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S I. Derivation of Training Objective1

Before getting the final training objective, we formulate the forward posterior following [1, 2]. Via2

Bayes’ rule, we can rewrite the forward posterior given x0:3

q(xt−1|xt,x0) =
q(xt|xt−1,x0)q(xt−1|x0)

q(xt|x0)
=

q(xt|xt−1)q(xt−1|x0)

q(xt|x0)
,

where all the components of the very right equation are forward diffusion and follow Gaussian4

distribution. Thus the forward posterior can be rewritten as Gaussian with mean and standard5

deviation as follows:6

q(xt−1|xt,x0) = N (xt−1; µ̃t(xt,x0), β̃tI).

Here we do not give redundant derivation and give the firm of the forward posterior given xt, x0.7

µ̃t(xt,x0) :=

√
ᾱt−1βt
1− ᾱt

x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt and β̃t :=

1− ᾱt−1

1− ᾱt
βt.

And we parameterize our denoised x′
t−1 given the predicted x′

0 and the input xt via simply replacing8

the x0 with the predicted x′
0 in the above equation. Then, given the parameterized x′

t−1.9

To get our final training objective, We can rewrite the distribution matching objective of Equation (7)10

as:11

min
θ

max
Dadv

Eq(x0)q(xt−1|x0)q(xt|xt−1)

[
Dadv(q(xt−1)||pθ(xt−1))

+ λAFD[−H(pθ(xt|xt−1)) +H(pθ(xt|xt−1), q(xt|xt−1))]
]

= min
θ

max
Dadv,ψ

Eq(x0)q(xt−1|x0)q(xt|xt−1)

[
Dadv(q(xt−1)||pθ(xt−1))

+λAFD[H(pθ(xt|xt−1), q(xt|xt−1))−H(pθ(xt|xt−1), pψ(xt|xt−1))]
]
,

where the first GAN matching objective can be written as:12

min
θ

max
Dϕ

∑
t>0

Eq(x0)q(xt−1|x0)q(xt|xt−1)[− log(Dϕ(xt−1, t))] + [− log(1−Dϕ(x
′
t−1, t))].

In the first cross-entropy of our distribution matching objective, the q(xt|xt−1) is the forward diffusion13

with the mean
√
1− βtxt−1 and variance βtI. Thus the likelihood can be written as:14

H(pθ(xt|xt−1), q(xt|xt−1)) = Eq(x0)q(xt−1|x0)q(xt|xt−1)

(1− βt)
∥∥x′

t−1 − xt−1

∥∥2
βt

,
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To solve the second cross-entropy between the denoised distribution and the parameterized regression15

model, we define pψ(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI) as forward diffusion for the regression16

model. And we also define x′t are sampled from the x′
t−1 via the forward diffusion. Similar to the17

above likelihood of cross-entropy, we can write the following likelihood for the second cross-entropy18

as follows:19

H(pθ(xt|xt−1), pψ(xt|xt−1)) = Eq(x0)q(xt−1|x0)q(xt|xt−1)

∥∥Cψ(x′
t−1)− x′

t

∥∥2
βt

,

Finally, we can get the final training objective of our proposed method.20

min
θ

max
Dϕ,Cψ

∑
t>0

Eq(x0)q(xt−1|x0)q(xt|xt−1)

[
[− log(Dϕ(xt−1, t))] + [− log(1−Dϕ(x

′
t−1, t))]

+λAFD
(1− βt)

∥∥x′
t−1 − xt−1

∥∥2 − ∥∥Cψ(x′
t−1)− x′

t

∥∥2
βt

]
,

In the main paper formulation, we mistakenly exchange the position of the βt and 1− βt, it is a typo,21

we will correct it later.22

S II. Derivation of Theorem 123

For simplicity, we denote q via Q, pθ via P and xt−1, xt via X,Y . According to the triangle24

inequality of total variation (TV) distance, we have25

dTV (QXY , PXY ) ≤ dTV (QXY , QY |XPX) + dTV (QY |XPX , PXY ). (E11)

Using the definition of TV distance, we have26

dTV (QY |XQX , QY |XPX) =
1

2

∫
|QY |X(y|x)QX(x)−QY |X(y|x)PX(x)|µ(x, y)

