
A Supplementary for Experiment

Details of benchmarks. For the DCC and IDCC algorithms proposed in Chenreddy et al. [2022],
we set the number of clusters to be 10. This choice of the number of clusters is large enough because
there are clusters containing no training samples. The Ellipsoid method, which is also a benchmark
used in Chenreddy et al. [2022], fits a Gaussian distribution without contextual information and
calibrates the radius to cover a proportion of ↵ training samples. For the kNN conditional RO method
[Ohmori, 2021], the hyperparameter, k, lacks the flexibility to adjust with respect to the number
of training samples T , the dimensionality of the problem, and the risk level ↵, so we empirically
choose k = max{

p
T , 2⇥ n} here. Different algorithms utilize the same dataset to ensure fairness

in each round of comparison. We redefine T as its size in the experiment section. For our proposed
Algorithm 1 (PTC-B) and 2 (PTC-E) under the PTC framework, the dataset is randomly split into
60%, 20%, and 20% to do prediction, preliminary calibration, and final adjustment, respectively.

Performance measurements. In the test phase, we randomly generate z from its marginal distribu-
tion. Then, for each z, we generate a set with 1000 objective vectors, {ct}1000t=1 , from Pc|z . Given any
robust solution x conditioned on z, we estimate the VaR↵[c>x|z] by the ↵-quantile of {ct>x}1000t=1
and take its empirical expectation over z as the average VaR. Similarly, we estimate the average
coverage by the average frequency of {c 2 Uz}.

A.1 Simple LP Visualization

We select NN as the prediction and preliminary calibration models in both PTC-B and PTC-E
algorithms and compare them to benchmarks. Here, because c is only 1-dimensional, we replaced
the DCC and IDCC algorithms, which are based on deep neural networks, with another clustering
method, K-Means. Figure 5 shows the performance of different algorithms when d increases (d = 1,
4, and 16), and the plot is shown by fixing z2, ..., zd to 0 in the test phase. The Ellipsoid method
performs the worst and gives an unchanged uncertainty set for all different z due to its ignorance
of the contextual information. All algorithms degrade with an increase in irrelevant information,
but localized methods such as kNN and K-Means exhibit more severe deterioration. Our proposed
methods, however, maintain a certain degree of stability.

Figure 5: Comparison in performance deterioration with increasing dimensions

A.2 Shortest Path Problem

In this section, we consider a shortest path problem on a 5 ⇥ 5 grid with 40 edges, and the cost
of traveling through edge i is ci for i = 1, ..., 40. After observing the covariates z (e.g., weather
conditions, day of the week), we aim to select a route from the left-top vertex to the right-bottom
one to minimize the value-at-risk travel time, i.e., VaR↵,z(c>x). The data generation process is as
follows. First, we generate a 0-1 matrix ⇥ 2 R40⇥d once with random seed 0 and fix it to encode
the parameters of the true model, where each entry is generated from a Bernoulli distribution with
probability 0.5. Then, the covariate vector zt 2 Rd is generated from N(0, Id) for t = 1, ..., T .
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Figure 6: Box plot of scaled VaR on shortest path problems under different risk level settings

Given zt, the cost on edge i is cti = [( 1p
d
(⇥zt) + 3)5 + 1] · ✏i, where ✏i ⇠ Unif[ 34 ,

5
4 ] independently

for i = 1, ..., 40. We implement d = 10 here. To simulate the uneliminated irrelevant information,
we set the last two dimensions of z to be independent of c, so their corresponding column vectors in
⇥ are set to be zero. In the test phase, we evaluate the performance on 500 z’s generated from the
marginal distribution of z. We select the Kernel Ridge method with the RBF kernel as our prediction
model and the NN model as our preliminary calibration model in both PTC-B and PTC-E.

In Figure 6, we show the box plot version of Table 1 with scaled VaR. Here, to alleviate the impact of
randomness on z, we scale the VaR by the optimal value of the corresponding conditional stochastic
program with expectation objective, i.e., VaR↵/ObjE , where ObjE = maxAx=b,x�0 E[c|z]>x. Fig-
ure 6 once again demonstrates the superior performance of our algorithms in minimizing VaR as that
in Table 1.

A.3 Fractional Knapsack Problem

In this section, we consider a fractional knapsack problem and follow the setup in Ho-Nguyen
and Kılınç-Karzan [2022]. This problem can be interpreted as a maximization problem, wherein a
consumer aims to maximize their utility by selecting items under a budget constraint. Specifically, to
fit our formulation, the problem can be written as

min
x2X

VaR↵,z(�c
>
x), where X := {x 2 [0, 1]n : p>x  B}.

Here, c is the utility vector and we use a minimization version to represent a maximization problem.
p 2 Rn is some fixed positive vector indicating the price of items, and B > 0 is the budget. The
same as the shortest path problem, we randomly generate a 0-1 matrix ⇥ 2 B20⇥d once with the last
2 columns entirely filled as zeros to indicate the independence of the last dimensions of z to c. Then,
we generate multivariate independent z from Unif[0, 4]d, and c = (⇥z)2 · ✏, where ✏ is multivariate
independent and following Unif[ 45 ,

6
5 ]

n. We conduct experiments on data generated under T = 5000,
d = 10, and n = 20, and we choose the Kernel Ridge method with RBF kernel as our prediction
model, and the NN as our preliminary calibration model in both the PTC-B and PTC-E.

Given a new covariate z, the conditional RO algorithm will output an uncertainty set. Under different
constraints, the worst-case scenario corresponding to the uncertainty set may vary, so we compare the
performance under randomly generated constraints. We generate the price vector p with each entry as
an integer uniformly sampled from [1, 1000]. Then, we randomly generated u ⇠ Unif[0, 1], and the
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Figure 7: Box plot of scaled VaR on knapsack problems under different risk level settings

budget B is sampled from Unif[maxj pj ,1>
p� u ·maxj pj ]. Here, we randomly generated 10 sets

of constraints {(pi, Bi)}10i=1 (with random seed 0) and fix them. In the test phase, the average VaR
and coverage are taken over 100 z’s and 10 constraints (1000 instances in total).

