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A Theoretical GPnn Results365

A.1 Preliminary results366

Let ρ(x,x′) = σf

√
1− c(x/l,x′/l) be the kernel-induced distance function over Rd ([17]). We367

define x(j,n)(x
∗) as the jth nearest-neighbour random variable to a test point x∗ under ρ, which we368

abbreviate to x(j) when the context is clear, and x(j)(x
∗) ∈ Nm(x∗) as the realised jth nearest-369

neighbour of the test point x∗ from a training set X . From this we define ϵi = ρ2(x(i),x
∗) and370

ϵij = ρ2(x(i),x(j)).371

Definition 8 (Support). Let Px be the probability measure of x and Sρ
x,ϵ the closed ball of radius372

ϵ > 0 under the metric ρ centred at x. Then we define support(Px) = {x : Px(S
ρ
x,ϵ) > 0 ∀ ϵ > 0}.373

Definition 9 (Weakly-faithful). We define a pair of metrics ρ(·, ·), ρ̂(·, ·) to be weakly-faithful w.r.t.374

each other if the following condition holds: The mth nearest-neighbour under ρ̂ converges to the test375

point as n → ∞ if and only if the mth nearest-neighbour under ρ converges to the test point in the376

limit.377

Assumptions378

(A1) x
iid∼ Px and x∗ ∈ support(Px) under the generative metric defined by c(·, ·).379

(A2) c(·, ·), ĉ(·, ·) are stationary kernels whose induced distance functions are weakly faithful380

metrics (Definition 9).381

(A3) yi = f(xi)+ ξi with ξi
iid∼ Pξ , f(x) ∼ WSRF(σ2

fc(./l, ./l)) and yi | f(xi) ∼ Pξ and382

E[ξ] = 0, E[ξ2] = σ2
ξ .383

Note: Assumption (A2) is not overly restrictive and encompasses commonly used kernels such as all384

those mentioned in this paper.385

Lemma 10. ϵi → 0 and ϵij → 0 as n → ∞ a.e. with respect to the measure over x ∈ Rd, Px, for386

i, j ≤ m, m
n → 0 and under (A1-2).387

Proof. Lemma 6.1 of [9] states that
∥∥x(m,n)(x)− x

∥∥ n→∞−−−−→ 0 with probability one (with respect388

to Px). Their proof can be generalised immediately to state that ρ(x(m,n)(x),x)
n→∞−−−−→ 0 by using389

our definition of support, 8, that directly invokes the metric ρ. Hence ϵi → 0 for all i ≤ m (since390

x∗ is in support(Px)). Since ρ is a metric it satisfies the triangle inequality; hence ρ(x(i),x(j)) ≤391

ρ(x(i),x
∗) + ρ(x(j),x

∗)
n→∞−−−−→ 0 for all i, j ≤ m.392

Lemma 11. For an m-GPnn under the assumptions (A1-3),393

lim
n→∞

k∗
N
TK−1

N k∗
N = σ2

f − σ2
ξm

−1 +O
(
m−2

)
.
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Proof. From Lemma 10 we have that limn→∞ k(x(j)(x
∗),x∗) = limn→∞(σ2

f − ϵi) = σ2
f and394

limn→∞ k(x(i)(x
∗),x(j)(x

∗)) = limn→∞(σ2
f − ϵij) = σ2

f . As a result, k∗
N → σ2

f1 and395

K∞ := lim
n→∞

KN = σ2
ξI + σ2

f11
T . (8)

Now using Sherman-Morrison and the continuity of matrix inverse and matrix-matrix products:396

(A+ bcT )−1 = A−1 − A−1bcTA−1

1 + cTA−1b
(9)

(K∞)−1 = (σ2
ξI + σ2

f11
T )−1 =

1

σ2
ξ

(
I − σ2

f

11T

σ2
ξ + σ2

f1
T1

)
(10)

1T (K∞)−11 =
m

σ2
ξ

(
1−

mσ2
f

σ2
ξ +mσ2

f

)

=
m

σ2
ξ

(
1−mσ2

f

1

mσ2
f

(
1−

σ2
ξ

mσ2
f

+
σ4
ξ

m2σ4
f

−O
(
m−3

)))

=
1

σ2
f

−
σ2
ξ

mσ4
f

+O
(
m−2

)
. (11)