(a)

≤ 1

2

∫
|QY |X(y|x)|µ(x, y)

∫
|QX(x)− PX(x)|µ(x)

≤ c1dTV (QX , PX), (E12)

where P and Q are densities, µ is a (σ-finite) measure, c1 is an upper bound of27
1
2

∫
|QY |X(y|x)|µ(x, y) , and (a) follows from the Hölder inequality.28

Similarly, we have29

dTV (QY |XPX , PY |XPX) ≤ c2dTV (QY |X , PY |X), (E13)

where c2 is an upper bound of 1
2

∫
|PX(x)|µ(x) . Combining (E11), (E12), and (E13), we have30

dTV (QXY , PXY ) ≤ c1dTV (QX , PX) + c2dTV (QY |X , PY |X) (E14)

According to he Pinsker inequality dTV (P,Q) ≤
√

KL(P ||Q)
2 [3], and the relation between TV and31

JSD, i.e., 1
2dTV (P,Q)2 ≤ JSD(P,Q) ≤ 2dTV (P,Q) [4], we can rewrite (E14) as32

JSD(QXY , PXY ) ≤ 2c1
√
2JSD(QX , PX) + 2c2

√
2KL(PY |X ||QY |X). (E15)

S III. Societal impact33

With the increasing utilization of generative models, our proposed SSIDMs will improve the diffusion-34

based generative model while maintaining the highest level of generative quality. The incorporation35

of SSIDMs enhances the capabilities of generative models, particularly in the domain of text-to-image36

generation and editing. By integrating SSIDMs into the existing generative model framework, we37

could unlock new possibilities for generating realistic and visually coherent images from textual38

descriptions. One of the key advantages of our SSIDMs is their ability to accelerate the inference39

process, even though our model takes more time and more resources to train because of the additional40

adversarial training objectives. With faster inference, we eliminate the time-consuming barriers41

previously associated with text-to-image generation. As a result, real-time applications of generative42

models become feasible, enabling on-the-fly image generation or instant editing.43
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S IV. More Implementation Details44

For the time steps, we apply the continuous time setup with the cosine noise schedule for all the45

experiments. We also apply a similar network structure as [5] and the downsampling trick as [6],46

where we put the downsampling layer at the beginning of each ResBlock. As mentioned, we design47

the discriminator as UNet, which adopts the symmetric network structure as the generator. For48

the regression model Cψ and the discriminator regularizer, we share most of the layers with the49

discriminator except that we put a different linear head for the marginal, conditional and regularizer50

outputs. To be notified, the Cψ only works on the denoised data, and the regularizer only works on51

the sampled xt−1 from the real data via forward diffusion. By this design, our model does not bring52

obvious extra overhead than our baseline DDGANs, which only has two more linear head in the final53

output for the discriminator network. We also describe the detailed model hyperparameters in the54

following table. We train all the models until they converges to the best FID score.55

CIFAR10 32 CelebA-HQ 256 ImageNet 64

Resolution 32 256 64
Conditional on labels False False True
Diffusion steps 4 2 4
Noise Schedule cosine cosine cosine
Channels 256 192 256
Depth 2 2 2
Channels multiple 2,2,2 1,1,2,3,4 1,2,3,4
Heads 4 4 4
Heads Channels 64 64 64
Attention resolution 16,8 32,16,8 32,16,8
Dropout 0.1 0.1 0.1
Batch size 256 128 2048
Learning Rate of G 2e-4 2e-4 2e-4
Learning Rate of D 1e-4 1e-4 1e-4
EMA Rate of G 0.9999 0.9999 0.9999

Table 1: Hyperparameters for our SSIDMs on different datasets.

S V. More Generated Results56
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Figure 1: Randomly generated samples from our model. We randomly sample 768 images from the
generated images from CIFAR10, which we used to produce our paper results
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Figure 2: Randomly generated samples from our model. We randomly sample 192 images from the
generated images from CeleHQ 256, which we used to produce our paper results
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Figure 3: Randomly generated samples from our model. We randomly sample 768 images from the
generated images from Imagenet 64, which we used to produce our paper results
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