
A The MDP Environment of CRS

The MDP environment describes the current state, state transition, and the possible actions that the
agent could take.

A.1 State

The state st ∈ S contains all the conversation history till timestep t. Given a user u, the state is
defined as,

st = [P+
t ,P−

t ,V−
t ], (1)

where (1) P+
t is the set of attributes accepted by the user during the conversation; (2) P−

t is the set of
attributes dismissed by the user during the conversation; (3) V−

t is the set of items rejected by the user.
In addition, we also add the set of candidate items Vcand

t that satisfy all inquired attributes to enrich
the state information. The state st is input into a state encoder. The resulted state embedding will be
concatenated with the user embedding eu, which is pre-trained from given historical interaction data.

A.2 Action

According to the state st, the agent takes an action at ∈ A, where at can be an item vt from the
candidate item set Vcand

t to make a recommendation or an attribute pt from the candidate attribute
set Pcand

t to ask attributes. Following the path reasoning approach [Lei et al., 2020], we identify the
candidate item and candidate attribute as follows,

Vcand
t = VP+

t
\ V−

t , Pcand
t = PVcand

t
\ (P+

t ∪ P−
t ), (2)

where VP+
t

is the set of items satisfying all P+
t , and PVcand

t
is the set of attributes belonging to at

least one of the candidate items. Specifically, when an item vt is selected by the policy, top-K items
with highest ranking scores will be selected to form a recommendation list Vrec

t . K is set to 10 in our
experiments.

A.3 State Transition

The current state st will transit to the next state st+1 when the user responds to the action at.
Specifically, if the agent asks an attribute pt and the user accepts it, the next state st+1 will be
updated by P+

t+1 = P+
t ∪ {pt}. Conversely, if the user rejects the attribute pt, st+1 will be

updated by P−
t+1 = P−

t ∪ {pt}. Also, if the user rejects the recommendation Vrec
t , we will update

V−
t+1 = V−

t ∪ Vrec
t .

A.4 Action Selection Strategy

A large action search space will affect the performance of policy learning. We follow [Deng et al.,
2021] to use the following two heuristics to pre-select the actions to facilitate policy learning.

Preference-based Item Selection. We select top-Kv candidate items from Vcand
t into the candidate

action space At at each timestep t. The ranking score of an item v is given by

wt(v) = e⊤u ev +
∑
p∈P+

t

e⊤v ep −
∑

p∈P−
t ∩Pv

e⊤v ep. (3)

where {eu, ev, ep} represent the pre-trained user, item and attribute embeddings from given historical
interaction data. We require Kv ≥ K. In our experiments, both of them are set to 10.

Weighted Entropy-based Attribute Selection. Whereas for candidate attributes to be asked, the
expected one is supposed to be able to not only better eliminate the uncertainty of candidate items,
but also encode the user preference. Inspired by [Lei et al., 2020], we adopt weighted entropy as the
criteria to prune candidate attributes,

wt(p) = −prob(pt) · log(prob(pt)), (4)

prob(pt) =

∑
v∈Vcand

t ∩Vp
wt(v)∑

v∈Vcand
t

wt(v)
,

1



where Vp denotes the items that have the attribute p. Similar to item selection, we select top-Kp

candidate attributes from Pcand
t into At based on the weighted entropy score, which is set to 10 in

our experiments.

B More Experiment Results

A recent work [Hu et al., 2022] proposes a heuristic to identify the best action at each timestep.
Specifically, they use a simple two-action policy, which only decides whether to ask an attribute
question or make a recommendation. When the policy decides to ask a question, the attribute with the
largest score given by Eq.(4) will be selected. When the policy decides to recommend, the items will
be ranked according to Eq.(3) and the policy recommends the top-K items. The preferred action at
each timestep is decided by Algorithm 1 based on the authors’ proposed heuristics. Then they devise
the binary reward signal based on this preferred action, and use the learned reward function for policy
learning. The resulted method is named as CRIF.