Thus,397

lim
n→∞

k∗
N
TK−1

N k∗
N = σ4

f1
T (K∞)−11 = σ2

f − σ2
ξm

−1 +O
(
m−2

)
. (12)

398

Lemma 12 (WSRF expectations). Under (A3), Ey,y∗{yy∗} = k∗ and Ey{yyT } = K.399

Proof. By assumption on the covariance properties of y and the independence and zero-mean of400

the additive noise, Ey{yiyj} = k(xi,xj). Extending this to the joint distribution over y, y∗ is401

straightforward and gives the results stated.402

Lemma 12 is subsequently assumed to be in use throughout A.2.403

A.2 Limit proofs404

In the following statements only misspecification of type (d) and/or (e) (subsection 4.2) is considered405

to be at work.406

Lemma 13 (MSE limit). Under the assumptions (A1-3), for fixed m < ∞, the predictive GPnn given407

in subsection 4.1 converges pointwise in the sense of MSE wrt Px-a.e. as408

lim
n→∞

fMSE
n (θ) = σ2

ξ (1 +m−1)−O
(
m−2

)
.

Proof. This follows from Lemma 11 by expanding the definition of MSE:409

lim
n→∞

fMSE
n (θ) = lim

n→∞
Ey,y∗

{
|y∗ − µ∗

N |2
}

= lim
n→∞

[
Ey∗{y∗2}+ Ey{µ∗

N
2} − 2Ey,y∗{k∗

N
TK−1

N yNy∗}
]

= σ2
f + σ2

ξ − lim
n→∞

Ey{µ∗
N

2}

= σ2
ξ (1 +m−1)−O

(
m−2

)
.

Since Ey{µ∗
N

2} = Ey{k∗
N
TK−1

N yNyT
NK−1

N k∗
N} = k∗

N
TK−1

N k∗
N, and by assumption410

Ey,y∗{yNy∗} = k∗
N, even under a WSRF generative model (Lemma 12).411

Corollary 14 (NLL limit).

lim
n→∞

fNLL
n (θ) =

1

2
log
(
σ2
ξ (1 +m−1)

)
+

1

2
+

1

2
log 2π −O

(
m−2

)
.
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Proof. The proof follows straightforwardly from Lemma 11 and because σ∗ 2
N = σ2

f + σ2
ξ −412

k∗
N
TK−1

N k∗
N.413

2Ey,y∗ {l∗N} = Ey,y∗

{
log σ∗ 2

N +
(y∗ − µ∗

N )2

σ∗ 2
N

+ log 2π

}
= log σ∗ 2

N + 1 + log 2π

lim
n→∞

2Ey,y∗ {l∗N} = log
(
σ2
f + σ2

ξ − (σ2
f − σ2

ξm
−1 +O

(
m−2

)
)
)
+ 1 + log 2π

= log
(
σ2
ξ (1 +m−1)−O

(
m−2

))
+ 1 + log 2π

= log σ2
ξ +m−1 + 1 + log 2π −O

(
m−2

)
.

414

A.2.1 Full misspecification415

For the remainder of A.2 we assume that the full range of possible misspecifications ((a)-(e)) outlined416

in subsection 4.2 are in action. We refer to this case as “fully-misspecified” and introduce the notation417

µ̂∗
N , σ̂∗ 2

N to be understood to mean the predictive mean and variance under these misspecifications.418

Lemma 15 (Fully misspecified MSE limit). For a fully misspecified model, asymptotically419

lim
n→∞

fMSE
n (θ̂) = σ2

ξ (1 +m−1)−O
(
m−2

)
.

provided the misspecified kernel distance metric is weakly faithful in the sense that the mth nearest-420

neighbour converges under both the true and misspecified metrics (Definition 9).421

Proof.

Ey

{
Ey∗

[
(y∗ − µ̂∗

N )2 | y
]}

= Ey

{
Ey∗

[
y∗2 − 2y∗µ̂∗

N + (µ̂∗
N )2 | y

]}
= Ey

{
σ∗ 2
N + µ∗ 2

N − 2µ∗
N µ̂∗

N + (µ̂∗
N )2

}
= σ∗ 2

N︸︷︷︸
(a)

+k∗
N
TK−1

N k∗
N︸ ︷︷ ︸

(b)

−2k∗
N
T K̂−1

N k̂∗
N︸ ︷︷ ︸

(c)

+ k̂∗
N
T K̂−1

N KNK̂−1
N k̂∗

N︸ ︷︷ ︸
(d)

.