Table 2 associated with Figure 7 displays the comparison results under varying risk levels and
demonstrates the advantages of our proposed algorithms again via the lower VaR and proper cov-
erage that closely matches the risk level, where the scaled VaR in Figure 7 is the VaR divided by
maxx2X E[c|z]>x. The contextual-ignorance method, Ellipsoid, performs the worst with the total
utilities remaining 0, which shows its excessive conservatism by specifying the worst-case utility of
each item to be non-positive and selecting nothing. The DCC and IDCC, as well as our PTC-B and
PTC-E methods, exhibit better performance than the kNN method due to our utilization of expressive
NN models, which are not limited to utilizing only local information. By virtue of the flexibility of
our algorithms in the model selection, the chosen Kernel Ridge regression model is more suitable
than the clustering-based DCC and IDCC methods for this problem with continuous covariates, so
our algorithms achieve relatively better performance than theirs.

Table 2: Average VaR and coverage on fractional knapsack problems under different risk level
settings. The result is reported based on 500 simulation trials.

(a) Average VaR

↵ Ellips. kNN DCC IDCC PTC-B PTC-E
0.6 0 -1175 -1256 -1131 -1310 -1310
0.7 0 -1148 -1241 -1111 -1298 -1297
0.8 0 -1137 -1230 -1090 -1283 -1282

0.85 0 -1128 -1223 -1086 -1273 -1273
0.9 0 -1114 -1213 -1087 -1261 -1261

0.95 0 -1102 -1180 -1092 -1242 -1243

(b) Average coverage

↵ Ellips. kNN DCC IDCC PTC-B PTC-E
0.6 0.66 0.96 0.75 0.65 0.57 0.65
0.7 0.74 0.96 0.79 0.74 0.73 0.71
0.8 0.82 0.96 0.86 0.83 0.79 0.82

0.85 0.86 0.96 0.89 0.89 0.88 0.86
0.9 0.91 0.96 0.92 0.93 0.91 0.91

0.95 0.96 0.96 0.97 0.95 0.92 0.97

B Supplementary for Section 3

This section provides discussions about the individual coverage and proofs for theoretical statements
in Section 3. In Section B.1, we will provide a brief literature review about global coverage
and individual coverage, and then, provide an algorithm to achieve the individual coverage with
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corresponding theoretical results. In Sections B.2, B.3, and B.4, we will show Propositions 1, 2, 3,
respectively. The proof will utilize some useful lemmas in Section D.

B.1 Individual Coverage

The uncertainty quantification literature arises from two communities. It is referred to as "conformal
prediction" in the field of statistics and "model calibration" in the field of machine learning. In the
following, we briefly review the results of global and individual coverage in uncertainty quantification
in those two communities, respectively.

Conformal prediction: Milestone works on the topic, Lei et al. [2018], Barber et al. [2023], focus
on global coverage. Angelopoulos and Bates [2021], a survey paper on conformal prediction, also
focuses on the global guarantee. For conditional/individual coverage, Foygel Barber et al. [2021],
Vovk [2012] state an “impossible triangle” in uncertainty quantification: (i) the coverage result is
built for conditional coverage; (ii) it makes no assumptions on the underlying distribution; (iii) it has
finite-sample guarantee rather than asymptotic consistency. Essentially, in our paper, Algorithms 1
and 2 basically fail to meet (i), but they barely rely on any assumptions on the underlying distribution
and enjoy a finite-sample guarantee, that is, achieving (ii) and (iii). Later in this section, we will
introduce a nonparametric algorithm that achieves conditional coverage, and the coverage can be
finite-sample, i.e., achieving (i) and (iii), while this result requires additional assumptions on the
underlying distribution, which is a violation of (ii).

Model calibration/recalibration: Lakshminarayanan et al. [2017], Cui et al. [2020], Chung et al.
[2021], Kuleshov et al. [2018], Zhao et al. [2020] are a few state-of-the-art papers on calibrating the
uncertainty of a regression model. We note that none of these papers claim to achieve a conditional
coverage guarantee. Rather, they ensure a global guarantee and strive for better empirical conditional
coverage. In particular, Zhao et al. [2020] gives a pessimistic result on conditional coverage that it is
impossible to verify whether an algorithm achieves individual coverage. However, the proof is based
on a very special case, and it is possible to rule it out with some mild conditions.

In the following, we present Algorithm 3 under our predict-then-calibrate framework, which can
achieve individual coverage.

Algorithm 3 Uncertainty Quantification with Individual Coverage

1: Input: Validation data Dval, ML model f̂ , kernel choice Kh(·, ·), bandwidth h, target covariate
z0

2: For each t 2 Dval, let
rt := ct � f̂(zt)

3: Define the estimation of the conditional distribution r|z = z0:

P̂r|z0 :=
X

t2Dval

Kh(zt, z0)�rtP
t2Dval

Kh(zt, z0)
,

where �r denotes the delta distribution on r

4: Choose a minimal ⌘ > 0 such that

P̂r|z0 ({r : krk2  ⌘}) � ↵

5: Output: Uncertainty set U↵(z0) =
n
c : kc� f̂(z0)k2  ⌘

o

Here, this uncertainty quantification algorithm is mainly based on a nonparametric estimation in Hall
et al. [1999], Liu et al. [2023], which is also similar to the nonparametric estimation in Algorithm
4. The estimator in Step 3 in Algorithm 3 covers a wide range of non-parametric estimators with
different kernels, including k-nearest neighbors, and it can approximate the conditional distributions
of the residuals r|z = z0 with a sublinear convergence rate under some Lipschitz conditions. As a
result, by using this estimator, we can directly calculate the size of the uncertainty set so that the
estimated conditional distribution attains individual coverage. That is Step 4 in Algorithm 3. In the

17



following, we will provide a statement without proof since the analysis is almost the same as the
proof of Proposition 4. We also refer to Hall et al. [1999], Liu et al. [2023] for a detailed analysis.
Proposition 5. Assume there exists a constant L0 such that the following Lipschitz condition holds
for any z, z

0

TV(Pr|z, Pr|z0)  Lkz � z
0ks2,

where TV(·, ·) denotes the total variation distance between two distributions, and Pr|z, Pr|z0 denotes
the conditional distribution of the residuals given covariates z or z0, respectively. Then under mild
boundedness assumptions on the distribution, the uncertainty set U↵(z0) output from Algorithm 3
satisfies

TV(P̂r|z0 , Pr|z0)  O

⇣
T

� s
2(s+d) log T

⌘
.

