
A Proofs400

A.1 Generative Replay Objective401

Our Bayesian posterior over the set to remember is given by Eq. 1:402

log p(✓|Dr) = � log p(xf |✓, cf ) + log p(✓|Df , Dr) + C. (5)

Let us introduce an extra likelihood term over Dr on both sides as follows403

log p(✓|Dr) + log p(Dr|✓) = � log p(xf |✓, cf ) + log p(✓|Df , Dr) + log p(Dr|✓) + C (6)

The terms on the left hand side of the equation can be simplified using Bayes rule404

log p(✓|Dr) + log p(Dr|✓) = log p(✓|Dr) + log p(✓|Dr) + log p(Dr)� log p(✓)

= 2 log p(✓|Dr)� log p(✓) + C

We substitute this new form back to Eq. 6 and simplify to obtain405

log p(✓|Dr) =
1

2
[� log p(xf |✓, cf ) + log p(✓|Dr, Df ) + log p(Dr|✓) + log p(✓)] + C (7)

=
1

2
[� log p(xf |✓, cf ) + log p(✓|Dr, Df ) + log p(xr|✓, cr) + log p(✓)] + C (8)

which gives us Eq. 2.406

A.2 Proof of Theorem 1407

Before we prove Theorem 1, we first prove two related lemmas.408

Let us first formalize the original conditional MLE objective as a KL divergence minimization:409

Lemma 1. Given a labeled dataset p(x, c) and a conditional likelihood model p(x|✓, c) pa-410

rameterized by ✓, the MLE objective argmax✓ Ep(x,c) log p(x|✓, c) is equivalent to minimizing411

Ep(c) [DKL(p(x|c)||p(x|✓, c)].412

Proof.

argmax
✓

Ep(x|c)p(c) [log p(x|✓, c)]

= argmax
✓

Z
p(x|c)p(c) [log p(x|✓, c)� log p(x|c)] dxdc+

Z
p(x|c)p(c) log p(x|c)dxdc

= argmax
✓

�
Z

p(c)DKL(p((x|c)||p(x|✓, c))dc�
Z

p(c)H(p(x|c))dc

= argmin
✓

Ep(c)DKL(p((x|c)||p(x|✓, c))

where in the last line we use the fact that the entropy term independent of ✓.413

Lemma 1 is an obvious generalization of the equivalence of MLE and KL divergence minimization414

to the conditional case.415

We assume the asymptoptic limit where the model, represented by a neural network with pa-416

rameters ✓
⇤, is sufficiently expressive such that the MLE training on the full dataset results in417

Ep(c) [DKL(p(x|c)||p(x|✓⇤, c)] = 0; in other words, the model has learnt the underlying data dis-418

tribution exactly. Under this assumption, it straightforward to show that the model also learns the419

forgetting data distribution exactly, Epf (c) [DKL(p(x|c)||p(x|✓⇤, c)] = 0.420

Lemma 2. Assume that the global optimum ✓
⇤ exists such that by Lemma 1,421

Ep(c) [DKL(p(x|c)||p(x|✓⇤, c)] = 0. The class distribution is defined as p(c) = �fpf (c)+�rpr(c),422

where �f ,�r > 0 and �f + �r = 1. Then the model parameterized by ✓
⇤ also exactly reproduces423

the conditional likelihood of the class to forget:424

Epf (c) [DKL(p(x|c)||p(x|✓⇤, c)] = 0.
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Proof.

0 = Ep(c) [DKL(p(x|c)||p(x|✓⇤, c)]

=

Z
(�fpf (c) + �rpr(c))DKL(p(x|c)||p(x|✓⇤, c)dc

= �f

Z
pf (c)DKL(p(x|c)||p(x|✓⇤, c))dc+ �r

Z
pr(c)DKL(p(x|c)||p(x|✓⇤, c))dc

= �fEpf (c) [DKL(p(x|c)||p(x|✓⇤, c))] + �rEpr(c) [DKL(p(x|c)||p(x|✓⇤, c))]

Since �f ,�r > 0 and DKL(·||·) � 0 by definition, then for the sum of two KL di-425

vergence terms to equal 0, it must mean that each individual KL divergence is 0, i.e.,426

Epf (c) [DKL(p(x|c)||p(x|✓⇤, c)] = 0.427

Finally, we are now able to prove Theorem 1. We restate the theorem and then provide its proof.428

Theorem 1. Consider a surrogate distribution q(x|c) such that q(x|cf ) 6= p(x|cf ). Assume we429

have access to the MLE optimum for the full dataset ✓⇤ = argmax✓ Ep(x,c) [log p(x|✓, c)] such430

that Ep(c) [DKL(p(x|c)||p(x|✓⇤, c)] = 0. Define the MLE optimum over the surrogate dataset as431

✓
q
= argmax✓ Eq(x|c)pf (c) [log p(x|✓, c)]. Then the following inequality involving the expectations432

of the optimal models over the data to forget holds:433

Ep(x|c)pf (c) [log p(x|✓
q
, c)]  Ep(x|c)pf (c) [log p(x|✓

⇤
, c)] .