We can use standard results to state that (a) + (b) = σ2
f + σ2

ξ . Then we define γ̂ =
σ̂2
f

σ̂2
ξ+mσ̂2

f
and422

expand it in terms of m−1:423

1−mγ̂ =
σ̂2
ξ

mσ̂2
f

−
σ̂4
ξ

m2σ̂4
f

+O
(
m−3

)
.

In a manner similar to Lemma 11 we use this result to compute:424

lim
n→∞

(c) = σ2
f1

T σ̂−2
ξ (I − γ̂11T )1σ̂2

f

=
σ2
f σ̂

2
f

σ̂2
ξ

m(1−mγ̂)

=
σ2
f σ̂

2
f

σ̂2
ξ

(
σ̂2
ξ

σ̂2
f

−
σ̂4
ξ

mσ̂4
f

)
+O

(
m−2

)
= σ2

f −
σ2
f σ̂

2
ξ

mσ̂2
f

+O
(
m−2

)
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and425

lim
n→∞

(d) =
σ̂4
f

σ̂4
ξ

1T (I − γ̂11T )(σ2
ξI + σ2

f11
T )(I − γ̂11T )1

=
σ̂4
f

σ̂4
ξ

1T
[
σ2
ξI + σ2

f11
T − 2σ2

ξ γ̂11
T + γ̂2σ2

ξm11T − 2σ2
f γ̂m11T + σ2

f γ̂
2m211T

]
1

=
σ̂4
f

σ̂4
ξ

m(σ2
ξ +mσ2

f )
[
1− 2mγ̂ +m2γ̂2

]
=

σ̂4
f

σ̂4
ξ

m(σ2
ξ +mσ2

f )(1−mγ̂)2

=
σ̂4
f

σ̂4
ξ

m(σ2
ξ +mσ2

f )

(
σ̂4
ξ

m2σ̂4
f

− 2
σ̂6
ξ

m3σ̂6
f

+O
(
m−4

))

= σ2
f +

σ2
ξ

m
− 2

σ2
f

σ̂2
f

σ̂2
ξ

m
−O

(
m−2

)
,

where we have used the expansion of 1−mγ̂ given earlier. Putting these results together gives426

lim
n→∞

fMSE
n (θ̂) = lim

n→∞
[(a) + (b)− 2(c) + (d)]

= σ2
f + σ2

ξ − 2

(
σ2
f −

σ2
f σ̂

2
ξ

mσ̂2
f

)
+ σ2

f +
σ2
ξ

m
− 2

σ2
f

σ̂2
f

σ̂2
ξ

m
−O

(
m−2

)
= σ2

ξ (1 +m−1)−O
(
m−2

)
.

427

Lemma 16 (Calibration limit under full misspecification).

lim
n→∞

fCAL
n (θ̂) =

σ2
ξ

σ̂2
ξ

+O
(
m−2

)
.

Proof. We use continuity to write428

lim
n→∞

Ey,y∗

{
(y∗ − µ̂∗

N )2

σ̂∗ 2
N

}
=

(
lim
n→∞

1

σ̂∗ 2
N

)(
lim

n→∞
fMSE
n (θ̂)

)
.

By direct application of Lemma 11 σ̂∗ 2
N

n→∞−−−−→ σ̂2
ξ (1 +m−1)−O

(
m−2

)
and thus429

lim
n→∞

fCAL
n (θ̂) =

σ2
ξ

σ̂2
ξ

+O
(
m−2

)
.

430

Corollary 17 (NLL limit under full misspecification).

lim
n→∞

fNLL
n (θ̂) =

1

2
log
(
σ̂2
ξ (1 +m−1)

)
+

1

2

σ2
ξ

σ̂2
ξ

+
1

2
log 2π −O

(
m−2

)
.

Proof. We start with431

2fNLL
n (θ̂) = Ey,y∗

{
log σ̂∗ 2

N +
(y∗ − µ̂∗

N )2

σ̂∗ 2
N

+ log 2π

}
.

For the second term we use Lemma 16 so that we have432

lim
n→∞

2fNLL
n (θ̂) = log σ̂2

ξ +m−1 +
σ2
ξ

σ̂2
ξ

+ log 2π −O
(
m−2

)
.

