
Appendices468

A Discussion on Classical Schemes for Modeling Event Sequence469

As shown in Figure 1, a common approach is to use sliding windows to frame the data for model470

training and prediction. In this setup, we discuss three classical schemes.471

• Pretrained TPP. A straightforward solution is to pretrain a TPP in the first train set and use it for472

all the following test periods. Such an approach faces the problem of distribution shift, i.e., the473

new data is systematically different from the data the model was trained on Snoek et al. (2019).474

Take the Taobao dataset (Alibaba, 2018) for example, which contains time-stamped user click475

behaviors 4. We split the dataset by timestamps into 10 periods sequentially and compute the 3S476

statistics (Shchur et al., 2021) as a measure of the distribution of event sequences for each period.477

Figure 7a shows that the 3S statistics differentiate between periods while Figure 7b illustrates an478

increasing KL divergence of the 3S statistics between the first and later period, implying a pattern479

shift over time. As a result, this approach may fail to adapt to new data and produce unsatisfactory480

predictions.481

• Retrained TPP. Another classical solution is to train a new TPP on the data of sliding windows482

over again. The TPP can quickly adapt to new data but may suffer from catastrophic forgetting483

(McCloskey & Cohen, 1989): adaptation usually implies that the model loses memory of previously484

encountered data that may be relevant to future predictions. For example, Figure 7a shows a485

large overlap in distributions of different periods on the Taobao dataset, indicating the necessity486

of maintaining the knowledge of existing patterns to improve generalization (Snoek et al., 2019;487

Wang et al., 2020).488

• Online TPP. A better solution is an online approach: discretize the time axis into small intervals and489

then incrementally update the TPP at the end of each interval using an online algorithm. However,490

online models are generally more difficult to maintain and may also cause catastrophic forgetting491

(Hoi et al., 2021). Besides, to the best of our knowledge, apart from online classical TPPs (Yang492

et al., 2017; Hall & Willett, 2016), the field of online neural TPPs is much less well-studied.493

B Related Work Details494

Here we draw connections and discuss differences between our method to related works.495

Temporal Point Process. A large variety of Neural TPPs have been proposed over recent decades,496

aimed at modeling event sequences with varying sorts of properties. Many of them are built on497

recurrent neural networks (Du et al., 2016; Mei & Eisner, 2017; Xiao et al., 2017; Omi et al., 2019;498

Shchur et al., 2020; Mei et al., 2020; Boyd et al., 2020). Models of this kind enjoy continuous state499

spaces and flexible transition functions, thus achieving superior performance on many real-world500

datasets, compared to classical models such as the Hawkes process Hawkes (1971). To properly501

capture the long-range dependency in the sequence, the attention mechanism Vaswani et al. (2017)502

has been adapted to TPPs Zuo et al. (2020); Zhang et al. (2020); Yang et al. (2022) to enhance the503

predictive performance. However, learning the event sequence under the stream setting is largely504

unexplored. To the best of our knowledge, there exist two prior works Yang et al. (2017); Hall &505

Willett (2016) that propose online learning algorithms for classical TPPs while that for neural TPP506

have rarely been studied. We show our method works better than classical online TPPs in practice507

(see section 4.2).508

Continual Learning. There is also a rich existing literature on CL: the models can be categorized509

into regularization-based methods (Kirkpatrick et al., 2017; Zenke et al., 2017), which regularize510

important parameters for learned tasks, architecture-based methods (Rusu et al., 2016; Mallya &511

Lazebnik, 2018) which assign isolated parameters for each task and rehearsal-based methods (Cha512

et al., 2021; Buzzega et al., 2020) which save data from learned tasks in a rehearsal buffer to train with513

the current task. In retrospect, we realize a concurrent work (Dubey et al., 2022) which also augments514

TPP with CL abilities. Important distinctions of their work from ours include: 1. setup: they use515

4Please see Appendix D.1 for the details of the Taobao dataset and Appendix D.2 for the explanations on 3S
statistics and the procedure of the experiment on distribution shift.
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Figure 7: Analysis of distribution shift on Taobao dataset.