Moreover, it is worth noting that, through this approximation of the conditional distributions, we
can extend our framework in tractable optimizing conditional value-at-risk besides VaR in (3).
Specifically, one can generate a number of independent samples {c̃k}Kk=1 from the approximation
of the conditional distribution c|z = z0. Then to optimize the following empirical CVaR objective
(Rockafellar et al. [2000])

min
x,�

� +
1

K(1� ↵)

KX

k=1

�
c̃
>
t x� �

�+

s.t. Ax = b, x � 0.

This is a convex program that has an equivalent linear program and is thus computationally tractable.

To close this section, we want to emphasize that the Lipschitz assumption in Proposition 5 cannot be
verified from the data prior. Also, we prefer not to claim we have solved the conditional coverage
problem for two reasons: (i) We do not want to give an impression to the robust optimization
community that conditional coverage is an easy task to achieve. One should proceed with caution
when applying the nonparametric algorithm; (ii) We don not want to give an impression to the
statistics and ML communities working on uncertainty quantification problems that we underestimate
the difficulty of the conditional coverage and lack of understanding of the related literature.

B.2 Proof for Proposition 1 and Corollary 1

In this section, we first show Proposition 1, then show Corollary 1 based on the result of Proposition
1.
Proposition 1. For a new sample (c, A, b, z) from distribution P , denote the uncertainty sets output
from Algorithm 1 and Algorithm 2 by U (1)

↵ (z) and U (2)
↵ (z), respectively. The following inequalities

hold for k = 1, 2

↵  P
⇣
c 2 U (k)

↵ (z)
⌘
 ↵+

1

|D2|+ 1

where the probability is with respect to the new sample (c, A, b, z) and dataset D2.

Proof. Denote n = |D2| as the number of samples in the D2. In the following, we show for k = 1, 2,

P
⇣
c 2 U (k)

↵ (z)
⌘
=

d↵(n+ 1)e
n+ 1

, (12)

where d·e denotes the ceiling function. If it holds, we can prove this proposition by the following
inequalities

d↵(n+ 1)e
n+ 1

� ↵(n+ 1)

n+ 1
= ↵,

d↵(n+ 1)e
n+ 1

 ↵n+ 2

n+ 1
= ↵+

1

n+ 1
.

To show (12), we will use the exchangeability of the dataset D2 and new sample (c, A, b, z). Specifi-
cally, denote {ct}nt=1 as the samples in D2, and denote cn+1 as the new sample. Then, we define ⌘t
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for t = 1, ..., n+ 1 with respect to Algorithms 1 or 2 as follows

⌘t =

8
<

:

min {⌘ � 0 : ct(⌘)  ct  c̄t(⌘)} , if k = 1,

min

⇢
⌘ � 0

q
(ct � f̂(zt))>⌃̂�1(ct � f̂(zt))  ⌘ĝ(zt)

�
, if k = 2.

In the proof below, we only show (12) for Algorithm 1, and the proof for Algorithm 2 can be obtained
similarly. Based on the choice of the uncertainty set and definition of ⌘ in Algorithm 1, we have that
⌘ is the d↵(n+1)e

n -upper quantile in {⌘t}nt=1. This choice of ⌘ also implies ct+1 2 U (1)
↵ if ⌘n+1  ⌘,

which means

P
⇣
cn+1 2 U (1)

↵

⌘
= P

�
⌘n+1 is among the d↵(n+ 1)e-smallest of {⌘t}n+1

t=1

�
. (13)

Then, it is sufficient to show

P
�
⌘n+1 is among the d↵(n+ 1)e-smallest of {⌘t}n+1

t=1

�
=

d↵(n+ 1)e
n+ 1

.

To this end, because {ct}n+1
t=1 are i.i.d., we have

P
�
⌘n+1 is among the d↵(n+ 1)e-smallest of {⌘t}n+1

t=1

�
(14)

=P
�
⌘t is among the d↵(n+ 1)e-smallest of {⌘t}n+1

t=1

�

for all t = 1, ..., n,, which is also referred to as the exchangability. Then, we can finish the proof by
the following equalities:

P
�
⌘n+1 is among the d↵(n+ 1)e-smallest of {⌘t}n+1

t=1

�

=
1

n+ 1

n+1X

t=1

P
�
⌘t is among the d↵(n+ 1)e-smallest of {⌘t}n+1

t=1

�

=
1

n+ 1
E
"
n+1X

t=1

1
�
⌘t is among the d↵(n+ 1)e-smallest of {⌘t}n+1

t=1

 
#

=
d↵(n+ 1)e

n+ 1
,

where the first equality is obtained by the exchangeability (14), the second equality is obtained by the
definition of the expectation, and the last equality is obtained by the fact that

n+1X

t=1

1
�
⌘t is among the d↵(n+ 1)e-smallest of {⌘t}n+1

t=1

 
= d↵(n+ 1)e.

Next, we show Corollary 1:
Corollary 1. For a new sample (c, A, b, z) from distribution P , denote the uncertainty set output
from Algorithm 1 or Algorithm 2 by U↵(z). Let x⇤(z) and OPT(z) be the optimal solution and the
optimal value of LP(U↵(z)) (5). Then we have

P
�
c
>
x
⇤(z)  OPT(z)

�
� ↵

where the probability is with respect to the new sample (c, A, b, z) and D2.

Proof. By definition of the robust optimization problem (5), we have

c
>
x
⇤(z)  OPT (z)

if c 2 U (k)
↵ (z) for k = 1, 2. Then, Proposition 1 implies

P
�
c
>
x
⇤(z)  OPT(z)

�
� ↵.
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B.3 Proof for Proposition 2

Proposition 2. For any ↵ 2 (0.5, 1)

P (x⇤
↵(z1:k) = 0) =

1

�(k)

 
�

 
k,max

(
0,�d log

 
(1� ↵)

✓
1 +

1

d

◆d�k
!)!