433

Proof of Theorem 1. We construct the proof using all of the intermediate results given above. In434

particular item (i) follows from Lemma 15, item (ii) from Lemma 16 and item (iii) from Corollary 17.435

436
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B Parameter Calibration (Proof of Lemma 4)437

Proof of Lemma 4. (a) Replacing parameters θ̂ = (l̂, σ̂2
ξ , σ̂

2
f ) with θ̂′ = (l̂, ασ̂2

ξ , ασ̂
2
f ) changes all of438

the σ∗
i
2 values to ασ∗

i
2 and therefore changes the calibration value on C from α = 1

c

∑c
i=1

(y∗
i −µ∗

i )
2

σ∗ 2
i

439

to α/α = 1. (b) The NLL on C arising from parameters (l̂, ασ̂2
ξ , ασ̂

2
f ) is 1

2c

∑c
i=1{log

(
ασ̂2

ξ

)
+440

(y∗i − µ∗
i )

2/(ασ∗ 2
i ) + log 2π)} which, on taking first and second derivatives w.r.t. α, is found to441

be uniquely minimised by α = 1
c

∑c
i=1

(y∗
i −µ∗

i )
2

σ∗ 2
i

. (c) It is easily shown that replacing parameters442

(σ̂2
ξ , σ̂

2
f ) by (kσ̂2

ξ , kσ̂
2
f ) (for any k > 0) in the formula for µ∗ (Equation 3 and Equation 6) does not443

alter µ∗. Hence the value of MSE = 1
n∗

∑n∗

i=1(y
∗
i − µ∗

i )
2 on any size-n∗ test set is unchanged when444

parameters θ̂′ are used in place of θ̂.445

C Real world datasets446

We consider a variety of datasets from the standard UCI machine learning repository1. These datasets447

are commonly used in the GP literature (see [8] for instance) and are, in principle, easily available448

online. In practice, we encountered some difficulties: the dataset documentation is often limited;449

the dataset names commonly used in other published papers do not always match the UCI database450

naming and important details about data pre-processing, which features to use etc, are often omitted.451

There are numerous attempts on GitHub and elsewhere at cataloguing these datasets along with any452

pre-processing, however we had limited success using them, with many appearing unmaintained. Our453

focus in this work is on testing our methods on a variety of real world datasets and in a way that is,454

as far as possible, consistent with other papers. We therefore rejected datasets about which there is455

ambiguity over the correct features to use, or even which column to regress on or for which outlier456

rejection is required but undocumented elsewhere.457

Referring to the datasets used in [8], we were able to locate the following:458

• Song (https://archive.ics.uci.edu/ml/machine-learning-databases/00203/459

YearPredictionMSD.txt.zip)460

• Bike (https://archive.ics.uci.edu/ml/machine-learning-databases/00275/461

Bike-Sharing-Dataset.zip)462

• Poletele (https://archive.ics.uci.edu/ml/machine-learning-databases/463

parkinsons/telemonitoring/parkinsons_updrs.data)464

• Keggdirected (https://archive.ics.uci.edu/ml/machine-learning-databases/465

00220/Relation%20Network%20(Directed).data)466

• Keggundirected (https://archive.ics.uci.edu/ml/467

machine-learning-databases/00221/Reaction%20Network%20(Undirected)468

.data)469

• CTSlice (https://archive.ics.uci.edu/ml/machine-learning-databases/470

00206/slice_localization_data.zip)471

• Road3d (https://archive.ics.uci.edu/ml/machine-learning-databases/472

00246/3D_spatial_network.txt)473

• Protein (https://archive.ics.uci.edu/ml/machine-learning-databases/474

00265/CASP.csv)475

• Buzz (https://archive.ics.uci.edu/ml/machine-learning-databases/00248/476

regression.tar.gz)477

• HouseElectric (https://archive-beta.ics.uci.edu/dataset/235/individual+478

household+electric+power+consumption)479

We were unable to find any documentation on the Kegg datasets to indicate which of the columns480

should be used as the independent variable (the regressor) and neither is this mentioned in any481

1https://archive-beta.ics.uci.edu, accessed April 2023.
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literature of which we are aware. Initial runs of standard exact GP training and prediction produced482

RMSEs much higher that reported in [8]. Combining these two observations, we chose to exclude483

both Kegg datasets. Likewise we faced problems with Buzz. An analysis of the y values revealed a484

small proportion of extremely large outliers that we found could unduly distort performance results485