standard TPP train/valid setting while we formalize more realistic streaming setting to train/validate516

the models; 2. methodology: they model the event streams with a hypernetwork-based regularizer517

while we use a trainable prompt pool with more flexibility and generality in CL. 3. task agnostic:518

they rely on a task descriptor built from meta attributes of events while we do not - our method is task519

agnostic. As their source code is not available yet, we independently implement it and our method520

still outperforms it (see section 4.2).521

Prompt Learning. Prompt-based learning (or prompting), as an emerging transfer learning technique522

in NLP, applies a fixed function to condition the model so that the language model gets additional523

instructions to perform the downstream task. Continuous prompts have also been proposed (Lester524

et al., 2021; Li & Liang, 2021) to reduce prompt engineering, which directly appends a series of525

learnable embeddings as prompts into the input sequence, achieving outstanding performance on526

transfer learning. Wang et al. (2022a,b) connect prompting and CL, which attaches prompts to the527

pretrained backbone to learn task-invariant and task-specific instructions. Note that it is non-trivial528

to apply prompting to neural TPPs (See Analysis II and III in section 4.2), and our proposed novel529

framework reveals its values to event sequence modeling.530

C Method Details531

C.1 PromptTPP at Training and Test Time532

The training and test time Algorithms for PromptTPP are illustrated in Algorithm 1 and Algorithm 2,533

respectively.534

For simplicity of notations, in test time, we show how to sample the next event given one historical535

event sequence via the thinning algorithm (Mei & Eisner, 2017), which can be easily extended to536

batch-wise inference.537

D Experimental Details538

D.1 Dataset Details539

We evaluate our methods on two industrial user behavior datasets. We provide details on the540

preparation and utilization of each below. For both datasets, users are associated with anonymous541

aliases to remove personally identifiable information (PII).542

Taobao (Alibaba, 2018). This dataset contains time-stamped user click behaviors on Taobao shopping543

pages from November 25 to December 03, 2017. Each user has a sequence of item click events where544

each event contains the timestamp and the category of the item. Following the previous work (Xue545

et al., 2022), the categories of all items are first ranked by frequencies, and the top 19 are kept while546

the rest are merged into one category, with each category corresponding to an event type. We work547

on a subset of 4800 most active users with an average sequence length of 150 and then end up with548

K = 20 event types.549
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Algorithm 1 PromptTPP at training time of the T -th task.
Input: Train set {strain}. CtRetroPromptPool (K,V) = {(ki,Pi)}Mi=1 (inherited from the previous

task) , score function φ, loss weight α and asynchronous refresh frequency C.
Output: Trained base model with a encoder fϕenc

and a decoder fϕdec
; trained CtRetroPromptPool

(K,V) = {(ki,Pi)}Mi=1.
1: procedure TRAIN({strain}, (ki,Pi)}Mi=1, φ, α, C)
2: for epoch_id in total_epochs :
3: Draw a mini batch B
4: ▷ For illustration purposes, we use batch size=1 here. The computation here can be easily extended to

batch size ≥ 1.
5: for s[0,T ] in B :
6: Update the loss← CALCLOSS(s[0,T ], fϕenc

, fϕdec
, α)

7: Update fϕenc , fϕdec
by backpropagation.

8: if epoch_id %C == 0 : Update (ki,Pi)}Mi=1 by backpropagation.
9: procedure CALCLOSS(s[0,T ], fϕenc , fϕdec

, α)
10: L ← 0.
11: ▷ Recursively compute the loss.
12: for e@t in s[0,T ] :
13: ▷ Compute the likelihood loss; the technical details can be found in Mei & Eisner (2017) and Yang

et al. (2022).
14: Levent ← Take a sum of log intensity at the event time by calling CALCINTEN-

SITY(s[0,t), e@t, fϕenc
, fϕdec

,(ki,Pi)
M
i=1).