� �

 
k,max

(
0,�d log

 
↵

✓
1 +

1

d

◆d�k
!)!!

,

and it decreases monotonously with respect to k.

Proof. Recall that

c =
dX

i=1

zi � d✏, (15)

and zi and ✏ are drawn from an Exponential distribution Exp(1) for all i = 1, ..., d. For any fixed

k = 1, ..., d, the corresponding prediction model is fk(z1:k) =
kP

i=1
zi.

We first characterize the distribution of the objective vector c given z1:k for any k = 1, ..., d. By the
additivity of Gamma distributions and the fact that the exponential distribution is a special case of the
Gamma distribution, we have given z1:k

P(c � 0) =

Z 1

0
...

Z 1

0
1

(
fk(z1:k) +

dX

i=k+1

zi � d · ✏
)

·
dY

i=k+1

e
�zi · e�✏d✏dzk+1...dzd

=

Z 1

0

Z 1

0
1{fk(z1:k) + z̃ � d · ✏} · z̃

d�k+1
e
�z̃

�(d� k)
· e�✏d✏dz̃ (16)

=

Z 1

0

⇣
1� e

�(fk(z1:k)+z̃)/d
⌘
· z̃

d�k+1
e
�z̃

�(d� k)
dz̃

= 1� e
�fk(z1:k)/d ·

✓
1 +

1

d

◆k�d

,

where the first line comes from the definition of the objective vector (15), the second line comes from

changing variables that z̃ =
dP

i=k+1
zi and the additivity of Gamma distributions, and others come

from the direct calculation. Then, by taking the complement, we have

P(c  0) = e
�fk(z1:k)/d ·

✓
1 +

1

d

◆k�d

. (17)

Next, we compute the probability that x⇤
↵(z1:k) = 0. In the one-dimensional setting with the feasible

set {x : �1  x  1}, the optimal solution of (5) can be determined by the sign of the objective
vector. Thus, if we are confident that c is non-negative, the optimal solution should be x⇤

↵(z1:k) = �1;
if we are confident that c is non-positive, the optimal solution isx⇤

↵(z1:k) = 1; if we are not confident
about the sign of the objective vector, we will be conservative and choose x

⇤
↵(z1:k) = 0. That is,

x
⇤
↵(z1:k) =

8
<

:

1, if P(c  0|z1;k) � ↵,

0, if P(c  0|z1;k),P(c � 0|z1;k)  ↵,

�1, if P(c � 0|z1;k) � ↵.

(18)

Then, plugging (16) and (17) into (18), we have P(c  0|z1;k),P(c � 0|z1;k)  ↵ only when

max

(
0,�d log

 
↵

✓
1 +

1

d

◆d�k
!)

 fk(z1:k)  max

(
0,�d log

 
(1� ↵)

✓
1 +

1

d

◆d�k
!)

.

(19)
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Integrating the probability on the set (19) with respect to z1:k, we have

P (x⇤
↵(z1:k) = 0) = (20)

1

�(k)

 
�

 
k,max

(
0,�d log

 
(1� ↵)

✓
1 +

1

d

◆d�k
!)!

� �

 
k,max

(
0,�d log

 
↵

✓
1 +

1

d

◆d�k
!)!!

.

(21)

To see it decrease, we can apply Jensen’s inequality to see the result.

B.4 Proof for Proposition 3

Proposition 3. For ↵ � 1/2, let the uncertainty set be

U↵(z) =

8
<

:

hp
z � 1�

p
2�2↵
2 ,1

⌘
, if z 2 [0, 1],

⇣
�1,�

p
�z + 1�

p
2�2↵
2

i
, if z 2 [�1, 0).

The uncertainty set has a coverage guarantee in that P(c 2 U↵(z)) = ↵. If we solve the optimization
problem (5) with the uncertainty set U↵(z), the following robust solution is obtained

x(z) =

8
><

>:

�1, if z � 3�2↵�2
p
2�2↵

4 ,

0, if �3+2↵+2
p
2�2↵

4  z  3�2↵�2
p
2�2↵

4 ,

1, if z  �3+2↵+2
p
2�2↵

4 .

Proof. We first show that P(c 2 U↵(z)) = ↵. Given the prediction function f̂(z) = sign(z) ·
p

|z|,
the residual is r = c� f̂(z) = ✏

p
|z|. By calculation, we have that the marginal distribution of the

objective vector c satisfies

P(r  r0) =

⇢
�2r20 + 2r0 +

1
2 , if 0  r0  1/2,

2r20 + 2r0 +
1
2 , if � 1/2  r0  0,

(22)

and this distribution is the same as the marginal distribution of the objective vector given z � 0 or
z  0 since the distribution of r only depends on the absolute value of z. Then, we have

P(c 2 U↵(z)) =
1

2
P
✓
r � �1�

p
2� 2↵

2

���� z � 0

◆
+

1

2
P
✓
r  1�

p
2� 2↵

2

���� z < 0

◆

=
1

2
P
✓
r � �1�

p
2� 2↵

2

◆
+

1

2
P
✓
r  1�

p
2� 2↵

2

◆

= ↵,

where the first line comes from the property of the conditional expectation, the second line comes
from the fact that the distribution of the residual is independent of the sign of the covariate z, and the
last line comes from (22).

Next, we show that the solution x(z) is the optimal solution of problem (5) with the uncertainty
set U↵(z). By (5) and the feasible set, we have that the optimal solution is 1 or �1 only when all
elements in the uncertainty set is non-positive or non-negative, respectively, and the optimal solution
is 0 when the uncertainty set contains both positive and negative numbers. Thus, we can find the result
by computing the lower and upper bound of the uncertainty set U↵(z) for z 2 [0, 1] and z 2 [�1, 0),
respectively.