(e.g. depending on whether these outliers appeared in the test set for some of the random splits).486

With the lack of documentation we were unable to identify an outlier rejection scheme that we were487

confident would be consistent with results quoted in other papers. For this reason we have excluded488

Buzz.489

The choice of (x, y) value that we applied for each of the used datasets is as follows:490

• Song. The first column is y, all remaining columns are x.491

• Bike. We use hour.csv. The y value is cnt. dteday (the date) is transformed to just be492

the integer representation of the day. instant is just an index so is dropped. registered493

and casual are dropped as registered + casual = cnt.494

• Poletele. The y value is total_UPDRS. The columns subject# and test_time are not495

relevant to the problem so are dropped.496

• CTSlice. y value is the final column. The first column is dropped as it is just an index. We497

additionally drop six columns which are constant over the majority of the dataset, namely498

columns 59, 69, 179, 189, 279 and 351.499

• Road3d. y value is the final column. The first column is dropped as it is just an index.500

• Protein. This dataset was processed as per https://github.com/hughsalimbeni/501

bayesian_benchmarks, whereafter we used our own random (seeded) train/test split.502

• HouseElectric. y value is the column labelled “Global active power”, rescaled by 1000/60503

and with “Sub metering 1,2,3” columns subtracted. We convert the date column into day-of-504

year/365 and the time column into time of day in minutes. Further, we remove any rows505

with null entries.506

We note that although we are using a standard set of real-world datasets, it is not always clear exactly507

how others in the field have carried out their own preprocessing, limiting the ability to make direct508

comparisons to other results reported in the literature.509

D Additional Implementation Details510

D.1 Pre-whitening of Data511

For all datasets covered in subsection 7.1 the following “whitening” preprocessing step is adopted:512

Let y be the vector of all regressor values in the training dataset only, and X the matrix of all513

regressands in the training dataset only, where each row of X is a feature. Let µy, σ
2
y be the sample514

mean and variance of y respectively in the training dataset, then the whitened y values used in both515

the training and test set are simply σ−1
y (y − µy). Let µX ,ΣX be the sample mean and covariance516

matrix of X respectively . Let ΣX = MMT , then the whitened x values in both the training and test517

data are 1√
d
M−1(x− µX), where d is the feature dimension of X . Note: the performance metrics518

given in subsection 7.1 are expressed in terms of the whitened y values rather than the y values in519

their original form. This appears to be common practice in the literature and has no bearing on the520

comparative performance of the different methods within this paper.521

D.2 Test-Set Batching522

To prevent excessive memory consumption, we perform all predictions for the distributed and523

variational methods in batches of 1000 points at a time. Where this is not possible (e.g. for especially524

large datasets), we use smaller batches of 500 or 250 points, as appropriate.525

D.3 Additional Implementation Details for SVGP526

We use the sparse variational inducing point approach of [11], following the implementation527

provided by GPyTorch, which in particular uses a Choleksy decomposition to parameterise the528

6

https://github.com/hughsalimbeni/bayesian_benchmarks
https://github.com/hughsalimbeni/bayesian_benchmarks
https://github.com/hughsalimbeni/bayesian_benchmarks


covariance matrix of the variational prior. We broadly follow the SVGP implementation exam-529

ple provided by https://docs.gpytorch.ai/en/stable/examples/04_Variational_and_530

Approximate_GPs/SVGP_Regression_CUDA.html. In particular, we follow their example in us-531

ing the Adam optimiser to train our model over 100 epochs with a minibatch size of 1024 and a532

learning rate of 0.01. We opt to use 1024 inducing points. All experiments under this method are533

run on a SageMaker ml.p3.2xlarge instance, consisting of a single Tesla V100 GPU with 16GB of534

memory.535

D.4 Additional Implementation Details for Distributed methods536

A good introduction to distributed methods for Gaussian process inference is [7]. Here we run537

the product-of-experts (PoE) [12], generalised product-of-experts (gPoE) [2], Bayesian committee538

machine (BCM) [24], robust Bayesian committee machine (rBCM) [7] and generalised robust539

Bayesian committee machine (GrBCM) [13] following the recommendation in [4] to aggregate in540

f -space. There are three components to any distributed method: the hyperparameter inference, the541

partitioner and the aggregator. Hyperparameter estimation is the same for all of the methods: we use542

the method in section 3.1 of [7], randomly partitioning the entire training set into subsets of size 625543

