by

α′ = inf

{
1

m

d∑
k=0

m∑
i=1

1

ν(θi)
|∂kf(θi)|2 : f ∈ F, ∥f∥X ≤ 1

}

β′ = sup

{
1

m

d∑
k=0

m∑
i=1

1

ν(θi)
|∂kf(θi)|2 : f ∈ F, ∥f∥X ≤ 1

}
(here we recall that F− F = F, since F is a subspace). By expanding f ∈ F in the orthonormal basis
{Φν : ν ∈ S} we readily deduce that

α′ = σmin(A), β′ = σmax(A).

Thus, these constants can be computed numerically. Moreover, their ratio β′/α′ = cond(A) is
precisely the 2-norm condition number of A. In Fig. 4, we plot cond(A) for both schemes using the
same experimental setup as in Fig. 1. As predicted by our theory, CS leads to a bounded condition
number for all m, that is at most roughly 102 in magnitude. However, MCS leads to an exploding
condition number. This indicates that the scaling used Eq. (B.13) is not sufficient to ensure a good
generalization bound, which is the reason for the poor performance of MCS in Fig. 1.

To examine this further, in Fig. 5 we perform the following experiment. For each value of n = nl,
l = 1, . . . , L, we compute the minimum value of m = ml such that cond(A) ≤ tol, where tol = 10.
This is done as follows. We first set m = n/(d+ 1) and compute cond(A). If cond(A) > tol, we
increment m by one, draw new samples, re-compute cond(A) and check whether cond(A) ≤ tol. If
not, we repeat this step. Finally, we repeat the whole process for a total of T = 25 trials.

25

Figure 5: CS for gradient-augmented polynomial regression. Plots of minimum value of m that which yields
a condition number cond(A) ≤ tol for both MCS and CS, where tol = 10 and d = 2, 4, 8 (left to right).

In Fig. 5, we show the results of this computation for MCS and CS. We plot both the arithmetic
mean (the main curve) and plus/minus one standard deviation (the shaded region). As is evident,
the CS scheme leads to a much less severe scaling. Further, as predicted by our main result, this
scaling behaves as m ∝ n log(n). On the other hand, MCS exhibits a severe scaling. When d = 2,
for examples, one needs over 2000 sample points whenever n ≥ 30. Notice that this exceedingly
poor scaling for polynomial regression with MCS has been widely documented in the non-gradient
augmented setting [57, 90, 114]. These experiments show gradient-augmented sampling also suffers
from a similar effect.

As noted in Section 5, a limitation of this approach is that the benefit it delivers depends very much
on the problem setting. For example, suppose we change the domain D to the bounded hypercube
D = [−1, 1]d and consider polynomial regression using orthonormal polynomials with respect to the
uniform probability measure on D. These polynomials can be constructed using tensor-products of
the one-dimensional Legendre polynomials, much as was done in the previous case with the Hermite
polynomials. In particular, analogous recurrence relations to (B.2) and (B.3) hold [28, Sec. 2.3],
which allows for efficient construction of the least-squares matrix A once more. In Fig. 6 we display
the approximation errors and condition numbers for MCS and CS for this problem. The comparison
with Fig. 1 and Fig. 4 is striking. Especially in higher (d ≥ 4) dimensions MCS performs nearly as
well as CS, both in terms of the approximation error and condition number. This behaviour is also
reflected in scaling computations, which are shown in the third row of Fig. 6. In low dimensions,
MCS suffers from a worse scaling that CS, but it is nowhere near as severe as in the case of unbounded
domains. Moreover, as the dimension increases the scalings become much closer. Note that these
observations are well known in the non-gradient augmented setting [57, 90].

B.7 Variation involving C > 1

We conclude this appendix by briefly describing several variations on the gradient-augmented
regression problem that take advantage of the multimodal (C > 1) formulation of the general
sampling framework.

Partial gradient samples

In some of the aforementioned applications, one may only be able to afford fewer gradient samples
than function evaluations [56, 103]. This can be handled as followed. Let C = 2, m1 be the number
of function only samples and m2 be the number of gradient-augmented samples. Then we define
X = H1

ρ(Rd), D1 = D2 = Rd, ρ1 = ρ2 = ρ, Y1 = (C, ⟨·, ·⟩2), Y2 = (Cd+1, ⟨·, ·⟩2) and

L1(θ)(f
∗) = c0f

∗(θ), L2(θ)(f
∗) = (ck∂kf

∗(θ))dk=0,

where c0 = 1/
√
2 and ck = 1 otherwise. Then we have

C∑
c=1

∫
Dc

∥L(θ)(f∗)∥2Yc
dρc(θ) =

∫
D

|f∗(θ)|2 dρ(θ) +
d∑

k=0

∫
Rd

|∂kf∗(θ)|2 dρ(θ) = ∥f∗∥2H1
ρ(Rd).

Thus, empirical nondegeneracy holds (2.5) as before.

26

Figure 6: CS for gradient-augmented polynomial regression. Plots of the polynomial regression error (top
row), condition number (middle row) and scalings (bottom row) for d = 1, 2, 4, 8 (left to right) when using the
Legendre polynomials on D = [−1, 1]d instead of the Hermite polynomials on D = Rd. These rows recreate
Figs. 1, 4 and 5, respectively, for this setting.

Hierarchical sampling

A limitation of the standard CS is that it is not well suited to hierarchical approximation. Often in
practice, rather than a single approximation, one may wish to compute a sequence of approximations
f̂1, f̂2, . . . it a nested sequence of subspaces F1 ⊂ F2 ⊂ · · · using a nested sequence of samples
{θi}m1

i=1 ⊂ {θi}m2
i=1 ⊂ · · · . Standard CS is not well suited to this problem, since when the subspace

changes from Fk to Fk+1, so does the generalized Christoffel function. Therefore the existing points
are drawn from the wrong distribution for optimal sampling in the new subspace Fk+1.

A means to overcome this problem was presented in [91] (see also [2]). It can be cast into our general
framework using C = n = dim(F) sampling operators. These works consider the unaugmented
learning problem. However, it is readily extended to the gradient-augmented setting.

The basic idea is to define the ith sampling measure as

dµi(θ) = νi(θ) dρ(θ), νi(θ) =

d∑
k=0

|∂kΦνi(θ)|2, i = 1, . . . , n. (B.14)

Notice that this is a probability measure, since the Φνi are orthonormal in H1
ρ(Rd), Then, assuming

that m = kn for some k ∈ N, we draw mi = k samples i.i.d. according to µi for each i = 1, . . . , n,
giving m samples in total. We omit the full analysis of this case, but we remark in passing that this
leads to near-optimal sample complexity. This is due, in essence, to the fact that

n∑
i=1

νi(θ) = K̃(F)(θ),

where K̃(F) is as in (B.10). The key point is that (B.14) is well suited to hierarchical approximation,
since it draws k samples corresponding to each basis function Φνi . If the subspace F = span{Φνi :
i = 1, . . . , n} is augmented to F′ = span{Φνi : i = 1, . . . , n′}, where n′ ≥ n, then we can recycle
the existing samples, and draw additional samples for the new basis functions Φνi , i = n+ 1, . . . , n′.
See [2, 91] for further details.

27

C Fourier imaging with generative models

In this appendix, we describe the example considered in Section 3.2. We consider a discrete imaging
scenario where the object to recover is a d-dimensional image of size n× · · · × n. In this paper, we
consider 3D imaging, i.e., d = 3.

Let N = nd and f∗ ∈ CN be the complex-valued vectorized image. Let F ∈ CN×N be the matrix
of the d-dimensional Discrete Fourier Transform (DFT) of length n with normalization F ∗F = I .
In (subsampled) Fourier imaging, one selects m ≤ N frequencies (typically, m ≪ N), which
correspond to m rows of F . Let Ω ⊆ {1, . . . , N}, |Ω| = m, be the set of frequencies sampled. Then
the noisy measurements of the unknown image f∗ take the form

PΩFf
∗ + e,

where e ∈ Cm is noise and PΩ ∈ Cm×N is the row selector matrix, i.e., PΩF selects the rows of F
corresponding to the indices in Ω.

C.1 Formulation in terms of the general sampling framework

Depending on the imaging modality, it may be possible to select individual frequencies according to
some sampling strategy. However, in applications such as MRI, this may not be possible. Typically,
the scanner is only allowed to sample along piecewise smooth curves in frequency space [80, 89].
Fortunately, as we now describe, both models can be cast in our general sampling framework.