C Supplementary for Section 4

This section provides our algorithm and the corresponding analysis for Section 4. We first briefly
summarize the problem and then, develop the DRO algorithm raised by our predict-then-calibrate
framework and the detailed proof of the algorithm analysis.
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As stated in Section 4, we here consider the risk-neutral problem (2) as follows

min
x

E[c|z]>x,

s.t. Ax = b, x � 0,

instead of a risk-sensitive objective in Section 3. As stated in Section 2, we work on a well-trained
ML prediction model f̂ that predicts the objective vector c based on the covariate z. Then, we will
apply the idea of distributionally robust optimization to bound the prediction error and develop the
generalization bound. We remark again that the prediction model can be any off-the-shelf machine
learning method since we have no assumption about it.

C.1 DRO Algorithm

In this part, we derive the DRO algorithm from our predict-them-calibrate framework. As for
Algorithms 1 and 2, we work on the prediction error

rt = ct � f̂(zt)

of all samples in the validation dataset Dval = {ct, At, bt, zt}Tt=1. In the following, by a little abuse
of notation, we use t 2 Dval to denote a sample tuple (ct, At, bt, zt) in the validation set.

Algorithm 4 Contextual Distributionally Robust LP

1: Input: Dataset Dval, ML model f̂ , radius ", bandwidth h, target covariate z0

2: For each t 2 Dval, let
rt := ct � f(zt)

3: Define the estimation of the conditional mean of residuals of covariate z0 by

r0 :=
X

t2Dval

wt(zt, z0)rt,

where
wt(z) / K((zt � z0)/h),

X

t2Dval

wt(z) = 1

and K(z) is a kernel function that satisfies Assumption 3
4: Construct the degenerate ambiguity set by

⌅ = {r0 : kr0 � r0k2  "}

5: Solve the degenerate distributional robust optimization problem

x̂(z0) = argmin
x

sup
r2⌅

(f(z) + r)>x,

s.t. Ax = b, x � 0,

6: Output: x̂(z0)

The main idea of our algorithm is similar to distributionally robust optimization that consists of two
steps: firstly, construct an ambiguity set ⌅, and secondly, solve the following distributionally robust
LP:

min
x

max
P02⌅

EP0

h
(f̂(z) + r)>x

i
, (23)

s.t. Ax  b, x � 0,

and use its optimal solution to solve (2). If the ambiguity set contains the target distribution, say
Pr|z0 , we can obtain a good solution to (2) by solving (23) with some generalization bound. Here,
Pr|z denotes the distribution of the prediction error given the covariate z. In our case, specifically,
the ambiguity set can degenerate into a set consisting of the mean of distributions in the ambiguity
set since we only focus on the estimation of the conditional mean E[r|z0] for the target covariate z0.
Thus, in the following, we will also use ⌅ to denote a set of vectors corresponding to the means of
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the distributions in ⌅. Then, as the ambiguity set degenerates, the problem (23) also degenerates to
the robust optimization problem in Step 5 of Algorithm 4.

Now, we consider the construction of ⌅. We apply a kernel estimation in Steps 3 and 4 of Algorithm 4
to construct ⌅. The following proposition says that if we choose proper " in Algorithm 4, ⌅ contains
the conditional mean E[r|z0].
Proposition 6. Assume there exists a constant L such that the following condition holds for any z, z0

|E[r|z]� E[r|z0]|  Lkz � z
0ks2.

Then under mild boundedness assumptions on the distribution, with probability no less than 1� �, r0
defined in Algorithm 4 satisfies

kE[r|z0]� r0k2  O

✓✓
Ld

s/2

�
+

32

�1/2

◆
· T� s

2(s+d) log T

◆

when choosing the bandwidth h = T
� 1

2s+2d .

We defer the proof and assumptions to the next chapter. After developing this estimation error, if the
feasible region of (1) is in the unit ball with probability 1, we can directly build the generalization
bound for the downstream problem by Proposition 4:
Proposition 4. Under the same assumptions as in Proposition 6, Algorithm 4 outputs a solution x̂(z0)
such that

E
⇥
c
> (x̂(z0)� x

⇤(z0))
⇤
 O

✓✓
Ld

s/2

�
+

32

�1/2

◆
· T� s

2(s+d) log T

◆
.

holds with probability no less than 1� �.

Here, we emphasize that if the residuals are i.i.d., we can equivalently have L = 0, s = 1. Then,
the convergence rate of our Algorithm 4 is O(T�1/2), which matches the rate in Wang et al. [2021],
Kannan et al. [2020, 2021]. Moreover, we remark that our results have the potential to be generalized
to general cases for distributionally robust optimization if there are more convergence theories
developed for the non-i.i.d. samples. Specifically, if the distributions have some smooth properties
with respect to the covariate z, the kernel estimation

P 0
r|z =

X

t2Dval

wt(zt, z)Pr|zt , (24)

will also be a good approximation to Pr|z0 , where wt is the weight constructed in Step 3 in Algorithm
4 with some kernel function for all t 2 Dval. The proof will be similar to the proof of Proposition
6. Once being able to utilize samples in Dval to approximate P 0

r|z , we can develop a similar DRO
algorithm for general cases. However, to our best knowledge, the current state-of-the-art theory can
only approximate a distribution by the empirical distribution constructed by i.i.d. samples [Fournier
and Guillin, 2015], and its proof cannot be extended to a more general non-i.i.d setting. Thus,
one interesting future direction will be developing distributional convergence results for non-i.i.d.
settings, and our framework can also have the potential to be applied in general distributionally robust
problems.

In the following sections, we will provide detailed proof for Proposition 6 and 4. We first state and
interpret our assumptions in Section C.2. Then, in Section C.3, we show two essential lemmas that
are helpful for later proof. In Sections C.4 and C.5, we will rigorously restate and show those two
propositions, respectively.

C.2 Assumptions for Algorithm 4

Now, we state those assumptions. Most of them are boundedness assumptions. We first state our
assumptions about the residual. Recall the residual defined in Algorithm 4 is

r = c� f̂(z),

for any obejective vector c and covariate z, where f̂ is the prediction model.
Assumption 1. We assume the residual vector r satisfies the following conditions:
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(a) Boundedness: the residual vector is bounded that r 2 [�1, 1]m.