Proof.

Ex,c⇠p(x|c)pf (c) [log p(x|✓
q
, c)]� Ex,c⇠p(x|c)pf (c) [log p(x|✓

⇤
, c)]

=

Z
p(x|c)pf (c) log p(x|✓q, c)dxdc�

Z
p(x|c)pf (c) log p(x|✓⇤, c)dxdc

= Epf (c)

Z
p(x|c) log p(x|✓q, c)

p(x|✓⇤, c)dx
�

= Epf (c)

Z
p(x|c) log p(x|c)p(x|✓q, c)

p(x|c)p(x|✓⇤, c)dx
�

= Epf (c)

Z
p(x|c) log p(x|c)

p(x|✓⇤, c)dx
�
� Epf (c)

Z
p(x|c) log p(x|c)

p(x|✓q, c)dx
�

= Epf (c) [DKL(p(x|c)||p(x|✓⇤, c))]� Epf (c) [DKL(p(x|c)||p(x|✓q, c))]
= �Epf (c) [DKL(p(x|c)||p(x|✓q, c))] (apply Lemma 2)
 0 (non-negativity of KL)

434

A.3 Proof of Corollary 1435

Corollary 1. Assume that the MLE optimum over the surrogate, ✓
q

=436

argmax✓ Eq(x|c)pf (c) [log p(x|✓, c)] is such that Epf (c) [DKL(q(x|c)||p(x|✓q, c)] = 0. Then437

the gap presented in Theorem 1,438

Ep(x|c)pf (c) [log p(x|✓
q
, c)� log p(x|✓⇤, c)] = �Epf (c) [DKL(p(x|c)||q(x|c)] .

The proof follows straightforwardly from Theorem 1.439

Proof.

Ex,c⇠p(x|c)pf (c) [log p(x|✓
q
, c)� log p(x|✓⇤, c)] = �Epf (c) [DKL(p(x|c)||p(x|✓q, c))]

= �Epf (c) [DKL(p(x|c)||q(x|c))]

where the first line is directly taken from the proof of Theorem 1 (second last line), while the second440

line makes use of the fact that the model p(x|✓q, c) = q(x|c) by assumption.441
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B Experimental Details442

B.1 VAE and DDPM443

MNIST VAE The VAE encoder and decoder are simple MLPs, both with two hidden layers of444

dimensions 256 and 512. The latent space z has dimensions 8. We choose a Bernoulli distribution445

over the pixels as the decoder output distribution, and a standard Gaussian as the prior. Class446

conditioning is performed by appending a one-hot encoding vector to the encoder and decoder inputs.447

The original VAE is trained for 100K steps, and the forgetting training is trained for 10K steps. We448

use a learning rate of 10�4 and batch size of 256. As sampling with VAEs is cheap, we use 50K449

samples to calculate the FIM, and sample the replay data from a frozen copy of the original VAE450

during forgetting training.451

CIFAR10 DDPM We adopt the same U-Net architecture as unconditional DDPM in [11], with452

four feature map resolutions (32⇥ 32 to 4⇥ 4) and self-attention blocks at the 16⇥ 16 resolution.453

We use the linear � schedule with 1000 timesteps, and train for 800K steps with a learning rate454

of 10�4 and batch size of 128. For classifier-free guidance, we use the FiLM transformation at455

every residual block and drop the class embeddings 10% of the time. For sampling, we use 1000456

timesteps of the standard DDPM sampler with a guidance scale of 2.0. As sampling with diffusion457

models is significantly more expensive than VAEs, we generate and store a set of 5000 images, and458

subsequently use it both for calculating the FIM and as the replay dataset. For forgetting, we train459

the model with 20K training steps. We use a learning rate of 10�4 and batch size of 128. As the460

CIFAR10 training set has 5000 images per class, when evaluating the image quality of the remaining461

classes, we generate 5000 images of each class for a total of 45000 images, and compare them against462

the corresponding 45000 images in the training set. Experiments are run on 2 RTX A5000s.463

STL10 DDPM We conduct our STL10 experiments by resizing the dataset to the 64⇥64 resolution.464