Let X = X0 = CN with the Euclidean inner product and norm and C = 1. Let ∆1, . . . ,∆M ⊆
{1, . . . , N} be a partition of {1, . . . , N}, i.e., ∪M

i=1∆i = {1, . . . , N}. For convenience, we assume
the ∆i have the same cardinality, i.e., |∆i| = p, ∀i. Then we let D = {1, . . . ,M}, ρ be the uniform
probability measure on D and Y = Cp with the Euclidean inner product. Next, we define the
sampling operator

L : D → B(CN ,Cp),

by
L(i)(x) =

√
M ((Fx)j)j∈∆i

∈ Cp, ∀x ∈ CN . (C.1)

In other words, L(i) is the linear operator that outputs the Fourier transform of an image x at the
frequencies in the ith partition element ∆i. Observe that Assumption 2.4 holds for this example with
α = β = 1. Indeed, for any x ∈ CN , we have∫

D

∥L(θ)(x)∥2 dρ(θ) = 1

M

M∑
i=1

∥L(i)(x)∥2Y =

M∑
i=1

∑
j∈∆i

|(Fx)j |2 = ∥Fx∥22 = ∥x∥22. (C.2)

With this in hand, our goal now is to design a suitable sampling measure µ on D = {1, . . . ,M},
so that each random draw from µ corresponds to a sample of frequencies from the corresponding
partition element. Let us first describe two examples.

Example C.1 (Sampling individual frequencies) Suppose the modality allows for sampling one
frequency at a time. Here, we let M = N and define ∆i = {i}, i = 1, . . . , N .

We consider Example C.1 later in Fig. 8. Fig. 2 in the main paper is, however, based on the following
example.

Example C.2 (Sampling horizontal lines in k-space) Phase encoding is a common sampling strat-
egy in MRI. Here one fully samples in the first k-space direction and subsamples in the others.
Thus, the scanner traverses a piecewise smooth trajectory in k-space. Mathematically, this can be
formulated as follows. Let d = 3 for concreteness (other values of d can be easily handled), N = n3

and M = n2. 3D frequencies are naturally enumerated over the set of multi-indices {1, . . . , n}3.
Now consider a partition ∆′

i1i2
, i1, i2 = 1, . . . , n, of this set defined by

∆′
i1i2 = {(j, i1, i2) : j ∈ {1, . . . , n}}.

Thus, ∆′
i1i2

consists of k-space values along a horizontal line with y-z coordinate (i1, i2). We now let
∆i1i2 ⊂ {1, . . . , N} be the image of ∆′

i1i2
with respect to whatever ordering is used to convert triples

(i, j, k) ∈ {1, . . . , n}3 to single indices in {1, . . . , N} (in our experiments, we use lexicographical
ordering). Then the sets ∆i1i2 define a partition of {1, . . . , N}, as required.

28

Note that the above formulation is by no means limited to these two examples. Many other popular
sampling strategies can equally well be considered. This includes radial line sampling, spiral sampling
and various other strategies used in practice. We remark in passing that the setup described here is
closely related to the block sampling setup in compressed sensing. See [18, 22].

Remark C.3 It is worth noting two extensions of this setup. First, in practice one may wish to
consider overlapping partitions ∆1, . . . ,∆M . Here, one requires a small modification of the sampling
operators to ensure Assumption 2.4 holds. For an index j ∈ {1, . . . , N} let rj ∈ N be the number of
partition elements in which j appears, i.e., rj = |{i : j ∈ ∆i}|. Then define

L(i)(x) =
√
M((Fx)j/

√
rj)j∈∆i

. (C.3)
We now argue as in (C.2) to deduce that empirical nondegeneracy holds with α = β = 1.

Second, it is sometime useful in practice to allow the partition elements to have different cardinalities,
i.e., |∆i| = pi, i = 1, . . . ,M . This can be handled straightforwardly by zero padding. Let Y = Cp,
where p = maxi=1,...,M{pi}. Then we define L(i) : CN → Cp by appending p − pi zeros to the
vector defined in (C.1) (or (C.3) if the partition is overlapping).

C.2 The approximation space: compressive imaging with generative models

The approach considered in this paper is based on the work [20] which introduced the generative
compressed sensing framework. Their subsequent work on posterior sampling further delved into
the problem [68]. In compressed sensing, the primary objective is to leverage the inherent structure
in the solutions of underdetermined systems of noisy linear measurements. Most of the existing
literature in this field focuses on imposing various forms of sparsity, such as standard sparsity, joint
sparsity, hierarchical sparsity, or block sparsity [5, 48]. However, the generative compressed sensing
framework takes a different approach. It assumes that the solutions to these problems lie near the
range of a generative model G : Rp → RN . By employing a well-trained generative model G that
is relevant to the reconstruction task at hand, one can solve an optimization problem to reconstruct
images or other signals. In this case, the approximation space F = range(G) ⊂ RN , i.e., the range
of the generative model G. This space can be seen as a low-dimensional manifold embedded in
a higher-dimensional space. Even for simple DNN models this space is typically nonlinear, and
certainly for the complex models considered for the experiments related to this section.

Importantly, the generative compressed sensing framework is not limited to image reconstruction
but has broader applicability. The recent work [15] extends the analysis from [20] to the problem
of demixing with subgaussian matrices. Other notable contributions include variational networks
[59], generative adversarial networks trained with least-squares and pixel-wise ℓ1/ℓ2 cost functions
[87], generative adversarial network frameworks for structure preserving compressive sensing MRI
[40], and model-based approaches combined with regularization and unrolled network architectures
[7]. Furthermore, a recent study considers the semi-parametric single-index model with a generative
prior under a Gaussian measurement assumption [81]. These studies, along with other diverse works,
demonstrate the impressive versatility of the generative compressed sensing approach.

C.3 The generalized Christoffel function

Let F ⊆ X, where, as stated above, X = CN with the Euclidean inner product. Denote the Euclidean
norm by ∥ · ∥. Then the generalized Christoffel function is defined by

K(F)(i) = sup

{
∥L(i)(f)∥2

∥f∥2
: f ∈ F

}
=M sup

{∑
j∈∆i

|(Ff)j |2

∥f∥2
: f ∈ F

}
(C.4)

for i ∈ {1, . . . ,M}. Since D = {1, . . . ,M} is a discrete set, we consider discrete probability
measures. Denote such a measure by (µi)

M
i=1, i.e., I ∼ µ if P(I = i) = µi. Then sampling according

to the Christoffel function gives the values

µi =
K(F)(i)
Mκ(F)

, i ∈ {1, . . . ,M},

where

κ(F) =
∫
D

K(F)(θ) dρ(θ) =
1

M

M∑
i=1

K(F)(i).

29

Algorithm 1 Computing K̃

input: Generative model G, number of iterations t, input distribution ρ on the domain of G,
DFT matrix F .
initialize: K̃ = 0
for l = 1 to t do

Generate two i.i.d. realizations f1, f2 via the generative model, i.e., fi = G(zi) for zi ∼i.i.d. ρ

Compute ai =M
∑

j∈∆i
|(Fg)j |2/∥v∥2 for g = f1 − f2 and i = 1, . . . ,M

for i = 1 to M do
Replace K̃(i) = max{K̃(i), ai}

end for
end for
output: Vector K̃ with updated entries.

Note that the corresponding weight function is

ν(i) =Mµi =
K(F)(i)
κ(F)

, i ∈ {1, . . . ,M}.

In order to apply Theorem 4.2 to this example, we need to identify a (subspace) cover F̃ = F1∪· · ·∪Fd

of the set F − F, where, as above F, is the range of a generative model. It is therefore important
to first ask when the set F − F admits such a cover for a reasonable value of d (since d appears
logarithmically in the bound). This question has been addressed in [95, Lem. 3.1] in the case of ReLU
generative models (see also [16, Lem. S2.2]). Roughly speaking, if G : Rp → RN has L layers
and the widths of its hidden layers are O(p), then F− F can be covered exactly with log(d) ≲ pL
subspaces of dimension 2p.

There are two factors that prohibit direct application of Theorem 4.2 to this example. First, the
generative models we use are not simple ReLU DNNs. Second, even if they were, identifying the
aforementioned union of subspaces that form the cover and computing the constant K(F̃) is likely
computationally infeasible, since d grows exponentially in pL.

As noted in Section 5, however, we believe the estimate involving K(F̃) in Theorem 4.2 to be
non-sharp, and conjecture that it should suffice to consider K(F − F) instead. Therefore, in what
follows, we compute with (an approximation to) the former. Thus, in this example, the theory does
not completely apply. Nevertheless, as noted, we see significant benefits from CS for this example.

C.4 Numerical approximation to the generalized Christoffel function

In view of (C.4), computing K(F − F) involves solving M (nonlinear, nonconvex) maximization
problems over the input space Rp of the generative model G. This is extremely computationally
expensive, since both p and M are large in practice. In our examples, M = n3 (Theorem C.1) or
M = n2 (Theorem C.2), where n = 128, and p = 1024 (see next).

Therefore, in this work we consider a different approach, which is based on an iterative, random
sampling procedure for computing an approximation K̃ to K. This procedure is presented in
Algorithm 1 and involves repeated random samples from the input distribution of the generative
model to construct candidate elements f1−f2 ∈ F−F. It has the advantages of being simple and not
computationally intensive. Moreover, as our examples show, sampling from the resulting K̃ achieves
the objective of significantly outperforming MCS.