(b) Distribution: the residual vector r given the covariate z follows some unknown continuous
distribution Pr|z with the density function pr|z .

(c) Smoothness: for any two covariates z, z0 2 [0, 1]d, the difference between the conditional
means of Pr|z and Pr|z0 satisfies

kE[r|z]� E[r|z0]k2  Lkz � z
0ks2

for some positive constants L, s > 0.

Assumptions 1-(a),(b) are just boundedness conditions. Assumption 1-(c) says that the distribution
of the residual vector r given the covariate z enjoys some smoothness, and s measures the order
of the smoothness. Specifically, if we perturb the covariate z a little bit, the perturbation will only
slightly change the corresponding conditional distribution of the residual r given z. This condition
is weaker than many recent papers with some true-model assumptions. For example, Wang et al.
[2021], Kannan et al. [2020] assume c = f0(z) + ✏ for some function f0(z) and random noise ✏, and
Kannan et al. [2021] also assume that all objective vectors for different covariates share a same type
of randomness. When f0(z) can be learned by the prediction model, Assumption 1-(c) holds for
L = 0 and s = 1.
Assumption 2. We assume the covariate z satisfies the following conditions:

(a) Boundedness: the covariate is bounded that z 2 [0, 1]d.

(b) Distribution: the covariate z follows some unknown continuous distribution Pz with the
density function p(z) 2 C

1([0, 1]d).

(c) Smoothness: the density function p(z) 2 C
1([0, 1]d) satisfies p(z)  p̄ and krp(z)k2  c

for some positive constants p̄, c � 1 and all z 2 [0, 1]d.

The first two parts of Assumption 2 are also boundedness assumptions. Part (c) guarantees that the
density function is smooth enough so that it has no steep peak and can not change drastically around
any covariate z. We remark that we use this assumption only for simplicity, and it can be replaced
by other weaker assumptions that can be satisfied by any density function. The last assumption is
about the kernel function we used in Algorithm 4. It basically requires the kernel function to have
bounded support and a positive lower bound on the support. This condition can also be satisfied by
many kernel functions, such as the uniform kernel and the truncated Gaussian kernel.
Assumption 3. We assume the kernel function satisfies

K(z) � br · 1{K(z) > 0} and K(z)  bR · 1
⇢

max
i=1,...,d

|zi|  R

�
,

for some positive constants bR, br > 0 and R � 1.

C.3 Essential Lemmas of Proving Propositions 6 and 4

In this section, we let T = |Dval| and the bandwidth h = T
�� , where � is a parameter that we will

choose later. Without loss of generality, we let Dval = {1, ..., T}. For any vector z 2 Rd, we use
(z)i to denote its i-th entry for i = 1, ..., d. In addition, denote z0 as the target covariate, denote
Kt = K( zt�z0

h ) as the value of the kernel function evaluated at zt with bandwidth h, and denote

wt(zt) =
K(

zt�z0
h )

PT
i=1 K(

zi�z0
h )

as the corresponding weight for any t 2 Dval. Moreover, for simplicity, by
a little abuse of notation, we drop the input variables of the kernel and weight functions and use Kt

and wt to represent the value of the kernel function and the weight when the context is clear.

Before proving Propositions 6 and 4, we first provide two essential lemmas. Lemma 1 shows that,
with high probability, there are at least O

�
T

1�d�
�

samples with positive weights. In the proof of the
later lemma and Propositions 6 and 4, we will utilize those samples to give an approximation of the
conditional mean of the target distribution Pr|z .
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Lemma 1. Under Assumption 2, for any positive constant � 2 (0, 1) and T � max
n
10,
�

�
8c

�� 1
�

o
,

with probability no less than 1� 1
T 2 � �

2 ,

TX

t=1

1{wt > 0} � �

4
(2R)dT 1�d� �

p
T log T. (25)

Specifically, if 1� d� >
1
2 and T is sufficiently large such that �

2 (2R)dT 1�d� � 2
p
T log T ,

TX

t=1

1{wt > 0} � �

8
(2R)dT 1�d�

. (26)

Proof. In the following, we show the first inequality (25). The second inequlity (26) can be obtained
by plugging the condition �

8 (2R)dT 1�d� � 2
p
T log T into (25).

By Hoeffding’s inequality, we have for any target covariate z0, with probability no less than 1� 1
T 2 ,

TX

t=1

1{wt > 0} � TE

1

⇢
max

i=1,...,d
|(z)i � (z0)i|  R · T��

��
�
p
T · log T,

where the probability is taken with respect to zt for t = 1, ..., T . Thus, it is sufficient to show that
with probability no less than 1� �

2

E

1

⇢
max

i=1,...,d
|(z)i � (z0)i|  R · T��

��
� �

4
(2R)dT�d�

,

where the probability is taken with respect to z0. To see this, for any z0 such that p(z0) > �/4, by

Assumption 2-(c), we have that when T �
⇣

4
p
dc
�

⌘1/�
,

p(z) � p(z0)� c

p
dR · T��

� �

2
� �

4
=

�

4

for all z satisfying max
i=1,...,d

|(z)i�(z0)i|  R·T�� , where the first line comes from Taylor’s expansion

and Assumption 2-(c), and the second line comes the condition that T �
⇣

4
p
dc
�

⌘1/�
. Thus, by

integrating the density function on the set
⇢
z : max

i=1,...,d
|(z)i � (z0)i|  R · T��

�
, we have

E

1

⇢
max

i=1,...,d
|(z)i � (z0)i|  R · T��

��
� �

4
(2R)dT�d�

.

Moreover, since P({z : p(z) < �/2}) =
R
p(z)1{(p(z) < �/2)}dz  �/2, we have P({z : p(z) �

�/2}) � 1� �/2, and we finish the proof.