(or as close as possible with equal-sized experts given that in general n is not a multiple of 625). A544

block diagonal approximation (with n/625 blocks) is then used to approximate to the full n×n gram545

kernel matrix. To recover hyperparameters with this we use Gaussian Process models with a zero546

prior mean and a scaled square-exponential kernel. Training is conducted using the Adam optimiser547

with a learning rate of 0.1 over 100 optimiser iterations. Once the hyperparameters are trained, we548

run our distributed prediction mechanism to evaluate performance against the test-set. The 625-sized549

partitioned blocks are referred to as “experts” and the shared hyperparameter values are distributed to550

each expert and held fixed thereafter. In the aggregator, or distributed prediction phase, each expert551

produces an individual predictive distribution and these are then aggregated to a final predictive mean552

and variance for each of our test points. GRBCM prediction is a little more complex than this as it553

makes use of an additional “communications” expert as explained in [13], aggregating in f -space as554

recommended in [4]. We provide timing statistics for training these models.555

We use our own GPyTorch-based implementation of distributed GP approximations. All exact GP556

calculations are performed using GPyTorch using the default settings (so 20 Lanczos iterations557

throughout and a CG tolerance of 1 for hyperparameter inference, and 10−3 for posterior predictions).558

For all of our experiments, we utilise an AWS t3.2xlarge instance (consisting of 8 Intel Skylake559

Processors and 32 GB of RAM).560
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Figure 6: Behaviour of performance metrics as functions of kernel hyperparameters for increasing
training set sizes n. The black dashed line denotes the true parameter value; the red dashed line shows
the limiting behaviour as n → ∞ and the green dashed line shows the limiting behaviour when the
hyperparameters are correct. Simulations run with d = 20, l = 0.5, σ2

ξ = 0.1, σ2
f = 0.9. Assumed

parameters when constant: σ̂2
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f = 0.8, l̂ = 0.5.
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F Further Results on UCI Datasets562

F.1 Results for all distributed methods563

Table 3: Results for all methods on all metrics.
Calibration NLL RMSE

Dataset n d Model

Bike 1.4e+04 13

BCM 1.02 ± 0.02 1.0 ± 0.0065 0.66 ± 0.0043
GPOE 0.873 ± 0.012 1.03 ± 0.0069 0.664 ± 0.0054
GRBCM 0.893 ± 0.014 0.977 ± 0.0057 0.634 ± 0.004
OURS 0.974 ± 0.087 0.953 ± 0.013 0.624 ± 0.0079
POE 1.03 ± 0.022 1.01 ± 0.0083 0.664 ± 0.0054
RBCM 1.01 ± 0.02 1.0 ± 0.0065 0.659 ± 0.0043
SVGP 0.898 ± 0.011 0.93 ± 0.0043 0.606 ± 0.0033

Ctslice 4.2e+04 378

BCM 5.04 ± 0.28 1.43 ± 0.13 0.311 ± 0.0052
GPOE 0.435 ± 0.013 0.422 ± 0.0015 0.347 ± 0.0027
GRBCM 1.13 ± 0.11 -0.159 ± 0.052 0.237 ± 0.012
OURS 1.04 ± 0.085 -1.26 ± 0.01 0.132 ± 0.00062
POE 6.39 ± 0.27 2.08 ± 0.12 0.347 ± 0.0027
RBCM 4.16 ± 0.25 0.987 ± 0.11 0.28 ± 0.0048
SVGP 0.865 ± 0.026 0.467 ± 0.016 0.384 ± 0.0064

Houseelectric 1.6e+06 8

BCM 1.27 ± 0.0046 -1.33 ± 0.0009 0.0634 ± 3.5e-05
GPOE 0.908 ± 0.0065 -1.43 ± 0.0016 0.0638 ± 7.7e-05
GRBCM 1.25 ± 0.011 -1.34 ± 0.0039 0.063 ± 0.00026
OURS 1.08 ± 0.21 -1.56 ± 0.0065 0.0506 ± 0.00072
POE 1.28 ± 0.006 -1.32 ± 0.0018 0.0638 ± 7.7e-05
RBCM 1.24 ± 0.0054 -1.34 ± 0.0013 0.0626 ± 5.2e-05
SVGP 0.911 ± 0.038 -1.46 ± 0.0046 0.0566 ± 0.00011

