
Broader Impact460

MISA framework provides a simple yet effective approach to policy learning from offline datasets.461

Although the results presented in this paper only consider simulated environments, given the gen-462

erality of MISA, it could be potentially effective on learning real-robot policies in more complex463

environments. We should be cautious about the misuse of the method proposed. Depending on the464

specific application scenarios, it might be harmful to democratic privacy and safety.465

A Proofs and Derivations466

A.1 Proof for Theorem 4.1467

We first show IMISA, IMISA-DV and IMISA-f are lower bounds for mutual information I(S,A).468

Let µ✓,�(a|s) , 1
Z(s)⇡✓(a|s)eT�(s,a), where Z(s) = E⇡✓(a|s)[e

T�(s,a)], IMISA can be written as:469

IMISA , Ep(s,a)


log

⇡✓(a|s)
p(a)

�
+ Ep(s,a) [T�(s, a)]� Ep(s) logE⇡✓(a|s)

h
e
T�(s,a)

i

= Ep(s,a)


log

p(a|s)
p(a)

�
� Ep(s,a)[log p(a|s)]

+ Ep(s,a)[log ⇡✓(a|s)] + Ep(s,a) [T�(s, a)]� Ep(s)[logZ(s)]

= I(S,A)� Ep(s) [DKL(p(a|s)||µ✓,�(a|s))]  I(S,A).

(18)

The above inequality holds as the KL divergence is always non-negative.470

Similarly, let µ✓,�(s, a) , 1
Z p(s)⇡✓(a|s)eT�(s,a), where Z(s) = Ep(s)⇡✓(a|s)[e

T�(s,a)], IMISA-DV471

can be written as:472

IMISA-DV , Ep(s,a)


log
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�
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h
e
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�
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= I(S,A)�DKL(p(s, a)||µ✓,�(s, a))  I(S,A).

(19)

The above inequality holds as the KL divergence is always non-negative.473

Consider the generalized KL-divergence [10, 8] between two un-normalized distributions p̃(x) and474

q̃(x) defined by475

DGKL(p̃(x)||q̃(x)) =
Z

p̃(x) log
p̃(x)

q̃(x)
� p̃(x) + q̃(x)dx, (20)

which is always non-negative and reduces to KL divergence when p̃ and q̃ are normalized. Let476

µ̃✓,�(a|s) , ⇡✓(a|s)eT�(s,a)�1 denote an un-normalized policy. We can rewrite IMISA-f as477

IMISA-f , Ep(s,a)
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log
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h
e
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i

= I(S,A)� Ep(s) [DGKL(p(a|s)||µ̃✓,�(a|s))]  I(S,A).

(21)
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So far, we have proven that IMISA, IMISA-DV and IMISA-f mutual information lower bounds. Then we478

are going to prove their relations by starting fromt he relation between IMISA and IMISA-DV.479

IMISA � IMISA-DV = DKL(p(s, a)||µ✓,�(s, a))� Ep(s) [DKL(p(a|s)||µ✓,�(a|s))]

= Ep(s)Ep(a|s)


log
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p(a|s) � log
µ✓,�(s, a)
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
log p(s)� log

1
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�
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log p(s)� log

1

Z p(s)Z(s)

�

= DKL

✓
p(s)|| 1Z p(s)Z(s)

◆
� 0,

(22)

where 1
Z p(s)Z(s) is a self-normalized distribution as Z = Ep(s)[Z(s)]. Therefore, we have IMISA �480

IMISA-DV.481

Similarly, the relation between IMISA-DV and IMISA-f is given by:482
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log

µ✓,�(s, a)

p(s)µ̃✓,�(a|s)

�
� Eµ✓,�(s,a)[1] + Ep(s)E⇡✓(a|s)

h
e
T�(s,a)�1

i

= DGKL (µ✓,�(s, a)||p(s)µ̃✓,�(a|s)) � 0,
(23)

where p(s)µ̃✓,�(a|s) is an unnormalized joint distribution. Therefore, we have I(S,A) � IMISA �483