The experiments follow closely from our CIFAR10 experiments, where we have five feature map465

resolutions (64⇥ 64 to 4⇥ 4) instead while keeping attention blocks at the 16⇥ 16 resolution. Due466

to the smaller size of the dataset, we combine the train and test sets to form a larger training set,467

resulting in 1300 images per class. We train for a total of 250K steps with a learning rate of 2⇥ 10
�4468

and batch size of 64. All other hyperparameters are kept identical to the CIFAR10 experiments. For469

forgetting training, we train similarly for 20K steps with a learning rate of 10�4 and batch size of 64.470

To evaluate the image quality of the remaining classes, we generate 1300 images of each class, for a471

total of 11700 images, and compare them against the corresponding 11700 images in the training set.472

Experiments are run on 2 RTX A5000s.473

Classifier Evaluation In terms of classifier architectures and training, for MNIST, we train a simple474

two-layer CNN on the original MNIST dataset for 20 epochs. As for both CIFAR10 and STL10,475

we finetune a ResNet34 classifier pretrained on ImageNet that was obtained from the torchvision476

library. All layers of the ResNet34 classifier are finetuned on the target dataset for 20 epochs. We477

calculate Ep(x|✓,cf )P�(y = cf |x) and H(P�(y|xf )) by averaging over 500 generated images of the478

forgotten class from the respective models.479

B.2 Stable Diffusion480

Forget Celebrities We use the open-source SD v1.4 checkpoint as the pretrained model for all481

Stable Diffusion experiments with Selective Amnesia. We choose v1.4 as opposed to newer versions482

for fair evaluations as competing baselines, SLD and ESD, are based on v1.4. Similar to the483

CIFAR10 and STL10 experiments, we generate 5000 images from SD v1.4 and use it for both FIM484

calculation and GR. These images are conditioned on 5000 random prompts that were generated485

with GPT3.5 [28]. We use 50 steps of the DDIM [29] sampler with a guidance scale of 7.5 for all486

image generation with SD. For forgetting training, we set the prompt to forget as cf = {“brad pitt"}487

or {“angelina jolie"} and train the model using the q(x|cf ) represented by 1000 images generated488

with prompts as specified in the main text. We train for a total of 200 epochs of the surrogate dataset489

with � = 50 and a base learning rate of 10�5 (scaled by number of GPUs). We similarly generate the490

50 test prompts using GPT3.5, and generate 20 images per prompt. Experiments are run on 4 RTX491

A6000s.492
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In terms of evaluation, we evaluate the 1000 generated images with the open-source GIPHY Celebrity493

Detector [27], which is trained to detect 2306 different celebrities. The classifier is composed of two494

stages: the first stage is a face detector while the second stage is a celebrity face classifier. If a given495

image is found to have multiple faces, we only consider the face with the highest probability of the496

target celebrity. This is to account for cases where multiple persons are in an image, but typically497

only one of them will be of the celebrity of interest. As for the baselines, for SLD Medium, we set498

the safety concept to either “brad pitt" or “angelina jolie" during inference, while for ESD-x, we train499

the model to forget the prompts “brad pitt" or “angelina jolie".500

Forget Nudity For forgetting nudity, we tune only the unconditional (non-cross-attention) layers501

of the latent diffusion model as proposed in [8]. We use the same set of samples for calculating the502

FIM and for GR. The prompt to forget is set as cf ={“nudity", “naked", “erotic", “sexual"}. We set503

� = 50 and train for 500 epochs. Experiments are run on 4 RTX A6000s.504

We evaluate on the I2P dataset by generating one image per prompt with the provided random505

seeds. The 4703 images are evaluated using the open-source NudeNet classifier [30], with the506

default probability threshold of 0.6 to count as a positive detection of a nudity instance. As NudeNet507

considers exposed and covered content separately, we only consider nudity content that are classified508

as exposed. Manual inspection showed the classifier to give false positives; for example, 10 of the 16509

images generated by SA classified as showing Female Genitalia actually have this attribute. Likewise,510

some images classified as showing Female Breasts actually showed Male Breasts.511

In terms of baselines, for SLD Medium we set the safety concept to “nudity, sexual, naked, erotic".512

For ESD-u, we use the publicly available checkpoint from the official GitHub repository that was513

trained to forget nudity.514
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C More Results515

C.1 Forget Famous Persons516

Table 2: Quantitative results from the GIPHY Celebrity Detector. For our SA model, we use the
variant with q(x|cf ) set to “middle aged man" or “middle aged woman" for forgetting Brad Pitt and
Angelina Jolie respectively. The GCD Score is the average probability of a face being classified as
Brad Pitt or Angelina Jolie in the test set. The numbers in brackets are standard deviations. Note that
the standard deviations are typically much larger than the mean GCD Score, which indicates a highly
skewed distribution, i.e., a majority of faces have very low probabilities, but a few have very large
probabilities.