Poletele 4.6e+03 19

BCM 1.07 ± 0.029 0.00035 ± 0.019 0.243 ± 0.0048
GPOE 0.917 ± 0.02 0.0344 ± 0.013 0.246 ± 0.0038
GRBCM 0.872 ± 0.024 0.0091 ± 0.015 0.241 ± 0.0033
OURS 1.03 ± 0.073 -0.214 ± 0.019 0.195 ± 0.0042
POE 1.1 ± 0.036 0.00772 ± 0.016 0.246 ± 0.0038
RBCM 1.08 ± 0.029 0.00309 ± 0.018 0.243 ± 0.0048
SVGP 0.862 ± 0.035 -0.0667 ± 0.017 0.226 ± 0.0059

Protein 3.6e+04 9

BCM 1.04 ± 0.0097 1.14 ± 0.003 0.754 ± 0.0022
GPOE 0.925 ± 0.007 1.15 ± 0.0035 0.763 ± 0.0024
GRBCM 0.95 ± 0.012 1.11 ± 0.0051 0.733 ± 0.0038
OURS 0.991 ± 0.029 1.01 ± 0.0016 0.666 ± 0.0014
POE 1.07 ± 0.0088 1.15 ± 0.0033 0.763 ± 0.0024
RBCM 1.03 ± 0.0096 1.13 ± 0.003 0.752 ± 0.0022
SVGP 0.908 ± 0.016 1.05 ± 0.0059 0.688 ± 0.0043

Road3D 3.4e+05 2

BCM 1.01 ± 0.017 0.753 ± 0.007 0.514 ± 0.0035
GPOE 0.756 ± 0.012 0.819 ± 0.0054 0.529 ± 0.0037
GRBCM 0.873 ± 0.011 0.685 ± 0.0041 0.478 ± 0.0023
OURS 0.991 ± 0.041 0.371 ± 0.004 0.351 ± 0.0014
POE 1.07 ± 0.019 0.783 ± 0.0076 0.529 ± 0.0037
RBCM 0.976 ± 0.016 0.735 ± 0.0066 0.505 ± 0.0034
SVGP 0.9 ± 0.00094 0.608 ± 0.018 0.443 ± 0.008

Song 4.6e+05 90

BCM 1.56 ± 0.0063 1.32 ± 0.0012 0.851 ± 6.7e-05
GPOE 0.926 ± 0.00049 1.27 ± 3.4e-05 0.864 ± 7.5e-05
GRBCM 1.61 ± 0.11 1.46 ± 0.058 0.961 ± 0.035
OURS 0.99 ± 0.037 1.18 ± 0.0045 0.787 ± 0.0045
POE 1.61 ± 0.0067 1.34 ± 0.0013 0.864 ± 7.5e-05
RBCM 1.56 ± 0.0062 1.31 ± 0.0011 0.851 ± 6.4e-05
SVGP 0.991 ± 0.02 1.24 ± 0.0012 0.834 ± 0.0011
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F.2 Performance of different kernels564

Table 4: Results on the UCI datasets using different kernel choices for our method and demonstrating
the apparent superiority of the exponential kernel in these cases.

Calibration
Distributed Ours (Exp) Ours (Matérn) Ours (RBF) SVGP

Dataset n d

Poletele 4.6e+03 19 0.872 ± 0.024 0.994 ± 0.15 0.971 ± 0.13 1.03 ± 0.073 0.862 ± 0.035
Bike 1.4e+04 13 0.893 ± 0.014 0.988 ± 0.098 0.971 ± 0.086 0.974 ± 0.087 0.898 ± 0.011
Protein 3.6e+04 9 0.95 ± 0.012 0.995 ± 0.038 0.993 ± 0.031 0.991 ± 0.029 0.908 ± 0.016
Ctslice 4.2e+04 378 1.13 ± 0.11 0.912 ± 0.071 1.04 ± 0.082 1.04 ± 0.085 0.865 ± 0.026
Road3D 3.4e+05 2 0.873 ± 0.011 1.09 ± 0.065 1.0 ± 0.054 0.991 ± 0.041 0.9 ± 0.00094
Song 4.6e+05 90 1.56 ± 0.0063 0.995 ± 0.033 0.994 ± 0.035 0.99 ± 0.037 0.991 ± 0.02
Houseelectric 1.6e+06 8 1.24 ± 0.0054 1.11 ± 0.29 1.08 ± 0.27 1.08 ± 0.21 0.911 ± 0.038