The convergence of Algorithm 1 in computing K̃ can be seen in Fig. 7 where the relative ℓ2 error of
the iterates are computed with the final K̃ after the algorithm returns.

C.5 Additional experimental details

The experiments in Figures 2 & 8 were conducted using a single generative neural network model
trained on brain MRI data. The braingen-0.1.0 generative model was obtained from https:
//github.com/neuronets/trained-models/releases and was trained using the nobrainer

30

https://github.com/neuronets/trained-models/releases
https://github.com/neuronets/trained-models/releases

0 200 400 600 800 1000
10-3

10-2

10-1

100

0 200 400 600 800 1000
10-3

10-2

10-1

100

Figure 7: Convergence of the relative ℓ2 error of iterations of Algorithm 1 in computing K̃ for (left) Example
C.2 and (right) Example C.1.

framework [70] available under Apache License, Version 2.0. This model was trained using a
progressively growing strategy [71] for generation of T1-weighted brain MR scans. The model takes
as input a latent vector v ∈ R1024, here generated by sampling from the standard normal distribution,
i.e. vi ∼ N(0, 1), i = 1, . . . , 1024. The output dimension of the selected braingen-0.1.0 model
is N = n3 where n = 128.

First we generate K̃ using 1000 iterations of Algorithm 1. To generate the results, we chose an
image from the range of the generator using random seed ‘12345’. We then ran 20 random trials
reconstructing this image with the same computed K̃, solving problem (2.2) using 5000 iterations of
the Adam optimizer [72], implemented in TensorFlow. A constant learning rate multiplier of 100
was used to improve the convergence in the gradient update step. The experiments were conducted
on a single computer with an AMD Ryzen 9 5950x, 64 GB of DDR4-3600 RAM, and a NVIDIA
GeForce RTX 3090 Ti. The total runtime for these experiments was approximately 2 weeks. In Fig. 2
we consider the setup of Example C.2. In Fig. 8 we consider the setup of Example C.1. As in Section
B.5, our error plots display the mean PSNR value and also a shaded region corresponding to one
standard deviation. The PSNR is defined as

PSNR = 20 · log10
(
MAXf∗
√
MSE

)
,

where MSE is the Mean Squared Error

MSE =
1

N

N∑
i=1

|f∗i − f̂i|2.

Here f∗ is the ground truth image, f̂ is its reconstruction and MAXf∗ is the maximum possible pixel
value of the image, here equal to 255.

C.6 Further experiments and discussion

In Fig. 2 consider the strategy of sampling horizontal lines in k-space, see Example C.2. In Fig. 8
we perform the same experiment with the strategy of sampling individual frequencies in k-space,
see Example C.1. While CS with line sampling performs similarly to CS with individual frequency
sampling, MCS line sampling in k-space can be seen to have a 15-20% drop in image reconstruction
quality over MCS individual frequency sampling in k-space.

Although, as noted, the theory does not directly apply to this example, it is worth examining the
relevant constants to gain some further insight into the performance of CS over MCS. For MCS,
Theorem 4.2 suggests that the sample complexity depends on the term

CMCS = ess sup
i∼ρ

K̃(F− F)(i) = max
i=1,...,M

K̃(F− F)(i),

31

30 40 50 60 70 80 90
5

10

15

20

25

30

35

40

45

0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0
10

15

20

25

30

35

40

45

Figure 8: CS for MRI reconstruction using generative models. Plots of (left) the average PSNR vs. image
number of the 3-dimensional brain MR image for both CS and MCS methods at 0.125%, 0.375%, and 0.625%
sampling percentages, (middle) the average PSNR computed over the frames 30 to 90 of the image vs. sampling
percentage for both CS and MCS methods, and (right) the empirical function K̃ used for the CS procedure. In
this figure, we consider Example C.1 instead of Example C.2, which was used in Fig. 2.

Table 1: Values of CMCS and CCS for experiments with Examples C.1 & C.2.

Example C.1 Example C.2

CMCS 3.2794×105 4616.4

CCS 7.6029 3.9595

i.e., the maximum of the approximate Christoffel function K̃. Conversely, for CS it suggests that the
sample complexity depends on its average, i.e.,

CCS =

∫
D

K̃(F− F)(θ) dρ(θ) =
1

M

M∑
i=1

K̃(F− F)(i).

In Table 1 we report these values for the two experiments. As is evident, CS leads to a greatly reduced
constant in both cases over MCS, which is in agreement with the general improvement in PSNR for
this method. We note, however, that these constants do not capture all the phenomena seen in the
experiments. For example, MCS performs worse for Example C.2 than it does for Example C.1. Yet
the size of the constants would suggest otherwise. This is an interesting gap between the theory and
practice.

C.7 Variations involving C > 1

The setup described so far (sampling the Fourier transform) is a discrete model for so-called single-
coil MRI. However, modern MR scanners are typically employ parallel coils. Here, multiple receive
coils acquire Fourier measurements in parallel. Let C ≥ 1 be the number of coils. Then one can
model the measurements in parallel MRI as

bc = PΩc
FScf

∗ + ec, c = 1, . . . , C.

Here bc ∈ Cmc are the measurements in the cth coil, Ωc ⊆ {1, . . . , N} with |Ωc| = mc and Sc is a
diagonal matrix, known as the sensitivity profile of the coil. See, e.g., [76, 116].

This is a multimodal sampling model that can be cast into our framework. Indeed, we replace the
single sampling operator (C.1) with C sampling operators defined by

Lc(i)(x) =
√
M/N((FScx)j)j∈∆i ∈ Cp, ∀x ∈ CN , c = 1, . . . , C.

Note that empirical nondegeneracy (2.5) is easily shown to be equivalent to the condition

α ≤
C∑

c=1

|(Sc)ii|2 ≤ β, ∀i = 1, . . . , N.

32

Sensitivity profiles are often designed so that this property holds with moderate α, β. Note that
in practice the sensitivity profiles are not known, and have to be computed either via a calibration
pre-scan or learned during the process of recovering the image. See, e.g., [5, Sec. 3.5.2-3.5.3] and
references therein.

D Solving PDEs using PINNs

In this appendix, we provide further details for the example considered in Section 3.3 involving
solving the nonlinear Burger’s equation using PINNs. As mentioned, we implement CS in an adaptive
manner for this example, using a strategy we term Christoffel Adaptive Sampling (CAS). This strategy
not only applies to the numerical solution of PDEs, but to any regression problem with DNNs
and general, multimodal data. We then apply this to the numerical solution of PDEs through the
framework of PINNs.

D.1 PINNs for solving PDEs

Consider a spatial domainD ⊂ Rd and time interval I = [0, T], where d ≥ 1 and T ≥ 0, respectively.
Then we seek to learn an unknown function u∗ : D × [0, T] :→ C given as the solution of a PDE of
the form

Lu = f in D × I

u = ui in D × {0}
u = ub on ∂D × (0, T].

Here L is a differential operator in the space and time variables, ui is a known initial condition and
ub is a known boundary condition. Throughout this section, we use f to denote the right-hand side of
the PDE and u∗ to denote the target function (instead of f∗), as is customary in the numerical PDE
literature.

The general idea behind PINNs [69, 105] is to consider training data of the form

{((xdi , tdi), f(xdi , tdi)}
md
i=1 ∪ {((xii, tii), u∗(xii, tii)}

mi
i=1 ∪ {((xbi , tbi), u∗(xbi , tbi)}

mb
i=1

where (xdi , t
d
i) ∈ D × (0, T] are sample points in the interior of the domain, (xii, t

i
i) ∈ D × {0} are

sample points at the initial condition and (xbi , t
b
i) ∈ ∂D × (0, T] are sample points on the space-time

boundary of the domain. Typically, these sample points are generated via MCS. One then seeks a
minimizer of the problem

min
u∈U

1

md

md∑
i=1

|Lu(xdi , tdi)− f(xdi , t
d
i)|2 +

λi
mi

mi∑
i=1

|u(xii, tii)− u0(x
i
i, t

i
i)|2

+
λb
mb

mb∑
i=1

|u(xbi , tbi)− ub(x
b
i , t

b
i)|2,

where U is a class of DNNs u : Rd × R → R and λi, λb > 0 are hyperparameters that control fitting
the PDE versus fitting the boundary/initial conditions. Note that we write U and u ∈ U throughout
this section instead of F and f ∈ F, to avoid confusion with the right-hand side of the PDE.

D.2 PINNs formulation in terms of the general sampling framework

We now show how to reformulate PINNs in terms of the general sampling framework. Since there
are three types of data, we let C = 3. Then we define D1 = D × (0, T), D2 = D × {0} and
D3 = ∂D × (0, T], and let ρ1, ρ2 and ρ3 be measures on these domains. We then consider the
sampling operators

L1(θ)(u) = Lu(θ), y = (x, t) ∈ D1

L2(θ)(u) =
√
λ2u(θ), y = (x, t) ∈ D2

L3(θ)(u) =
√
λ3u(θ), y = (x, t) ∈ D3.