Forget Brad Pitt Forget Angelina Jolie
Proportion of images

without faces (#)
GCD Score (#)

Proportion of images
without faces (#)

GCD Score (#)

SD v1.4 (original) 0.104 0.606 (0.424) 0.117 0.738 (0.454)
SLD Medium 0.141 0.00474 (0.0354) 0.119 0.0329 (0.129)

ESD-x 0.347 0.0201 (0.109) 0.326 0.0335 (0.153)
SA (Ours) 0.058 0.0752 (0.193) 0.0440 0.0774 (0.213)

Figure 6: Comparisons between our method with ESD and SLD in forgetting Angelina Jolie. We use
the variant of SA with q(x|cf ) set to “middle aged woman”. Images on the left are sample images
with the prompts specified per column. Images on the right are the top-5 GCDS images from the
generated test set, with their respective GCDS values displayed. Best viewed zoomed in.

16



C.2 Forget Nudity517

Table 3: Quantity of nudity content detected using the NudeNet classifier on the I2P benchmark
dataset (4703 images). As NudeNet classifies covered and exposed content separately, all nudity
content considered here are classified as exposed.

Armpits Belly Buttocks Feet
Female
Breasts

Female
Genitalia

Male
Breasts

Male
Genitalia

Anus

SD v1.4 214 171 40 39 295 23 21 6 0
SD v2.1 191 124 24 30 154 14 12 6 0

SLD Medium 58 60 7 15 42 1 21 0 0
ESD-u 60 17 13 9 26 1 4 3 0

SA (Ours) 72 77 19 25 83 16 0 0 0

Upon manual inspection of I2P samples from SA, we observed that the NudeNet classifier has a518

tendency to classify gender incorrectly. For instance, male breasts are often classified as female519

breasts. Hence, the number of female breasts presented for our method is an overestimation of the520

true number. There is also a relatively high false positive rate for exposed female genitalia, as 6 of521

the flagged images for SA do not depict any exposed female genitalia.522

Table 4: Quantity of nudity content detected using the NudeNet classifier from 1000 sampled images
with the prompt “a photo of a naked person”. Similar to I2P results, we only consider exposed content.
Note that there is a larger number of Armpits and Female Breasts for SD v1.4 than there are images
because NudeNet classifies multiple instances of each content per image separately.

Armpits Belly Buttocks Feet
Female
Breasts

Female
Genitalia

Male
Breasts

Male
Genitalia

Anus

SD v1.4 1013 753 110 116 1389 453 8 3 0
SD v2.1 858 659 149 120 685 201 110 3 0

SLD Medium 360 369 38 56 351 115 73 1 0
ESD-u 86 56 7 35 55 5 10 0 0

SA (Ours) 204 172 15 105 245 27 0 0 0

We conduct an additional quantitative study on nudity by evaluating 1000 images sampled using523

the prompt “a photo of a naked person" using the NudeNet classifier. We use the same setup as the524

I2P experiments for all models. The results are shown in Table 4. Similar to the I2P experiments,525

our model drastically reduces the amount of nudity content compared to SD v1.4 and v2.1. ESD-u526

achieves the best scores overall. Our model outperforms SLD Medium, particularly on sensitive527

content like Female Breasts and Female Genitalia.528
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D Additional Samples529

D.1 MNIST, CIFAR10, STL10530

Original

Figure 7: Additional sample images comparing the original MNIST VAE versus ours with the digit
‘0’ forgotten with � = 100 (with GR), which corresponds to the hyperparameters shown in Table 1.

Original

Figure 8: Additional sample images comparing the original STL10 DDPM versus ours with the
‘airplane’ class forgotten with � = 10 (with GR), which corresponds to the hyperparameters shown
in Table 1.
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Original with GR

no GR with GR

Figure 9: Additional sample images comparing the original CIFAR10 DDPM versus ours with the
‘airplane’ class forgotten. We show three variants of SA, corresponding to the ablations shown in
Table 1. It is clear from inspection that the image quality of the classes to remember is significantly
impacted without the GR term (� = 10 no GR). When visually comparing � = 1 and � = 10 (both
with GR), the differences are not immediately obvious to the naked eye, although the quantitative
metrics show that � = 10 produces better results.
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D.2 Stable Diffusion531

Figure 10: Sample images with prompt "Brad Pitt in a tuxedo". These are an extension of Fig. 4 to
provide the reader with more context as to the qualitative differences between the various approaches.
The bottom two rows are our method, where we set q(x|cf ) to “middle aged man" and “male clown”
for cf = {“brad pitt"}.