IMISA-DV � IMISA-f .484

Algorithm 1 Mutual Information Regularized Offline RL
Input: Initialize Q network Q�, policy network ⇡✓, dataset D, hyperparameters ↵1 and ↵2.
for t 2 {1, . . . , MAX_STEP} do

Train the Q network by gradient descent with objective JQ(�) in Eqn. 12:
� := �� ⌘Qr�JQ(�)
Improve policy network by gradient ascent with object J⇡(✓) in Eqn. 13:
✓ := ✓ + ⌘⇡r✓Es⇠D,a⇠⇡✓(a|s)[Q�(s, a)] + ↵2r✓IMISA

end

Output: The well-trained ⇡✓.
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A.2 Derivation of MISA Gradients485

We detail how the unbiased gradient is derived in Sec.4.3.486

@IMISA

@✓
= Es,a⇠D


log ⇡✓(a | s)

@✓

�
� Es⇠D

"
@ logE⇡✓(a|s)[e

Q�(s,a)]

@✓

#

= Es,a⇠D


log ⇡✓(a | s)

@✓

�
� Es⇠D

"
E⇡✓(a|s)

"
e
Q�(s,a)

E⇡✓(a|s)
⇥
eQ�(s,a)

⇤ log ⇡✓(a | s)
@✓

##
(24)

= Es,a⇠D


log ⇡✓(a | s)

@✓

�
� Es⇠D,a⇠p✓,�(a|s)


log ⇡✓(a | s)

@✓

�
(25)

for Eqn. 24, we use the log-derivative trick.487

B Implementation Details488

We follow the network architectures of CQL [23] and IQL [22], where a neural network of 3 encoding489

layers of size 256 is used for antmaze-v0 environments, and 2 encoding layers for other tasks, followed490

by an output layer. We use ELU activation function [11] and SAC [17] as the base RL algorithm.491

Besides, we use a learning rate of 1 ⇥ 10�4 for both the policy network and Q-value network492

with a cosine learning rate scheduler. When approximating E⇡✓(a|s)
⇥
e
T (s,a)

⇤
, we use 50 Monte-493

Carlo samples. To sample from the non-parametric distribution p✓,�(a | s) = ⇡✓(a|s)eQ�(s,a)

E⇡✓(a|s)[eQ�(s,a)]
,494

we use Hamiltonian Monte Carlo algorithm. In addition, for unbiased gradient estimation with495

MCMC samples, we use a burn-in steps of 5. For all tasks, we average the mean returns over 10496

evaluation trajectories and 5 random seeds. In particular, following [22], we evaluate the antmaze-497

v0 environments for 100 episodes instead. To stabilize the training of our agents in antmaze-v0498

environments, we follow [23] and normalize the reward by r
0 = (r�0.5)⇤4. As MCMC sampling is499

slow, we trade-off its accuracy with efficiency by choosing moderately small iteration configurations.500

We set the MCMC burn-in steps to 5, number of leapfrog steps to 2, and MCMC step size to 1.501

For practical implementations, we follow the CQL-Lagrange [23] implementation by constraining502

the Q-value update by a “budget” variable ⌧ and rewrite Eqn. 12 as503

min
Q

max
�1�0

�1(Es⇠D

h
logE⇡✓(a|s)

h
e
Q�(s,a)

ii
� Es,a⇠D [Q�(s, a)]� ⌧)� J

B
Q(�). (26)

Eqn. 26 implies that if the expected value of Q-value difference is less than the threshold ⌧ , �1 will504

adjust to close to 0; if the Q-value difference is higher than the threshold ⌧ , �1 will be larger and505

penalize Q-values harder. We set ⌧ = 10 for antmaze-v0 environments and ⌧ = 3 for adroit-v0506

and kitchen-v0 environments. For gym-locomotion-v2 tasks, we disable this function and direction507

optimize Eqn. 12, because these tasks have a relatively short horizon and dense reward, and further508

constraining the Q values is less necessary. Our code is implemented in JAX [7] with Flax [19]. All509

experiments are conducted on NVIDIA 3090 GPUs.510
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