15: Lnon_event ← Integrate log CALCINTENSITY(s[0,t), e@t) over inter-event time interval.
16: Lnll ←Lnon_event − Levent

17: ▷ Compute the matching loss.
18: Lmatching ←

∑
Ktop−N

φ(fϕenc(e@t),krj )

19: L ← Lnll + αLmatching

20: return L
21: procedure CALCINTENSITY(s[0,t), e@t, fϕenc

, fϕdec
, (ki,Pi)

M
i=1)

22: s[0,t] ← Append e@t to history s[0,t).
23: Encode s[0,t] by fϕenc

to generate the hidden state ht.
24: Matching the index rj

N
j=1 based on equation 7.

25: Select Top-N prompts {Pri}Ni=1.
26: Prepend {Pri}Ni=1 to ht and pass to the decode fϕdec

to generate the intensity λe(t), e ∈
{1, ..., E}.

27: return λe(t), e ∈ {1, ..., E}

DATASET K # EVENT TOKENS AVG # EVENT TOKENS AVG # EVENT TOKENS AVG # SEQUENCE
TOTAL PER SEQUENCE PER TASK PER TASK

TAOBAO 20 720,000 150 80,000 32
AMAZON 16 360,000 70 42,000 10

Table 1: Statistics of each dataset.

Amazon (Ni, 2018). This dataset includes time-stamped user product review behavior from January550

2008 to October 2018. Each user has a sequence of produce review events where each event containing551

the timestamp and category of the reviewed product, with each category corresponding to an event552

type. We work on a subset of 5200 most active users with an average sequence length of 70 event553

tokens and then end up with K = 16 event types.554

For the Taobao dataset, each task includes approximately 1 day of time, while for the Amazon dataset,555

each task includes approximately 2 years of time.556

Table 1 shows statistics about each dataset mentioned above.557
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Algorithm 2 PromptTPP at test time of the T -th task.

Input: An event sequence s[0,T ] = {ei@ti}Ii=1. Trained base model with a encoder fϕenc
and a

decoder fϕdec
; trained CtRetroPromptPool (K,V) = {(ki,Pi)}Mi=1 and the score function φ.

Output: Sampled next event êI+1@t̂I+1.
1: procedure DRAWNEXTEVENT(s[0,T ], fϕenc

, fϕdec
)

2: t0 ← T ;H ← s[0,T ]

3: ▷ Compute sampling intensity
4: {λe(tj | H)}Nj=1 ← SAMPLEINTENSITY(s[0,T ], fϕenc

, fϕdec
, {(ki,Pi)}Mi=1) for all tj ∈

(t0,∞)
5: ▷ Compute the upper bound λ∗.
6: ▷ Technical details can be found in Mei & Eisner (2017)
7: find upper bound λ∗ ≥

∑E
e=1 λe(tj | H) for all tj ∈ (t0,∞)

8: repeat
9: draw ∆ ∼ Exp(λ∗); t0 += ∆ ▷ time of next proposed event t̂I+1

10: u ∼ Unif(0, 1)

11: until uλ∗ ≤
∑E

e=1 λe(t0 | H)
12: draw êI+1 ∈ {1, . . . , E} where probability of e is ∝ λe(t0 | H)
13: return êI+1@t̂I+1

14: procedure SAMPLEINTENSITY(s[0,T ], fϕenc
, fϕdec

, {(ki,Pi)}Mi=1)
15: Assume the last event in s[0,T ] is e@t

16: Generate a list of sample times {tj}Nj=1, tj ≥ T .
17: Compute the intensity at sample times λetj ← CALCINTEN-

SITY(s[0,t], e@t, fϕenc , fϕdec
, {(ki,Pi)}Mi=1)

18: return {λe(tj | H)}Nj=1

D.2 3S statistics and Experiment on Distribution Shift558

We use the 3S (sum-of-squared-spacings) statistics proposed by Shchur et al. (2021) to depict the559

distribution of an event sequence in continuous time. Compared to the classical KS statistics (Lewis,560

1965), it uniformly captures multiple properties of event sequence, such as total event count and561

distribution of inter-event times. Empirically, replacing the KS score with the 3S statistic consistently562

leads to a better separation between distributions generated by different TPPs. Please refer to the563

original paper (Shchur et al., 2021) for a detailed discussion.564

For exploring the distribution shift in the Taobao dataset, we randomly sampled a thousand sequences565

of events and split them into 10 subsets by timestamps: each subset has approximately equal time566

horizon and is notated sequentially from 0-th to the 9-th subset. Then we follow the procedure in567