Figure 11: Sample images with prompt "a close up of Brad Pitt’s face". These are an extension of
Fig. 4. The bottom two rows are our method, where we set q(x|cf ) to “middle aged man" and “male
clown” for cf = {“brad pitt"}.
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Figure 12: Sample images with prompt "Brad Pitt laughing in a park". These are an extension of
Fig. 4. The bottom two rows are our method, where we set q(x|cf ) to “middle aged man" and “male
clown” for cf = {“brad pitt"}.

Figure 13: Sample images with prompt "Angelina Jolie in a black dress". These are an extension of
Fig. 6. The bottom two rows are our method, where we set q(x|cf ) to “middle aged woman" and
“female clown” for cf = {“angelina jolie"}.
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Figure 14: Sample images with prompt "Angelina Jolie holding a bouquet of flowers". These are an
extension of Fig. 6. The bottom two rows are our method, where we set q(x|cf ) to “middle aged
woman" and “female clown” for cf = {“angelina jolie"}.

Figure 15: Sample images with prompt "Angelina Jolie wearing a hat". These are an extension of
Fig. 6. The bottom two rows are our method, where we set q(x|cf ) to “middle aged woman" and
“female clown” for cf = {“angelina jolie"}.
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Figure 16: Sample images with prompt "realistic portrayal Maleficient movie" from SD v1.4 and
our method where we set q(x|cf ) to “middle aged woman" and “female clown” for cf = {“angelina
jolie"}. Even though the prompt does not explicitly mention Angelina Jolie, we observe that our
method generalizes to the portrayal of the character Maleficient.

Figure 17: Sample images with prompt "a photo of a naked person". These are an extension of Fig. 5.
Note again that we are being conservative in censoring the image here.
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E Effects on Other Celebrities532

Figure 18: Sample images investigating the effects on celebrities other than the one being forgotten
when using our method. SA-Full indicates training of all layers and SA-Xattn indicates training of
only the cross-attention layers. Both models are trained to forget cf = {“angelina jolie"} by setting to
q(x|cf ) to “middle aged woman". We use the prompt “[...] on stage", where [...] is substituted with
Jennifer Aniston, Oprah Winfrey or Jackie Chan.

In this section we conduct a qualitative study on the effects on celebrities other than the one being533

forgotten. Ideally, the changes to other celebrities should be minimal. We revisit the case of forgetting534

Angelina Jolie by setting q(x|cf ) to “middle aged woman". We train two variants, training all layers535

(like in Sec. 4.2 of the main text on forgetting famous persons) and training only the cross-attention536

layers. We abbreviate them as SA-Full and SA-Xattn respectively.537

From Fig. 18, we see that SA-Full leads to slight changes in the depiction of Jennifer Aniston538

(compared to how she looks in person, or to SD v1.4), but minimal changes to Oprah Winfrey and539
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Jackie Chan. We hypothesize that this is due to Jennifer Aniston sharing greater similarities to540

Angelina Jolie than the latter two, as they are both female and of similar ethnicity, leading the model541

to more strongly associate the two together. This is not an inherent limitation of SA; the effects542

can be minimized by tuning only the cross-attention layers, as seen in SA-Xattn rendering Jennifer543

Aniston (and the other celebrities) as accurately as SD v1.4. This corroborates the findings in [8],544

which recommends tuning the cross-attention layers only if one wishes to forget concepts that are545

specified explicitly (e.g., celebrity names which are mentioned in the prompt).546

However, there are cases where celebrities can be rendered even without explicit mention of their547

names, for example in Fig. 16. In such cases, we observe anecdotally that tuning only the cross-548

attention layers limits the model’s ability to generalize to such prompts. Recall that the unconditional549

(non-cross-attention) layers are responsible for generalization to prompts without explicit mention of550

the concept to forget (cf. the nudity experiments in Sec. 4.2 of the main text), hence tuning only the551

cross-attention layers unsurprisingly limits generalization performance. As such, there is a trade-off552

between generalization and interference of other concepts. We recommend tuning all layers if the553

user wants a good balance of generalization but with potentially slight interference of closely related554

concepts, and only the cross-attention layers if minimal interference of other concepts is required, at555

the expense of generalization. We leave a more precise study of this trade-off to future work.556
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