(D.1)

33

Next, we let νc : Dc → R and µc be as in Assumption 2.2. Finally, for each c = 1, 2, 3, we draw mc

samples (Θic)
mc
i=1, where Θic = (Xic, Tic), and consider the weighted regression problem

min
u∈U

3∑
c=1

1

mc

mc∑
c=1

1

νc(Θic)
|Lc(Θic)(u)− Lc(Θic)(u

∗)|2. (D.2)

There are several factors that prohibit direct application of CS to (D.2). The first is that the sampling
operator L1 is potentially nonlinear, since it involves the generally nonlinear PDE operator L. This
means that there is no theoretical basis for the use of CS. However, even if it were linear (e.g., for
a linear PDE), it could be very difficult to compute the generalized Christoffel functions Kc(U) in
practice, since evaluating Kc(U) at a single point θ involves solving a maximization problem over
the space U (a class of DNNs). The second, and arguably more critical issue, is that PINNs are
typically implemented in the highly overparametrized regime, where the number of DNN parameters
greatly exceeds the amount of training data. CS is designed to provide sampling measures that ensure
‘good’ recovery over the whole of the space U. But this is an extremely conservative approach for
DNN-based learning problems, since only certain DNNs are likely to be encountered in training.

We tackle these problems in reverse order. For the second, we present an adaptive sampling approach
for deep learning. This is described in the next subsection. Note that this does not assume the
underlying problem is a PDE. Our presentation follows the lines of the general sampling framework.
Having done this, we then describe its application to PINNs, including suitable modifications of the
sampling measures and loss function that take into account the nonlinearity of the PDE operator.

D.3 CAS for deep learning with general, multimodal samples

In this section, we consider DL based on general, multimodal samples as introduced in our general
sampling framework. What follows is an extension of a method first introduced in [3], which in turn
is based on ideas from [35]. Let X be a Hilbert space of functions Rd1 → Rd2 and U ⊂ X be a class
of DNNs of a fixed architecture. As in Section 2, we consider sampling operators

Lc : Dc → B(X0,Yc), c = 1, . . . , C,

where the Yc are Hilbert spaces. We also write u∗ ∈ X for the unknown function we seek to learn.

We now describe the adaptive sampling method. This exploits the so-called adaptive basis viewpoint
of DNNs, as developed in [35]. Let n ∈ N be the number of nodes in the penultimate layer of the
network architecture used to define U and, for convenience, assume that the output is not subject to a
bias term, just a weight. Therefore, we can write any u ∈ U as

u = C⊤H, (D.3)

where H : Rd1 → Rn is a DNN of the same architecture as u, except for the final layer, and
C = (cij)

n,d2

i,j=1 is the weight matrix on the output layer. Now let ui : Rd1 → R be the ith component
of u, i = 1, . . . , d2, and Hi : Rd1 → R be the ith component of H , i = 1, . . . , n. Then we can
express hj as

uj =

n∑
i=1

cijHi, j = 1, . . . , d2.

In particular, each uj is an element of the subspace span{H1, . . . ,Hn}.

Now consider an initial DNN û = û(0) = (û
(0)
j)d2

j=1 obtained via a standard (random) initialization
strategy. Write û as in (D.3) as

û(0) = (Ĉ(0))⊤Ĥ(0),

let Ĥ(0) = (Ĥ
(0)
i)ni=1 and consider the subspace

H(0) = span{Ĥ(0)
1 , . . . , Ĥ(0)

n }

so that û(0)j ∈ H(0), j = 1, . . . , d2. Let p0 = dim(H(0)) ≤ n. We now perform CS using this
subspace. In other words, we define sampling measures

dµ(1)
c (θ) = ν(1)c (θ) dρc(θ), ν(1)c (θ) =

Kc(H(0))(θ)

p0
, c = 1, . . . , C,

34

then, for each c, we generate m(1)
c sample points Θic i.i.d. from µ

(1)
c and generate samples as

yic = Lc(Θic)(u
∗), i = 1, . . . ,m(1)

c , c = 1, . . . , C.

Given these samples, we then train a new DNN by applying a standard optimizer to the minimization
problem

min
u∈U

C∑
c=1

1

m
(1)
c

m(1)
c∑

i=1

1

ν
(1)
c (Θic)

∥yic − Lc(Θic)(u)∥2Yc
.

Let û(1) ∈ U be resulting DNN. The idea now is to repeat this process by drawing m(2)
c −m

(1)
c new

samples using CS for the new subspace H(1) and then using the full set of m(2)
c samples to compute

a new DNN û(2). Continuing in this way, we generate a sequence of DNNs û(1), û(2), . . . ∈ U
approximating the unknown function u∗. To be precise, consider step l ≥ 1. Let û(l−1) be given,
write

û(l−1) = (Ĉ(l−1))⊤Ĥ(l−1), Ĥ(l−1) = (Ĥ
(l−1)
i)ni=1

and define
H(l−1) = span{Ĥ(l−1)

1 , . . . , Ĥ(l−1)
n }, pl−1 = dim(H(l−1)).

We use this to construct sampling measures

dµ(l)
c (θ) = ν(l)c (θ) dρc(θ), ν(l−1)

c (θ) =
Kc(H(l−1))(θ)

pl−1
, c = 1, . . . , C,

and then, for each c, we generate m(l)
c −m

(l−1)
c new sample points Θic, i = m

(l−1)
c + 1, . . . ,m

(l)
c ,

i.i.d. from µ
(l−1)
c and corresponding samples

yic = Lc(Θic)(u
∗), i = m(l−1)

c + 1, . . . ,m(l)
c , c = 1, . . . , C.

We then combine these with the existing m(l−1)
c samples, giving a total of m(l)

c samples for each c,
and then use this to train a new DNN via the minimization problem

min
u∈U

C∑
c=1

1

m
(l)
c

m(l)
c∑

i=1

1

ν
(l)
c (Θic)

∥yic − Lc(Θic)(u)∥2Yc
.

We write û(l) ∈ U for the resulting DNN.

D.4 CAS for PINNs

Our aim now is to apply the CAS method in the previous subsection to PINNs. In this case, we set
d1 = d+ 1 and d2 = 1. As we now describe, we make one main modification to CAS in this case,
which is to replace the true generalized Christoffel functions Kc with surrogates K̃c that are more
amenable to computations.

Recall that C = 3 in this case and that the sampling operators are as in (D.1). To define K̃1 we
simply forget the differential operator L and define

K̃1(H(l−1))(x, t) = sup

 |h(x, t)|2

∥h∥2L2
ρ1

(D1)

: h ∈ H(l−1)\{0}

 , (x, t) ∈ D1 = D × (0, T).

Next, for the initial (c = 2) and boundary (c = 3) data, we define

K̃2(H(l−1))(x, t) = sup

 |h(x, t)|2

∥h∥2L2
ρ2

(D2)

: h ∈ H(l−1)\{0}

 , (x, t) ∈ D2 = D × {0}

and

K̃2(H(l−1))(x, t) = sup

 |h(x, t)|2

∥h∥2L2
ρ3

(D3)

: h ∈ H(l−1)\{0}

 , (x, t) ∈ D3 = ∂D × (0, T).

35

Let ν̃(l)c and µ̃(l)
c denote the corresponding weight function and sampling measures, i.e.,

dµ̃(l)
c (x, t) = ν̃(l)c (x, t) dρc(x, t), ν̃(l−1)

c (x, t) =
K̃c(H(l−1))(x, t)

pl−1,c
, c = 1, 2, 3. (D.4)

Then at step l of the procedure, we generate m(l)
c − m

(l−1)
c new sample points (Xic, Tic), i =

m
(l−1)
c + 1, . . . ,m

(l)
c , i.i.d. from µ̃

(l−1)
c and compute the corresponding samples

yic = Lc(Xic, Tic)(u
∗), i = m(l−1)

c + 1, . . . ,m(l)
c , c = 1, 2, 3,

where the Lc are as in (D.1). We then combine these with the existing m(l−1)
c samples and use this to

train a new DNN via the minimization problem

min
u∈U

3∑
c=1

1

m
(l)
c

m(l)
c∑

i=1

1

ν̃
(l)
c (Θic)

|yic − Lc(Xic, Tic)(u)|2. (D.5)

We term this method CAS for PINNs. It is summarized in Algorithm 2.

Steps 2-3 of this algorithm require some further explanation. First, as in previous examples (see
Appendix B), we introduce finite grids Zc = {zic}Nc

i=1, c = 1, 2, 3, to represent the domains Dc,
c = 1, 2, 3. This is to enable efficient sampling from the measures µ̃c, which are now discrete
measures defined over the corresponding grids. See the next section for the construction of these
grids.