The next lemma develops the concentration property for r0 defined in Step 3 in Algorithm 4.
Lemma 2. Under Assumptions 1 and 3, for any T > 0, with probability no less than 1� 2n

T 2 , the
inequality below holds for all i = 1, ..., n

�����

TX

t=1

wt(rt)i �
TX

t=1

wtE[(rt)i|zt]
����� 

2bR
br

· T̃� 1
2 · log T,

where T̃ =
TP

t=1
1{wt > 0}. Here, the probability is taken with respect to the covariates z1, ..., zT

and their corresponding residuals.
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Proof. This is also an application of Hoeffding’s inequality. We first show it for fixed z1, ...., zT and

fixed target covariate z0. In this case, we have T̃ =
TP

t=1
1{wt > 0} is fixed as well. Moreover, for any

wt > 0, by Assumption 3 and its definition in Algorithm 4 that it is a ratio between corresponding
non-zero kernel functions, we have wt 2

h
br
bR

,
bR
br

i
. In addition, by Assumption 1-(a) that each

entry of the residual is in [�1, 1], we have wt · (rt)i is bounded by [� bR
br
,
bR
br
]. Thus, by Hoeffding’s

inequality (Lemma 3), we have with probability no less than 1� 2/T 2,
�����

TX

t=1

wt · (rt)i �
TX

t=1

wtE[(rt)i|zt]
����� 

2bR
br

· T̃� 1
2 · log T,

for any i = 1, ..., d. Then, we can find the result by taking the union bound for all entries i = 1, ..., n
and integrating the probability with respect to z1, ..., zT .

Now, we are equipped with all essential lemmas, and in the following, we will show Propositions 6
and 4.

C.4 Proof of Proposition 6

In this section, we will adapt the same notation as in Section C.3.
Proposition 6. Under Assumptions 1, 2 and 3, with probability no less than 1� �,

kE[r|z0]� r0k2  bR

br
·
✓
16L

�
· p̄ds/2Rs +

32
p
n

�1/2

◆
· T� s

2s+2d log T

holds when choosing the bandwidth h = T
� 1

2s+2d .

Proof. To prove it, we first apply the triangle inequality that

kE[r|z0]� r0k2  kE[r|z0]� E[r0|z0, ..., zT ]k2 + kr0 � E[r0|z0, ..., zT ]k2

= kE[r|z0]�
TX

t=1

wtE[r|zt]k2 + kr0 � E[r0|z0, ..., zT ]k2 (27)

 L ·
TX

t=1

wtkE[r|z0]� E[r|zt]k2 + kr0 � E[r0|z0, ..., zT ]k2

 L ·
TX

t=1

wtkz0 � ztks2 + kr0 � E[r0|z0, ..., zT ]k2

where the first and the third line come from the triangle inequality, the second line comes from the

definition of r0 =
TP

t=1
wtrt, and the last line comes from Assumption 1-(c). In the following, we

analyze the first and the second terms in the last line, respectively.

We first analyze the first term in the last line of (27). Denote T̃ =
TP

t=1
1{wt > 0}. By Hoeffding’s

inequality, for fixed z0, we have with probability no less than 1� 2
T 2 ,

TX

t=1

wtkz0 � ztks2 =
1

TP
t=1

Kt

TX

t=1

Ktkz0 � ztks2

 1

brT̃

TX

t=1

Ktkz0 � ztks2 (28)

 1

brT̃

⇣
TE[K1kz1 � z0ks2] + bRd

s/2
R

s
T

1/2�s� log T
⌘
,
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where the first line comes from the definition of wt, the second line comes from Assumption 3, which
gives the lower bound of the kernel function, and the third line comes from Hoeffding’s inequality.
Then, we compute the expectation

E[K1kz1 � z0ks2]  P(K1 > 0) · bRds/2Rs
T

�s�

 p̄ · (2RT
��)d · bRds/2Rs

T
�s�

= p̄bR2
d
R

d+s
T

�s��d�
.

Here, the first step is obtained by Assumption 3, the upper bound of the kernel function and the
boundedness of its support, the second line comes from Assumption 2, the upper bound of the density
function, and the last line is obtained by calculation. Plugging this upper bound into (28), we have
the first term in the right-hand side of (27) can be bounded by

L

TX

t=1

wtkz0 � ztks2  LbR

brT̃

⇣
2dp̄Rd+s

T
1�s��d� + d

s/2
R

s
T

1/2�s� log T
⌘
. (29)

Then, for the second term in the right-hand side of (27), under the event of Lemma 2, we have for
fixed z0

kr0 � E[r0|z0, ..., zT ]k2  2bR
p
n

br
· T̃� 1

2 · log T. (30)

Next, we combine (29) and (30) to draw the result. Under the event of Lemma 1 that

T̃ � �

8
(2R)dT 1�d�

,

the inequality (29) becomes

L

TX

t=1

wtkz0 � ztks2  8LbR
�br

⇣
p̄R

s + d
s/22�d

R
s�d
⌘
· T�min{s�,1/2+s��d�} log T, (31)

and the inequality (30) becomes

kr0 � E[r0|z0, ..., zT ]k2  bR
p
n

br2(d�5)/2Rd/2�1/2
· T� 1�d�

2 · log T. (32)

The event of the intersection of events corresponding to Lemma 1 and inequalities (29) and (30)
happends with probability no less than 1� �

2 � 2n+3
T 2 . Thus, if T �

q
4n+6

� , plugging (31) and (32)
into (27), we have with probability no less than 1� �,

kE[r|z0]� r0k2  bR

br
·
✓
16L

�
· p̄ds/2Rs +

32
p
n

�1/2

◆
· T�min{s�,1/2+s��d�,1/2�d�/2} log T.

Finally, let � = 1
2s+2d , we finish the proof.