(Shchur et al., 2021) to compute the 3S statistics for each subset and illustrate the results in Figure 7a.568

D.3 Evaluation Setup569

To set up the training and evaluation process, we partition each dataset into 10 consecutively rolling570

slides (namely 10 tasks). For the Taobao dataset, each slide covers approximately 1 day of time,571

and for the Amazon dataset, each slide covers 2 years of time. The subset in each task is split into572

training, validation, and test sets with a 70%, 10%, 20% ratio by chronological order. Each task has573

no overlap in the test set. In such a setting, the total test set covers approximately 70% of data.574

We train and evaluate each task sequentially. Our evaluation setup is close to that used in real575

applications: train the model using a fixed length of historical data and evaluate the model using the576

following window of the data.577

D.4 Implementation Details578

All models are implemented using the PyTorch framework (Paszke et al., 2017).579

For the implementation of NHP, AttNHP, and thinning algorithm, we used the code from the public580

GitHub repository at https://github.com/yangalan123/anhp-andtt (Yang et al., 2022) with MIT License.581
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Figure 8: A demonstration of the sliding window validation method.

MODEL # PARAMETERS

TAOBAO AMAZON

PRE-NHP 23.3K 23.4K
PRE-ANHP 25.4K 25.6K
RE-NHP 23.3K 23.4K
RE-ANHP 25.4K 25.6K
O-TPP <1K <1K
CL-NHP 27.6K 27.7K
CL-ANHP 29.5K 29.6K
PT-NHP 26.2K 26.3K
PT-ANHP 27.8K 27.0K

Table 2: Total number of parameters for models trained on the two datasets.

For O-TPP, as the authors Yang et al. (2017) have not published the code, we implement it using the582

tick (Bacry et al., 2017) library.583

For CL-NHP and CL-ANHP, without the public code, by following the main idea of the authors584

Dubey et al. (2022), we develop the hypernetwork with an MLP layer and add apply regularizer to585

the hypernetwork parameters while learning a new event sequence, which prevents adaptation of the586

hypernetworks parameters completely to the new event sequence. Note that, the base models used are587

NHP and ANHP, respectively, instead of FullyRNN (Omi et al., 2019) applied in the original paper.588

We implemented our methods with PyTorch (Paszke et al., 2017). We submit the code to the Google589

Drive5 and will release it formally upon the acceptance of the paper.590

D.5 Training and Testing Details591

D.5.1 Training and Hyperparameters Selection592

Training base TPP model. To train the parameters for a given neural TPP, we performed early593

stopping based on log-likelihood on the held-out dev set.594

• For NHP, the main hyperparameters to tune are the hidden dimension D of the neural network. In595

practice, the optimal D for a model was usually 32, 64, 128, and we search for the optimal value596

among them for different datasets.597

• For AttNHP, in spite of D, another important hyperparameter to tune is the number of layers L598

of the attention structure. In practice, the optimal L was usually 1, 2, 3, 4. In the experiment, we599

choose the hyperparameter based on the held-out dev set while keeping AttNHP to have a similar600

size to that of NHP.601

Training PromptTPP. We find α in equation 11 is not sensitive and works well in a large range, so602

we set α = 0.1 consistently for both datasets. For the prompts, we set M = 10, N = 4, Lp = 10 for603

both datasets. For the asynchronous training parameter C, we choose C = 2 for Taobao and Amazon604

datasets by default.605

5https://drive.google.com/drive/folders/103jzYhKgbhqbGB68jK7fYGmYvzapfTcw
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MODEL DESCRIPTION VALUE USED