Second, recall from Lemma E.1 that in order to compute the functions K̃c, we need to construct
orthonormal bases for space

span{Ĥ(l−1)
1 , . . . , Ĥ

(l−1)
N }

over the finite grids Zic. Previously, in Appendix B.4, we did this via QR factorization. However,
the dictionary {Ĥ(l−1)

i }Ni=1 generated in Step 1 of the algorithm is often numerically redundant.
Therefore, in this case we use a truncated SVD instead. Specifically, if

Bc =

(
1√
Nc

Ĥ
(l−1)
j (zic)

)Nc,N

i,j=1

,

then we compute its SVD UcΣcV
∗
c and define the numerical dimension

pl−1,c = max{i : σic/σ1c > δtol} ∈ {1, . . . , N}.

Using this, we now obtain an orthonormal basis over the grid Zc using the first pl−1,c left singular
vectors, i.e., the first pl−1,c columns of Uc. Given this basis, we can then compute the function
K̃c(H(l−1)) over the grid via Lemma E.1. To precise,

K̃c(H(l−1))(zic) =

pl−1,c∑
j=1

|(Uc)ij |2, i = 1, . . . , Nc,

and the corresponding measures µ̃c are given by θ ∼ µ̃c if

P(θ = zic) =
K̃c(H(l−1))(zic)

pl−1,c
, i = 1, . . . , Nc.

D.5 Additional experimental details

In this section, we describe the setup for our experiments. The problem we consider is the Burger’s
equation with D = (−1, 1), T = 1,

Lu = ∂tu+ u∂xu− (0.01/π)∂xxu,

and initial and boundary conditions

u(x, 0) = − sin(πx), x ∈ D,

36

Algorithm 2 CAS for PINNs

input: PDE operator L, initial and boundary condition ui and ub. Class of DNNs U with fixed
architecture, no bias on the output layer and penultimate layer of with N . Finite grids Zc =

{zic}Nc
i=1 ⊂ Dc, where Nc ≥ N , c = 1, 2, 3, numbers of samples 0 = m

(0)
c < m

(1)
c < m

(2)
c < . . .,

c = 1, 2, 3, and tolerance δtol > 0.
initialize: Initialize the DNN ĥ(0).
for l = 1 to t do

Construct the dictionary {Ĥ(l−1)
1 , . . . , Ĥ

(l−1)
N } via the relation

û(l−1) =

N∑
j=1

(ĉ
(l−1)
j)Ĥ

(l−1)
j .

Construct the sampling measures µ̃(l)
c , c = 1, 2, 3, as in (D.4).

For each c = 1, 2, 3, draw m
(l)
c −m

(l−1)
c sample points (Xi,c, Ti,c), i = m

(l−1)
c +1, . . . ,m

(l)
c .

Train the DNN û(l) ∈ U by applying a standard optimizer to (D.5) with initialization û(l−1).
end for
output: A sequence of DNN approximations û(1), û(2), . . . , û(t) to u.

and
u(−1, t) = u(1, t) = 0, t ∈ (0, 1],

respectively. As mentioned, we employ three finite grids

Z1 = {zi1}N1
i=1 = {(xi1, ti1)}N1

i=1 ∈ (−1, 1)× (0, 1], N1 = 16, 000,

Z2 = {zi2}N2
i=1 = {(xi2, ti2)}N2

i=1 ∈ (−1, 1)× {0}, N2 = 2000,

Z3 = {zi3}N3
i=1 = {(xi3, ti3)}N3

i=1 ∈ {−1, 1} × (0, 1], N3 = 2000.

Following Appendix B, these are generated once beforehand by MCS with respect to the uniform
measure over each domain.

We now describe further aspects of our experiments.

Methods considered. As in previous appendices, we compare CS with MCS. Specifically, we consider
DNNs trained using training data constructed via CAS (i.e., Algorithm 2), and DNNs trained from
standard training data obtained via MCS from the uniform measure over each domain. As in previous
example, we labels these as ‘CS’ and ‘MCS’, respectively. For Algorithm 2 we use the threshold
parameter δtol = 10−6, since our computations are performed in single precision.

Choice of architectures and initialization. We consider fully-connected DNNs with activation function
ρ, L ≥ 1 hidden layers and an equal number of N ≥ 1 nodes per hidden layer. We term these ρ
L×N DNNs. Since we are solving a regression problem, we assume the output layer is not subject
to ρ. We also set the bias to be zero in this layer. For the activation function ρ, we consider either the
Rectified Linear Unit (ReLU), hyperbolic tangent (tanh), Exponential Linear Unit (ELU), or sigmoid.
These are defined as follows:

ReLU: ρ(x) := max{x, 0},

tanh: ρ(x) :=
e2x − 1

e2x + 1
,

ELU: ρ(x) := {x : x ≥ 0, (ex − 1) : x < 0},

sigmoid: ρ(x) :=
1

1 + ex
.

Note that we choose DNNs with a fixed number of nodes N for each layer. Moreover, we also focus
on DNNs with depth L such that the ratio L/N is small. This is motivated by results in [62]. To be
precise, L/N = 0.1 in our experiments.

For the initialization strategy, we consider weights and biases with entries drawn from the Normal
initialization with mean 0 and variance 0.1. Having in mind the size of architectures described in this

37

Table 2: Number of samples per iteration for each domain

parameter Number of samples m(l)
c

l 1 2 3 4 5 6 7 8 9
c = 1 400 1350 2300 3250 4200 5150 6100 7050 8000
c = 2 100 200 300 400 550 650 750 850 1000
c = 3 100 200 300 400 550 650 750 850 1000
Total 600 1750 2900 4050 5300 6450 7600 8750 10000

work, this initialization leads to smaller variance than commonly used initializations used PINNs
such as the well-known Xavier and He Normal initializations. Besides, it has been shown that is an
effective choice for function approximation, see [63, 65]. In all our experiments, the DNNs were
initialized with the same seed to compare the effect of varying the samples.

Optimizers for training and parametrization. We use Adam as the optimizer in combination with an
exponentially decaying learning rate with respect to the number of epochs. For both CAS and the
procedure based on MCS, we train the networks following a schedule number of epochs, described
as follows:

n(0) = 5000, n(l) = n(0) × l, l ≥ 1.

For the CAS strategy, we train the networks for n(l) epochs on each new set of samples, using the
weights and biases from the previous set as initialization. We repeat this procedure 9 times, i.e. we
train for a total of 225, 000 epochs. For MCS, we train the network for a total of 225, 000 epochs as
well, stopping every n(l) epochs to add more data points drawn from the uniform distribution, and
continuing to train from the previous point.

Training data and design of experiments. To measure the performance of these methods, we present
the average testing error and run statistics over 20 trials for both sampling strategies. We train our
DNNs over a set of training data consisting of the values

3⋃
c=1

{((Xic, Tic), u(Xic, Tic))}
m(l)

c
i=1 .

For each c = 1, 2, 3, we generate each data set of size m(l)
c , with 0 < m

(1)
c < . . . < m

(l)
c < . . . <

m
(9)
c , we sample 20 i.i.d. sets of points {Θic}

m(9)
c

i=1 from the sampling measures for each strategy. The
precise values for the numbers of samples m(l)

c are given in Table 2.

Testing data and error metric. Let u∗ be the solution of the PDE and û be a DNN approximation to it.
We compute the (discrete) relative error

E(u∗) =

√
1
M

∑
z∈Zt |u∗(z)− û(z)|2

1
M

∑
z∈Zt |u∗(z)|2

=

√∑
z∈Zt |u∗(z)− û(z)|2∑

z∈Zt |u∗(z)|2
.

where Zt = Zt
1 ∪ Zt

2 ∪ Zt
3 and M =M1 +M2 +M3. Here, for each c = 1, 2, 3, Zt

c is a test grid of
size Mc, with points drawn randomly from the uniform measure over the corresponding domain. We
set M1 = 8000, M2 = 1000 and M3 = 1000 in this work.

To generate the training and testing data, we have to evaluate the true PDE solution u over the corre-
sponding grids. We compute this solution to an accuracy of 10−7 using the numerical solver BURG-
ERS_SOLUTION, which is implemented in [14]. This is available from https://people.math.sc.
edu/Burkardt/m_src/burgers_solution/burgers_solution.html under the GNU LGPL
license.

Plots. As in Appendix B.5, our error plots display the geometric mean error value and
a shaded region corresponding to one (geometric) standard deviation. We also plot the
points generated by the final iteration of CAS. We visualize the density of these points
using the package densityScatterChart in MATLAB using ‘ksdensity’ as density method
and α ∈ [0.2, 0.5]. See https://www.mathworks.com/matlabcentral/fileexchange/
95828-densityscatterchart?s_tid=FX_rc3_behav for more details.

38

https://people.math.sc.edu/Burkardt/m_src/burgers_solution/burgers_solution.html
https://people.math.sc.edu/Burkardt/m_src/burgers_solution/burgers_solution.html
https://www.mathworks.com/matlabcentral/fileexchange/95828-densityscatterchart?s_tid=FX_rc3_behav
https://www.mathworks.com/matlabcentral/fileexchange/95828-densityscatterchart?s_tid=FX_rc3_behav

Figure 9: CAS for solving PDEs with PINNs. Plots of (left) the average test error E(u∗) versus the number of
samples used for training ReLU and ELU 5× 50 DNNs using CAS (solid line) and MCS (dashed line), (middle)
the samples generated by the CAS for the ReLU 5× 50 DNN and (right) the samples generated by CAS for the
ELU 5× 50 DNN. The colour indicates the density of the points.