RMSE
Distributed Ours (Exp) Ours (Matérn) Ours (RBF) SVGP

Dataset n d

Poletele 4.6e+03 19 0.241 ± 0.0033 0.169 ± 0.0076 0.17 ± 0.0076 0.195 ± 0.0042 0.226 ± 0.0059
Bike 1.4e+04 13 0.634 ± 0.004 0.565 ± 0.0036 0.6 ± 0.0044 0.624 ± 0.0079 0.606 ± 0.0033
Protein 3.6e+04 9 0.733 ± 0.0038 0.58 ± 0.0068 0.629 ± 0.004 0.666 ± 0.0014 0.688 ± 0.0043
Ctslice 4.2e+04 378 0.237 ± 0.012 0.123 ± 0.004 0.126 ± 0.0024 0.132 ± 0.00062 0.384 ± 0.0064
Road3D 3.4e+05 2 0.478 ± 0.0023 0.0976 ± 0.013 0.27 ± 0.01 0.351 ± 0.0014 0.443 ± 0.008
Song 4.6e+05 90 0.851 ± 6.7e-05 0.776 ± 0.004 0.778 ± 0.0045 0.787 ± 0.0045 0.834 ± 0.0011
Houseelectric 1.6e+06 8 0.0626 ± 5.2e-05 0.045 ± 0.00025 0.0485 ± 0.0004 0.0506 ± 0.00072 0.0566 ± 0.0001

NLL
Distributed Ours (Exp) Ours (Matérn) Ours (RBF) SVGP

Dataset n d

Poletele 4.6e+03 19 0.0091 ± 0.015 -0.397 ± 0.028 -0.346 ± 0.032 -0.214 ± 0.019 -0.0667 ± 0.017
Bike 1.4e+04 13 0.977 ± 0.0057 0.854 ± 0.004 0.915 ± 0.0077 0.953 ± 0.013 0.93 ± 0.0043
Protein 3.6e+04 9 1.11 ± 0.0051 0.853 ± 0.013 0.95 ± 0.0061 1.01 ± 0.0016 1.05 ± 0.0059
Ctslice 4.2e+04 378 -0.159 ± 0.052 -1.05 ± 0.027 -1.31 ± 0.017 -1.26 ± 0.01 0.467 ± 0.016
Road3D 3.4e+05 2 0.685 ± 0.0041 -0.931 ± 0.14 0.109 ± 0.039 0.371 ± 0.004 0.608 ± 0.018
Song 4.6e+05 90 1.32 ± 0.0012 1.16 ± 0.0046 1.17 ± 0.0051 1.18 ± 0.0045 1.24 ± 0.0012
Houseelectric 1.6e+06 8 -1.34 ± 0.0013 -1.95 ± 0.028 -1.62 ± 0.0095 -1.56 ± 0.0065 -1.46 ± 0.0046
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G Overall Computational Expenditure565

Our distributed and variational method experiments were conducted using cloud computing resources.566

Experiments using our own method have been carried out on an author’s laptop. SVGP experiments567

were run using a SageMaker virtual machine on a single Nvidia Tesla V100 GPU with 16GB memory.568

Distributed method experiments were run using eight Intel Xeon Platinum 8000 CPU cores (t3.2xlarge569

EC2 instances).570

Below we will attempt to give reasonable indications of the amount of computational work expended571

to obtain the results in this paper, though note that we are neglecting the work expended in the572

development and research stages that did not directly contribute to the runs in the paper. As such,573

the costs presented are representative of the costs of replicating our paper, not repeating the research574

from scratch. Instead of reporting costs in dollars, we will report approximate computing hours for575

each instance type. The reader can then estimate their own costs using the current instance costs in576

the region of their choice, or under other cloud providers or even using on-premise compute.577

Dataset Billed hours (1 GPU, 3 runs) Billed hours (8 CPUs, 3 runs of 5 methods)
bike 0.027 0.222
ctslice 0.082 0.546
houseelectric 3.713 256.776
poletele 0.010 0.079
protein 0.068 0.680
road3d 0.635 31.674
song 0.904 12.237

This gives a total of around 5.4 hours of compute time on a 1 GPU VM and 302.2 hours on an 8 CPU578

VM.579
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