Algorithm 1: Action Judgement of Pre-defined Rules
Input: The size of candidate item set in the last turn lb, the rank of target item in the last turn kb,

the size of candidate item set after asking an attribute la, the rank of target item after asking an
attribute ka, the size of candidate item set after the recommendation lr, and the rank of target
item after the recommendation kr;

Output: Action comparison result: asking an attribute is better or recommendation is better;
Target item rank margin of ask k+a = ka − kb;
Candidate item length margin of ask l+a = la − lb;
Target item rank margin of recommendation k+r = kr − kb;
Candidate item length margin of recommendation l+r = lr − lb;
if lb ≤ 50 then

if lb ≤ 10 then
recommendation better; Exit.

end
else

if k+a > k+r then
ask better; Exit.

end
else

recommendation better; Exit.
end

end
else

if k+a + 0.5 ∗ l+a > k+r + 0.5 ∗ l+r then
ask better; Exit.

end
else

recommendation better. Exit.
end

end
end

However, this heuristic abuses the design of user simulator that all attributes of the target item will
be accepted. This however creates a form of information leakage and creates an unfair advantage
over the baseline solutions that do not exploit this specific knowledge. But it is still interesting
to understand whether our learned intrinsic rewards can augment this strong heuristic. Instead of
learning a reward function to match the heuristic, we directly use rules given by Algorithm 1 to define
the extrinsic rewards: we set an action’s extrinsic reward to 1 if the select action is the same as the
ground-truth action given by Algorithm 1; otherwise, 0. To make the problem more difficult, we set
the maximum allowed turns to 10, and thus the policy needs to recommend successfully with fewer
conversation turns. We first train a policy with policy gradient using the rule-based extrinsic reward,
and then fine-tune the policy using CRSIRL.

2



Table 1: Results with rule-based extrinsic reward.
LastFM LastFM* Yelp*

SR@10 AT hDCG SR@10 AT hDCG SR@10 AT hDCG

CRIF 0.784 9.37 0.242 0.827 7.58 0.376 0.636 9.38 0.214

PG+Rules 0.840 8.89 0.261 0.952 6.82 0.415 0.723 8.95 0.242

CRSIRL+Rules 0.862 8.84 0.274 0.946 6.93 0.421 0.756 8.81 0.248

The results are presented in Table 1. Interestingly, directly optimizing extrinsic rewards in PG+Rules
already outperformed CRIF, suggesting that the estimation errors in CRIF’s reward function can
lead to performance degeneration. The rule-based extrinsic reward is already dense and specifically
designed for conversational recommendation, yet CRSIRL still enhances performance generally (as
seen on LastFM and Yelp*). However, when the pre-defined rules fit the dataset well, such as on
LastFM*, the learned intrinsic rewards could be less helpful. Nevertheless, Algorithm 1 still contains
some manually defined parts, such as the weights of k+ and l+, which have to be finetuned in a
per-dataset basis. CRSIRL, by learning intrinsic rewards directly from user interactions, offers an
effective augmentation to these potentially flawed handcrafted rules.

Moreover, we should note that even though CRSIRL is built upon the unified policy proposed in
[Deng et al., 2021], it is a general method can be easily applied to other existing RL-based CRS
solutions. We additionally applied CRSIRL to SCPR [Lei et al., 2020], which reformulates the CRS
problem as an interaction path reasoning process within a user-item-attribute graph. Specifically, they
employ a two-action policy, which decides to ask a question or make a recommendation. The policy
is optimized using the pre-defined reward described in Section 5.1. We use CRSIRL to fine-tune
the policy obtained by SCPR. We present the results in Table 2. It shows CRSIRL can improve the
performance significantly with the learned intrinsic rewards.

Table 2: Results of applying CRSIRL on SCPR.
LastFM LastFM* Yelp*

SR@15 AT hDCG SR@15 AT hDCG SR@15 AT hDCG

SCPR 0.465 12.86 0.139 0.709 8.43 0.317 0.489 12.62 0.159

CRSIRL+SCPR 0.614 11.32 0.184 0.773 8.06 0.338 0.543 11.02 0.198

References
Yang Deng, Yaliang Li, Fei Sun, Bolin Ding, and Wai Lam. Unified conversational recommendation

policy learning via graph-based reinforcement learning. arXiv preprint arXiv:2105.09710, 2021.

Chenhao Hu, Shuhua Huang, Yansen Zhang, and Yubao Liu. Learning to infer user implicit
preference in conversational recommendation. In Proceedings of the 45th International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages 256–266, 2022.

Wenqiang Lei, Gangyi Zhang, Xiangnan He, Yisong Miao, Xiang Wang, Liang Chen, and Tat-Seng
Chua. Interactive path reasoning on graph for conversational recommendation. In Proceedings of
the 26th ACM SIGKDD, pages 2073–2083, 2020.

3


	The MDP Environment of CRS
	State
	Action
	State Transition
	Action Selection Strategy

	More Experiment Results