Figure 10: CAS for solving PDEs with PINNs. Plots of (left) the average test error E(u∗) versus the number
of samples used for training 3× 30 DNNs using CAS (solid line) and MCS (dashed line), (middle) the samples
generated by the CAS for the tanh (top) and ReLU (bottom) 3× 30 DNNs and (right) the samples generated by
CAS for the sigmoid (top) and ELU (bottom) 3× 30 DNNs. The colour indicates the density of the points.

Implementation, hardware and compute time. Our experiments have been implemented in TensorFlow
version 2.5. This implementation has been inspired by works [3, 19].

The computations were performed in single precision using NVDIA Tesla P100 GPUs on Compute
Canada’s Cedar compute cluster. To be precise, each node used in these experiments has 24 CPU
cores and 128GB of memory and four Tesla P100 GPUs with 16GB memory. See https://docs.
alliancecan.ca/wiki/Cedar for further information.

The compute time is roughly one day for the computations involving the ρ 3 × 30 and ρ 5 × 50
DNNs and 2 days for those involving the ρ 10 × 100 DNNs. Therefore, the total compute time is
approximately four days.

39

https://docs.alliancecan.ca/wiki/Cedar
https://docs.alliancecan.ca/wiki/Cedar

Figure 11: CAS for solving PDEs with PINNs. Plots of (left) the average test error E(u∗) versus the number of
samples used for training 10× 100 DNNs using CAS (solid line) and MCS (dashed line), (middle) the samples
generated by the CAS for the tanh (top) and ReLU (bottom) 10× 100 DNNs and (right) the samples generated
by CAS for the sigmoid (top) and ELU (bottom) 10× 100 DNNs. The colour indicates the density of the points.

D.6 Further experiments and discussion

In Fig. 9 we show the same results as in Fig. 3, except using the ReLU and ELU activation functions
instead. Here, none of the methods lead to a decreasing test error as the number of samples increases,
although the errors for MCS are somewhat larger than those of CAS. As is evident from the plots of
the samples points, CAS fails to adapt the sampling measures to the PDE solution in this experiment,
unlike in the case of Fig. 3.

This experiment indicates that the performance of CAS in relation to MCS is heavily influenced by
the choice of architecture. To further explore this phenomenon, in Fig. 10 and Fig. 11 we consider
3× 30 and 10× 100 DNNs, respectively. In the former case, we once more see no decrease in the test
error for the ReLU and ELU activation functions. The test error for the tanh and sigmoid activation
functions does decrease with increasing m. Yet, CAS leads only to a marginal benefit over MCS for
the tanh activation, and leads to worse performance for the sigmoid activation. As can be seen from
the plot of the points, the CAS fails to adequately cluster the points in the case of the latter.

In Fig. 11, we consider 10×100 DNNs and see decreasing errors for the tanh and sigmoid activations,
with CAS giving better performance than MCS. For the ELU activation function, while the error is
(slowly) decreasing, CAS actually performs worse than MCS. Once more, for the ReLU activation
function, we see no convergence.

The discrepancy in performance between the different activation functions is mirrored when we
examine the training loss. In Fig. 12 we show the training loss versus number of epochs. For
the best-performing tanh and sigmoid activations, we see significant decrease of the training loss,
whereas for the other activations we see slower or sometimes no decrease. Note that all DNNs are
trained using the same hyperparameters. This behaviour is in some senses unsurprising, since the
worst-performing activation functions are only piecewise smooth and the training loss involves the
PDE operator. Another notable feature is that MCS generally attains a smaller training error than
CAS. Therefore, there is scope to further improve the performance of CAS by improving the training
procedure.

40

Figure 12: Plots of the training loss versus the number of epochs for the CAS and MCS methods with 5× 50
DNNs using 20 trials. The vertical black lines indicate the number of epochs at which more samples are added
in the training.

Finally, in Fig. 13 we plot the functions K̃c, c = 1, 2, 3, that are used to generate the sample points at
the final iteration (see Appendix D.4). Here, once again we see that the tanh and sigmoid activation
functions lead to functions K̃c that are peaked according to the behaviour of the true PDE solution
u∗. However, the ReLU and ELU activation functions fail to capture this behaviour.

E Proofs of the theoretical results

In this appendix, we give the proofs of the results from the main paper. We commence with the
following lemma, which gives several properties of the generalized Christoffel function that will be
needed later.

Lemma E.1 (Properties of K(F)(θ)). The generalized Christoffel function K (see Definition 2.6)
has the following properties.

41

-1 -0.5 0 0.5 1

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0 0.2 0.4 0.6 0.8 1

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

-1 -0.5 0 0.5 1

0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.2 0.4 0.6 0.8 1

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

-1 -0.5 0 0.5 1

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.2 0.4 0.6 0.8 1

0

0.01

0.02

0.03

0.04

0.05

0.06

-1 -0.5 0 0.5 1

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 0.2 0.4 0.6 0.8 1

0

0.005

0.01

0.015

0.02

0.025

Figure 13: Plots of the functions K̃c, c = 1, 2, 3 (left to right), that are used the generate the sample points in the
final iteration of CAS in the case of the 5× 50 DNNs with tanh, sigmoid, ReLU and ELU activation functions
(top to bottom). In the third column, the blue and red curves correspond to the x = 1 and x = −1 boundaries,
respectively.

(i) Let F be a finite-dimensional subspace of X. Then

K(F)(θ) ≤
n∑

i=1

∥L(θ)(fi)∥2Y (E.1)

for any orthonormal basis {fi}ni=1 of F. Furthermore, if Y has dimension p then

K(F)(θ) ≥ 1

p

n∑
i=1

∥L(θ)(fi)∥2Y.

In particular, (E.1) holds with equality when dim(Y) = 1.

(ii) Let F1,F2 ⊆ X. Then

K(F1 ∪ F2)(θ) = max {K(F1)(θ),K(F2)(θ)} .

42

(iii) Let F1,F2 be finite-dimensional subspaces of X. Then

K(F1 + F2)(θ) ≤ 2 (K(F1)(θ) +K(F2)(θ)) .

(iv) Let F ⊆ X and B(F) = {f/∥f∥X : f ∈ F\{0}}. Then

K(B(F))(θ) = K(F)(θ).

Proof. We commence with the proof of (i). Write f ∈ F, f ̸= 0, as f =
∑n

i=1 cifi for ci ∈ C with∑n
i=1 |ci|2 = ∥f∥2X. Then

∥L(θ)(f)∥2Y =

∥∥∥∥∥
n∑

i=1

ciL(θ)(fi)

∥∥∥∥∥
2

Y

≤
n∑

i=1

|ci|2
n∑

i=1

∥L(θ)(fi)∥2Y = ∥f∥2X
n∑

i=1

∥L(θ)(fi)∥2Y,

and therefore

K(F)(θ) ≤
n∑

i=1

∥L(θ)(fi)∥2Y.

For the lower bound, let {e1, . . . , ep} be an orthonormal basis of Y. Fix j ∈ {1, . . . , p} and consider
f =

∑n
i=1 cifi, where ci = ⟨ej , L(θ)(fi)⟩Y. Then

∥L(θ)(f)∥2Y =

∥∥∥∥∥
n∑

i=1

⟨ej , L(θ)(fi)⟩YL(θ)(fi)

∥∥∥∥∥
2

Y

≥

(
n∑

i=1

|⟨ej , L(θ)(fi)⟩Y|2
)2

.

We also have

∥f∥2X =

n∑
i=1

|⟨ej , L(θ)(fi)⟩Y|2.

Therefore, we deduce that

K(F)(θ) ≥
n∑

i=1

|⟨ej , L(θ)(fi)⟩Y|2.

Since j was arbitrary, we now sum over j and use Parseval’s identity to obtain

pK(F)(θ) ≥
n∑

i=1

p∑
j=1

|⟨ej , L(θ)(fi)⟩Y|2 =

n∑
i=1

∥L(θ)(fi)∥2Y,

as required.

Part (ii) follows immediately from the definition of K. Now consider (iii). Write F = F1 + F2 =
G1 ⊕G2, where G1 = F1 and G2 = F2 ∩ F⊥

1 satisfies G2 ⊥ G1. Let f ∈ F, f ̸= 0, be arbitrary and
write f = g1 + g2 for gi ∈ Gi, i = 1, 2. Then

∥L(θ)(f)∥2Y
∥f∥2X

≤ 2
∥L(θ)(g1)∥2Y + ∥L(θ)(g2)∥2Y

∥g1∥2X + ∥g2∥2X

≤ 2

(
∥L(θ)(g1)∥2Y

∥g1∥2X
+

∥L(θ)(g2)∥2Y
∥g2∥2X

)
≤ 2 (K(G1)(θ) +K(G2)(θ))

≤ 2 (K(F1)(θ) +K(F2)(θ)) ,

where in the last step we used the fact that G2 ⊆ F2. Since f was arbitrary, the result now follows.