C.5 Proof of Proposition 4

In this section, we also use the same notation as in Sections C.2 and C.4. We show that the optimality
gap between the solution given by Algorithm 4 and the optimal solution converges to 0 as T ! 1.
Proposition 4. Suppose the feasible region {x : Ax  b, x � 0} is included in the unit ball
{x : kxk  1}. and the absolute values of each entry of the prediction function is bounded by f̄ .
Under Assumptions 1, 2 and 3, Algorithm 4 outputs a solution x̂(z0) such that with probability no
less than 1� �

E
⇥
c
> (x̂(z0)� x

⇤(z0))
�� z0
⇤
 bR

br

✓
32L

�
· p̄ds/2Rs +

64

�1/2

◆
· T� s

2s+2d log T,

where x
⇤(z0) is the optimal solution to LP(E[c|z0], A, b), and the probability is taken with respect to

z1, ..., zT , their corresponding objective vectors, the constraints (A, b) and the target covariate z0.
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Proof. This is a direct application of Proposition 6. We first show the relation between two LPs with
different objective vectors. For any two LPs with different objective vectors c1, c2 but with the same
constraint (A, b), denote x

⇤
1 and x

⇤
2 as their optimal solutions. Then, if the optimal solutions are

contained in the unit ball, we have

c
>
1 (x

⇤
2 � x

⇤
1) =

�
c
>
1 x

⇤
2 � c

>
2 x

⇤
2

�
+
�
c
>
2 x

⇤
2 � c

>
2 x

⇤
1

�
+
�
c
>
2 x

⇤
1 � c

>
1 x

⇤
1

�

 kc1 � c2k2kx⇤
1k2 + kc1 � c2k2kx⇤

1k2 +
�
c
>
2 x

⇤
2 � c

>
2 x

⇤
1

�
(33)

 kc1 � c2k2kx⇤
1k2 + kc1 � c2k2kx⇤

1k2
 2kc1 � c2k2,

where the first step is obtained by rearranging terms, the second step is obtained by Cauchy inequality,
the third step is obtained by the optimality of x⇤

2 with respect to the objective vector c2, and the last
step is obtained by the condition that x1 and x1 are in the unit ball.

Then, since in the event of Proposition 6 that happens with probability no less than 1� �,

kE[r|z0]� r0k2  bR

br
·
✓
16L

�
· p̄ds/2Rs +

32

�1/2

◆
· T� s

2s+2d log T,

and the difference between the objective vectors is the same as the difference between the correspond-
ing residuals, the inequality (33) implies that

E[c|z0]> (x⇤(z0)� x̂(z0)) 
bR

br

✓
32L

�
· p̄ds/2Rs +

64

�1/2

◆
· T� s

2s+2d log T, (34)

and we finish the proof.

D Auxiliary Lemmas

In this section, we state some useful lemmas in the information theory that are helpful in our proof.
Lemma 3 (Hoeffding’s inequality). Let X1, ..., XT be independent random variables such that Xt

takes its values in [ut, vt] almost surely for all t  T. Then the following inequality holds

P
 �����

1

T

nX

t=1

Xt � EXt

����� � s

!
 2 exp

✓
� 2T 2

s
2

Pn
i=1(ut � vt)2

◆

for any s > 0.

Proof. We refer to Chapter 2 of Boucheron et al. [2013].

E Additional Related Work

Due to the space constraints in the main text, we provide additional discussion on related work here.

Contextual RO with a parametrized prediction model. An alternative approach to contextual
robust optimization relies on the assumption that the relationship between the outcome variable c

and the covariate z is governed by a parameter ✓ in the true underlying model. In this approach,
the estimation/prediction process and the optimization problem are integrated by constructing an
uncertainty set for the parameter ✓ to mitigate the estimation uncertainty. Zhu et al. [2022] constructs
the uncertainty set for ✓ that contains all the parameters with training loss no worse than a threshold,
but no coverage guarantee is provided. This can also be viewed as a special case of the decision-driven
regularization model introduced in Loke et al. [2022]. Another study by Cao and Gao [2021] extends
the consideration of uncertainty to both the parameter and residual. However, the incorporation
of estimation and optimization processes in one optimization model can raise tractability issues,
restricting the choice of complex yet expressive prediction models.

For the contextual stochastic optimization problem with a risk-neutral objective, below is the other
two streams of work in addition to the predict-then-optimize paradigm illustrated in the main text.

Local learning-based conditional stochastic optimization. One stream of work tends to construct
stochastic optimization problems with estimated conditional distributions learned by some local
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learning methods. Hannah et al. [2010] approximates it by using Nadaraya-Watson kernel regression
[Nadaraya, 1964, Watson, 1964] to reweight the historical data. Bertsimas and Kallus [2020] further
generalizes it to a framework using a broader range of non-parametric machine learning methods based
on local learning, such as kNN [Altman, 1992], classification and regression trees [Breiman, 2017].
To overcome the overfitting effect of these methods when the sample size is small, distributionally
robust optimization (DRO) methods are introduced. Bertsimas and Van Parys [2022] enhances the
robustness of bootstrap data by constructing the entropy-based DRO model. Nguyen et al. [2020,
2021], Wang et al. [2021], Bertsimas et al. [2023] investigate the Wasserstein-based DRO model. Ho
and Hanasusanto [2019] designs a regularized approach and obtains a tractable approximation by
leveraging ideas from DRO with a modified �

2 ambiguity set.

End-to-end prescriptive analytics without prediction. Instead of learning to predict uncertain
outcomes, Ban and Rudin [2019] directly learns the function mapping from covariates to decisions
by employing the linear decision rule for the newsvendor problem. There are also further studies
investigating such integrated approaches without prediction using more complicated models [Bertsi-
mas and Koduri, 2022], such as random forests [Kallus and Mao, 2022] and neural networks [Chen
et al., 2022]. Nevertheless, the robustness of the decisions to the epistemic and aleatoric uncertainty
is rarely considered in these papers.

29


	Introduction
	Problem Setup
	Robust Contextual LP
	Algorithm Analysis
	Value of Better Prediction and Contextual Uncertainty Set

	Extension to Distributionally Robust Contextual LP
	Experiment
	Supplementary for Experiment
	Simple LP Visualization
	Shortest Path Problem
	Fractional Knapsack Problem

	Supplementary for Section 3
	Individual Coverage
	Proof for Proposition 1 and Corollary 1
	Proof for Proposition 2
	Proof for Proposition 3

	Supplementary for Section 4
	DRO Algorithm
	Assumptions for Algorithm 4
	Essential Lemmas of Proving Propositions 6 and 4
	Proof of Proposition 6
	Proof of Proposition 4

	Auxiliary Lemmas
	Additional Related Work