TAOBAO AMAZON
PRE-NHP RNN HIDDEN SIZE 76 76

TEMPORAL EMBEDDING 64 32
PRE-ANHP HIDDEN SIZE 64 64

LAYER NUMBER 3 3
RE-NHP RNN HIDDEN SIZE 76 76

TEMPORAL EMBEDDING 64 32
RE-ANHP HIDDEN SIZE 64 64

LAYER NUMBER 3 3
O-TPP KERNEL SIZE 20 × 20 16 × 16
CL-NHP RNN HIDDEN SIZE 64 64

TEMPORAL EMBEDDING 64 32
CL-ANHP HIDDEN SIZE 64 64

LAYER NUMBER 3 3
RNN HIDDEN SIZE 64 64

M (RETRIEVAL PROMPT POOL SIZE) 10 10
PT-NHP N (TOP-N SELECTED) 4 4

Lp(PROMPT LENGTH) 10 10
C(ASYNCHRONOUS REFRESH FREQUENCY) 2 2

TEMPORAL EMBEDDING 64 32
HIDDEN SIZE 64 64

LAYER NUMBER 2 2
PT-ANHP M (RETRIEVAL PROMPT POOL SIZE) 10 10

N (TOP-N SELECTED) 4 4
Lp(PROMPT LENGTH) 10 10

C(ASYNCHRONOUS REFRESH FREQUENCY) 2 2

Table 3: Descriptions and values of hyperparameters used for models trained on the two datasets.

Chosen Optimizer and Hyperparameters. All models are optimized using Adam (Kingma &606

Ba, 2015). Table 3 contains descriptions that list all of the hyperparameters set throughout our607

experiments.608

Testing. As described in Mei & Eisner (2017), we minimized the Bayes risk via the thinning609

algorithm to determine decisions for what a predicted next event time t̂i+1 and type êi+1 would610

be after conditioning on a portion of a sequence s[0,ti] = [e1@t1, . . . , ei@ti]. All experimental611

results are averaged over 5 runs, and the corresponding standard deviation is reported as well. In the612

experiment, we report the metrics on the test set for each task as well as the average metrics over all613

the tasks.614

Integral Approximations. During training and testing, there are a number of integrals (e.g., log-615

likelihood in equation 11) that need to be computed, which are not feasible in closed form. Thus,616

we must approximate them. All integrals and expectations are approximated via Monte Carlo (MC)617

estimates with certain amounts of samples used. Lnon_event in equation 1 uses 100 MC samples618

during training and testing. When evaluating the integrals used for next event predictions in thinning619

algorithm, we used 100 samples where the sample points were shared across integrals for a single620

set of predictions in order to save on computation. The exact approximation procedure for the621

log-likelihood can be found in Mei & Eisner (2017).622

Environment. All the experiments were conducted on a server with 256G RAM, a 64 logical cores623

CPU (Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz) and one NVIDIA Tesla P100 GPU for624

acceleration.625

D.6 Analysis II Details: Statistical Significance626

We performed the paired permutation test to validate the significance of our proposed temporal627

prompt. Particularly, for each model variant (Pt-NHP and Pt-ANHP), we split the test data into628

ten folds and collected the paired test results with temporal prompt and with the standard prompt,629
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Figure 9: Statistical significance of the improvements from a temporal prompt on Taobao and Amazon datasets.
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(a) Evaluation results on Task 9.
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(b) Evaluation results on Task 10.

Figure 10: OTD distance comparison of generated sequence of all models.

respectively, for each fold. Then we performed the test and computed the p-value following the recipe630

at https://axon.cs.byu.edu/Dan/478/assignments/permutation_test.php.631

The results are in Figure 9. It turns out that, on both datasets, the performance differences are strongly632

significant for the error rate metric (p-value < 0.05 ) and weakly significant for the RMSE metric633

(p-value ≈ 0.08 ).634

D.7 More Result: Generation Ability Comparison635

We investigated the generative ability of the models empirically on the Taobao dataset. Given a636

trained model, we fixed the prefix event sequence and performed the 1-event sampling and 3-event637

sampling (autoregressively) on the test set of task 9 and task 10. We followed (Xue et al., 2022) to638

compute the average optimal transport distance (OTD) to measure the distance between the generated639

sequence and the ground truth. Seen from Figure 10, our proposed models Pt-NHP and Pt-AttNHP640

achieves the best results. This is consistent with the findings in Main Results in the paper.641
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