Finally, consider (iv). By the definition of K, B(F) and linearity,

K(B(F))(θ) = sup
{
∥L(θ)(f/∥f∥X)∥

2
Y : f ∈ F\{0}

}
= sup

{
∥L(θ)(f)∥2Y

∥f∥2X
: f ∈ F\{0}

}
= K(F)(θ),

as required.

43

For the remaining results it is useful to introduce some additional notation. Let

Y = ⊕C
c=1 ⊕

mc
i=1 Yc

be the overall measurement space. Note that this is a Hilbert space, when equipped with suitable
norm. If y = (yic) is an arbitrary element of Y, we take this norm to be

∥y∥Y =

√√√√ C∑
c=1

mc∑
i=1

∥yic∥2Yc
.

Now let m = m1 + . . .+mC , D = ⊗C
c=1 ⊗

mc
i=1 Dc be the tensor-product space and write (θic) for

an arbitrary element of D , where θic ∈ Dc for i = 1, . . . ,mc and c = 1, . . . , C. Then we define the
overall sampling operator

M : D → B(X0,Y), θ := (θic) 7→

(
1√

νc(θic)mc

Lc(θic)

)
. (E.2)

Note that the operator on the right-hand side is given by

f ∈ X0 7→

(
1√

νc(θic)mc

Lc(θic)(f)

)
∈ Y.

Further, we note that the nondegeneracy condition is equivalent to

α∥f∥2X ≤ EΘ∼τ∥M(Θ)(f)∥2Y ≤ β∥f∥2X, ∀f ∈ X0. (E.3)

Here τ = ⊗C
c=1 ⊗

mc
i=1 µc is the probability measure of the full sample (Θic) := Θ.

Next, given measurements as in (2.1) or (4.4), we define the scaled measurements ȳ = (ȳic) ∈ Y by

ȳic =
1√

νc(θic)mc

yic, i = 1, . . . ,mc, c = 1, . . . , C. (E.4)

Then, with M as defined in E.2, the regression problem (2.2) is equivalent to

f̂ ∈ argmin
f∈F

∥ȳ −M(Θ)(f)∥2Y. (E.5)

With this in hand, we now prove Theorem 4.2. For this, it is first useful to prove a special case of
Theorem 4.2 when F is itself a subspace.
Lemma E.2 (Special case of Theorem 4.2 for subspaces). Consider the setup of Theorem 4.2, where
F is a subspace of dimension at most n. Suppose that

mc ≥ cγ · α−1 · ess sup
θ∼ρc

{Kc(F)(θ)/νc(θ)} · log(2n/δ), ∀c = 1, . . . , C,

for some 0 < γ < 1, where
cγ = ((1 + γ) log(1 + γ)− γ)−1. (E.6)

Then (2.5) holds with probability at least 1− δ.

Proof. The proof of the result in this case is a straightforward application of the matrix Chernoff
bound [115]. Let {fi}ni=1 be an orthonormal basis for F. Write an arbitrary f ∈ F as f =

∑n
i=1 cifi,

so that ∥f∥X = ∥c∥ℓ2 , where c = (ci)
n
i=1 ∈ Cn. Then

∥M(Θ)(f)∥2Y =

C∑
c=1

1

mc

mc∑
i=1

1

νc(Θic)
∥Lc(Θic)(f)∥2Yc

=

C∑
c=1

1

mc

mc∑
i=1

1

νc(Θic)

n∑
j,k=1

cjck⟨Lc(Θic)(fj), Lc(Θic)(fk)⟩Yc

= c∗

(
C∑

c=1

mc∑
i=1

Xic

)
c,

44

where Xic are the independent, self-adjoint, n× n random matrices with

Xic =

(
1

mcνc(Θic)
⟨Lc(Θic)(fj), Lc(Θic)(fk)⟩Yc

)d

j,k=1

.

Thus, the result is equivalent to the condition

(1− ϵ)α ≤ λmin

(
C∑

c=1

mc∑
i=1

Xic

)
≤ λmax

(
C∑

c=1

mc∑
i=1

Xic

)
≤ (1 + ϵ)β.

Notice that Xic ⪰ 0 and, due to (E.3),

α ≤ λmin

(
C∑

c=1

mc∑
i=1

EXic

)
≤ λmax

(
C∑

c=1

mc∑
i=1

EXic

)
≤ β.

Now, with f =
∑n

i=1 cifi ∈ F, we have

c∗Xicc =
1

mcνc(Θic)
∥Lc(Θic)(f)∥2Yc

≤ 1

mcνc(Θic)
Kc(F)(Θic)∥f∥2X,

Thus,
λmax(Xic) ≤ m−1

c ess sup
θ∼ρc

{Kc(F)(θ)/νc(θ)},

almost surely. The result now follows from the matrix Chernoff bound.

Proof of Theorem 4.2. Let f ∈ B(F − F). Then there is j ∈ {1, . . . , d} and fj ∈ Fj ∩ B(F − F)
such that |||f − fj ||| ≤ t, where t =

√
αϵ/2. Observe that

∥M(Θ)(fj)∥Y + ∥M(Θ)(f − fj)∥Y ≥ ∥M(Θ)(f)∥Y ≥ ∥M(Θ)(fj)∥Y − ∥M(Θ)(f − fj)∥Y.
Now, with probability one,

∥M(Θ)(f − fj)∥
2

Y =

C∑
c=1

1

mc

mc∑
i=1

1

νc(Θic)
∥Lc(Θic)(f − fj)∥2Yc

≤ |||f − fj |||2 ≤ αϵ/2.

Using this and the fact that β ≥ α, we deduce that

∥M(Θ)(fj)∥Y + βϵ/2 ≥ ∥M(Θ)(f)∥Y ≥ ∥M(Θ)(fj)∥Y − αϵ/2.

Now let E be the event

(1− ϵ)α∥f∥2X ≤ ∥M(Θ)(f)∥2Y ≤ (1 + ϵ)β∥f∥2X, ∀f ∈ F− F,
and note that our goal is to show that P(E) ≥ 1− δ. By linearity, E is equivalent to

(1− ϵ)α ≤ ∥M(Θ)(f)∥2Y ≤ (1 + ϵ)β, ∀f ∈ B(F− F).
Hence, by the above argument, we have

P (E) ≥ P

 d⋂
j=1

Ej

 ,

where Ej is the event

(1− ϵ/2)α∥fj∥2X ≤ ∥M(Θ)(fj)∥
2

Y ≤ (1 + ϵ/2)β∥fj∥2X, ∀fj ∈ Fj .

By the union bound

P(Ec) ≤
d∑

j=1

P(Ec
j).

Suppose first that n ≥ 1. Then K(Fj)(θ) ≤ K(F̃)(θ) and the condition (4.1) on the mc and
Lemma E.2 give that P(Ec

j) ≤ δ/d.

The gives the result for n ≥ 1.

For n = 0, we have that Fj = {fi} is a singleton. Notice that Fj ⊆ span(Fj) and Kc(Fj)(θ) =
Kc(span(Fj))(θ). Hence we may apply Lemma E.2 with n = 1. We deduce once more that
P(Ec

j) ≤ δ/d. This gives the result for n = 0 as well.

45

Remark E.3 (The norm in Theorem 4.2) Write F′ = B(F−F). Then it follows from the definition
of the Kc that

|||f1 − f2||| ≤

√√√√ C∑
c=1

esssupθ∼ρc
Kc(F′ − F′)/νc(θc)∥f1 − f2∥X, ∀f1, f2 ∈ F′.

Therefore, the cover in Theorem 4.2 could be constructed with respect to the X-norm, up to a change
in the constant t. Notice that the quantity that bounds |||f1 − f2||| in terms of ∥f1 − f2∥X involves
the generalized Christoffel functions Kc(F′ − F′) and weight functions νc. Therefore, sampling
according to the generalized Christoffel function (on a slightly modified set) also minimizes this
constant, and therefore the size d of the cover in Theorem 4.2.

Proof of Corollary 4.3. If F− F = ∪d
i=1Fi is a union of d subspaces of dimension at most n, then

clearly
B(F− F) = ∪d

i=1B(Fi) ⊂ ∪d
i=1Fi.

It follows that {Fi}di=1 provides a (|||·|||, n, t)-subspace covering of B(F− F) for any t ≥ 0. Hence
we may apply Theorem 4.2 with this cover. Since F̃ = ∪d

i=1Fi = F− F in this case, the result now
follows immediately.

Proof of Corollary 4.4. When n = 0, the sets Fj = {fj} are singletons and we must have Fj ⊆
B(F − F) by definition of the covering. Hence F̃ ⊆ B(F − F), which gives that Kc(F̃)(θ) ≤
Kc(B(F− F))(θ). Using Lemma E.1, we deduce that Kc(F̃)(θ) ≤ Kc(F− F)(θ). This implies the
result.

Proof of Lemma 4.6. SinceK(F) is integrable, the quantity κ(F) is well defined. Also,K(F)(θ) > 0
almost everywhere, due to the assumption on L and F. In particular, κ(F) > 0. It follows that ν⋆ is
measurable, positive almost everywhere and integrable with

∫
D
ν⋆(θ) dρ(θ) = 1. Clearly,

ess sup
θ∼ρ

{K(θ)/ν⋆(θ)} = κ(F).

We now show that this is the optimal value. Let ν be any other such function. Then

ess sup
θ∼ρ

{K(F)(θ)/ν(θ)} ≥
∫
D

K(F)(θ)
ν(θ)

ν(θ) dρ(θ) =

∫
D

K(F)(θ) dρ(θ) = κ(F).

This gives the result.

Proof of Corollary 4.7. We first prove the result when d = 1. Let {fi}ni=1 be an orthonormal basis
for F1 = F− F. Then Lemma E.1 gives that

Kc(F− F)(θ) ≤
n∑

i=1

∥Lc(θ)(fi)∥2Yc
.

Therefore,

C∑
c=1

κc(F− F) =
C∑

c=1

∫
Dc

Kc(F− F)(θ) dρc(θ) ≤
n∑

i=1

C∑
c=1

∫
Dc

∥Lc(θ)(fi)∥2Yc
dρc(θ).

Assumption 2.4 and orthonormality now imply that

C∑
c=1

κc(F− F) ≤ β

n∑
i=1

∥fi∥2X ≤ βn.

Now suppose that d > 1. Lemma E.1 gives that

Kc(F− F)(θ) = max
j=1,...,d

Kc(Fj)(θ)

46

and therefore

Kc(F− F)(θ) ≤
d∑

j=1

Kc(Fj)(θ).

Using the result for d = 1, we get
C∑

c=1

κc(F− F) ≤ βnd,

as required.

Remark E.4 (Lower bound on
∑C

c=1 κc(F− F)) Suppose that dim(Yc) ≤ p ∈ N, ∀c. Then
Lemma E.1 gives, for a subspace G with an orthonormal basis {gi}ni=1,

Kc(G)(θ) ≥ 1

p

n∑
i=1

∥Lc(θ)(gi)∥2Yc
.

Using this and following the steps of the above proof, we deduce the lower bound
C∑

c=1

κc(F− F) ≥ αn/p.

Finally, we prove Theorem 4.8. For this, we first require the following lemma.
Lemma E.5. Suppose that a realization θ = (θic) ∈ D of the Θic gives that

α′∥f∥2X ≤ ∥M(θ)(f)∥2Y, ∀f ∈ F− F, (E.7)

for some α′ > 0. Then any γ-minimizer f̂ of (2.2) satisfies

∥f̂ − f∗∥X ≤ inf
f∈F

{
∥f∗ − f∥X +

2√
α′

∥M(θ)(f∗ − f)∥Y

}
+

2√
α′

∥ē∥Y +
γ√
α′
,

where ē =
(

1√
νc(θic)mc

eic

)
.

Proof. Let f ∈ F. We write

∥f̂ − f∗∥X ≤ ∥f̂ − f∥X + ∥f∗ − f∥X
≤ 1/

√
α′∥M(θ)(f̂ − f)∥Y + ∥f∗ − f∥X

≤ 1/
√
α′∥M(θ)(f̂)− ȳ∥Y + 1/

√
α′∥ȳ −M(θ)(f)∥Y + ∥f∗ − f∥X.

We now use the fact that f̂ is a γ-minimizer and the fact that ȳ =M(θ)(f∗) + ē to get

∥f̂ − f∗∥X ≤ 2/
√
α′∥M(θ)(f)− ȳ∥Y + ∥f∗ − f∥X + γ/

√
α′

≤ 2/
√
α′∥M(θ)(f∗ − f)∥Y + 2/

√
α′∥ē∥Y + ∥f∗ − f∥X + γ/

√
α′,

as required.

Proof of Theorem 4.8. Let E be the event

(1− ϵ)α∥f∥2X ≤ ∥M(Θ)(f)∥2Y ≤ (1 + ϵ)β∥f∥2X, ∀f ∈ F− F.
Due Theorem 4.2 and the given assumptions, we have that P(Ec) ≤ δ. Now recall that τ is the
probability distribution of the full draw Θ. Then

E∥f∗ − f̌∥2X =

∫
E

∥f∗ − f̌∥2X dτ +

∫
Ec

∥f∗ − f̌∥2X dτ.

In the first integral, we use the fact that Tσ is a contraction to get

∥f∗ − f̌∥X = ∥Tσ(f)− Tσ(f̂)∥X ≤ ∥f∗ − f̂∥X.

47

In the second integral, we use the fact that ∥Tσ(g)∥X ≤ σ to get

∥f∗ − f̌∥X ≤ 2σ.

Therefore, we obtain

E∥f∗ − f̌∥2X =

∫
E

∥f∗ − f̂∥
2

X dτ + 4σ2δ. (E.8)

Now, for the first term, we fix f ∈ F and apply Lemma E.5. Since α′ ≥ (1− ϵ)α whenever E holds,
we get∫

E

∥f∗ − f̂∥
2

X dτ

≤ 4

∫
E

(
∥f∗ − f∥2X +

4

(1− ϵ)α
∥M(Θ)(f∗ − f)∥2Y +

4

(1− ϵ)α
∥e∥2Y +

γ2

(1− ϵ)α

)
dτ.

For the second term, we use Assumption 2.4 and (E.3) to get∫
E

∥f∗ − f̂∥
2

X dτ ≤ 4

(
1 +

4β

(1− ϵ)α

)
∥f∗ − f∥2X

+
16

(1− ϵ)α

C∑
c=1

1

mc

mc∑
i=1

∥eic∥2Yc

∫
Dc

1

νc(θc)
dµc(θc) +

4γ2

(1− ϵ)α

and therefore∫
E

∥f∗ − f̂∥
2

X dτ ≤ 4

(
1 +

4β

(1− ϵ)α

)
∥f∗ − f∥2X

+
16

(1− ϵ)α

C∑
c=1

1

mc

mc∑
i=1

∥eic∥2Yc
ρc(Dc) +

4γ2

(1− ϵ)α
.

Combining this with (E.8) and recalling that f was arbitrary now gives the result.

Remark E.6 As noted, the noise bound in Theorem 4.8 assumes ρc(Dc) <∞. If this fails, one may
also bound the noise term by assuming the noise takes the form

eic = Lc(Θic)(g), i = 1, . . . ,mc, c = 1, . . . , C,

for some g ∈ X with ∥g∥X ≪ 1. In this case, one has

E∥ē∥2Y =

C∑
c=1

1

mc

mc∑
i=1

E
(

1

νc(Θic)
∥Lc(Θic)(g)∥2Yc

)
=

C∑
c=1

∫
Dc

∥L(θ)(g)∥2Yc
dρc(θ) ≤ β∥g∥2X.

Hence Theorem 4.8 holds withN = β∥g∥2X. For other ways to estimate the noise term under different
noise models, see, e.g., [93].

Proof of Theorem 2.7. Part (i) follows from Theorem 4.2, Corollary 4.3 and Lemma 4.6 with the
(arbitrary) value ϵ = 1/2. Part (ii) follows from part (i) and Theorem 4.8. Finally, part (iii) follows
from Corollary 4.7.

48

	Introduction
	Motivations
	Contributions

	The CS4ML framework and main results
	Main definitions
	Summary of main results

	Examples and numerical experiments
	Polynomial regression with gradient-augmented data
	MRI reconstruction using generative models
	Adaptive sampling for solving PDEs with PINNs

	Theoretical analysis
	Sample complexity
	Christoffel sampling
	Generalization error bound and noisy data

	Conclusions, limitations and future work
	Further literature and discussion
	Classical Christoffel functions
	Relation to leverage scores and leverage score sampling
	Other related work
	The case of sparse regression

	Polynomial regression with gradient-augmented data
	Formulation in terms of the general sampling framework
	The approximation space: multivariate Hermite polynomials
	Numerical solution of the regression problem
	Christoffel sampling
	Additional experimental details
	Further experiments and discussion
	Variation involving C > 1

	Fourier imaging with generative models
	Formulation in terms of the general sampling framework
	The approximation space: compressive imaging with generative models
	The generalized Christoffel function
	Numerical approximation to the generalized Christoffel function
	Additional experimental details
	Further experiments and discussion
	Variations involving C > 1

	Solving PDEs using PINNs
	PINNs for solving PDEs
	PINNs formulation in terms of the general sampling framework
	CAS for deep learning with general, multimodal samples
	CAS for PINNs
	Additional experimental details
	Further experiments and discussion

	Proofs of the theoretical results

