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A Dataset-Task Taxonomy1

A.1 Dataset Taxonomy2

We provide Figure 5 to show the dataset taxonomy in the overall training workflow. We first split3

the initial dataset D into two sub-datasets Db and De through decoupled learning to mitigate the4

distributional bias (first level split). Next, to process respective noise in Db and De, we conduct a5

selection and self-training framework. We divide the two parts into the clean set and noisy set by6

clean token selection (second level split), then perform a standard classification on each clean set. As7

for noisy token sets, we adopt debiased self-training to yield pseudo-labels for further training.8

Figure 5: Illustration of dataset taxonomy.

A.2 Task Taxonomy and Model architecture9

DesERT modifies the basic NER model architecture with the double-head pathway, yet reserves a10

shared pre-trained language model encoder such as RoBERTa-base denoted by ϕ. Given any sentence11

xxx with its binarilized labels yyyb and entity type labels yyye, (xxx,yyyb) ∈ Db and (xxx,yyye) ∈ De. xxx is first fed12

to the PLM encoder ϕ and we take the last hidden layer output of ϕ as finally embeddings ϕ(xxx). Then13

the double-head pathway hb and he take ϕ(xxx) as input to yield respective predictions. The binary14

pathway hb generates the probablity of being entity tokens, pppb = sigmoid(hb ◦ ϕ(xxx)) = [pb1, ..., p
b
n],15

then take pppb > 0.5 as predicted binary labels ŷyyb. While the entity pathway he offers fine-grained16
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entity type probablities pppe = softmax(he ◦ ϕ(xxx)) = [pppe1, ..., ppp
e
n], where each pppei has K entries. We17

take arg max(pppe) as predicted entity type labels ŷyye, and note that non-entity tokens are tagged with18

invalid labels. Finally, any standard classification loss can be calculated on the double-head pathway.19

We also refer the reader to Figure 1 for visualized illustration.20

B Theoretical Insights of Debiased Semi-supervised Learning21

Though there is no available theory on why the worst cross-entropy (WCE) [1] works, we would like22

to provide the following (relatively) theoretical insights that may help the readers to perceive our23

approach better.24

Notably, the self-training bias is mainly caused by noisy tokens approaching the decision boundaries,25

whose pseudo-labels keep changing. To this end, we optimize WCE to learn compact token clusters26

for reducing wrong pseudo-label assignments. To see this, we start from the following simplified27

example to show that WCE does indeed concentrates the token representation.28

Assumption. Consider a binary classification problem, as the simplest form of DSNER. Denote the29

input variable by X and the output variable by Y from binary labels {+1,−1}. The labeled data Dl30

are sampled from X|Y = +1 ∼ U(B(u, r)) and X|Y = −1 ∼ U(B(v, r)). Here B(u, r) denotes a31

spherical ball with center u and radius r. U denotes uniform distributions. The unlabeled sample32

Du are all from Y = +1 but uniformly distributed inside the B((u+ v)/2, r′). Three balls have no33

intersection. Finally, we assume the maximum margin classifier is used, which is a hard proxy of the34

cross-entropy loss.35

Derivation Sketch. At first glance, it is obvious that the optimal classifier on Dl is f = (u+ v)/236

which misclassifies half of the examples in Du. The worst classifier, however, amounts to be37

fw = (u + v)/2 − r′ which perfectly classifies Dl but possesses the most side-way decision38

boundary. Next, we optimize the feature extractor ϕ to match the worst decision boundary by39

minϕ LU (y, f
w). This is to say, with ideally known labels, the unlabeled ball B((u + v)/2, r′)40

converges to B(f = (u+ v)/2− r′, r′). With full samples X|Y = +1 getting closer, the classifier41

achieves better generalization with compact clusters and low-entropy decision boundaries.42

In practice, since the true labels are unknown, we use pseudo-labels as a proxy since most unlabeled43

data are assigned true labels. So, the representation will be partially concentrated.44

Empirical Covariance. We conduct experiments on CoNLL03 to show the covariance of data45

to their class centers and the quality of pseudo labels as follows. When DeSERT is run without46

WCE, the average covariance amongst classes is 0.0085. With WCE, the average covariance amongst47

classes becomes 0.0056. Thereafter, we can conclude that WCE indeed concentrates the tokens and48

mitigates the self-training bias.49

C Additional Experimental Setups and Results50

In what follows, we show more experimental details and results. In section C.1, we report more51

empirical results, including an interesting series of experiments where additional distant supervision52

comes from large language models like ChatGPT. In section C.2, we provide more details on our53

experiments and implementation.54

C.1 Results with Additional Distant Supervision from ChatGPT55

Recently, large language models (LLMs), including GPT-3 [2], ChatGPT, and GPT-41, have largely56

revolutionized the NLP landscape. Thanks to their emerging abilities like in-context learning (ICL)57

[3] and chain-of-thought [4], LLMs demonstrate remarkable zero-shot learning performance in a58

wide range of downstream NLP tasks. Despite the promise, some recent studies [5] have shown that59

LLMs are still legs behind the fine-tuned small language models in many NLP applications.60

Motivated by this, we conduct experiments to show the zero-shot performance of ChatGPT on the61

NER problem. In Table 3, we observe that ChatGPT does indeed demonstrates inferior results even62

1https://openai.com/blog/chatgpt

2



Figure 6: An example prompt for automatic demonstration data generation.

compared with distantly-supervised SLMs. Therefore, a question arises: how can LLMs better63

support NER with minimal human annotation? Among the numerous potential solutions, we propose64

a natural extension of the conventional distantly-supervised NER problem. This extension considers65

LLM’s predictions on the training set as additional distant supervision. To achieve this, we present a66

new tagging scheme for NER and modified our algorithm to accommodate multiple sources of distant67

supervision. Subsequently, we provide a detailed elaboration on the aforementioned aspects.68

C.1.1 Tagging by Auto-Demonstration69

Instead of directly performing zero-shot testing, we introduce a new DSNER paradigm that generates70

distant labels by LLMs for unsupervised training data to improve the SLMs’ performance. To71

generate distant labels, a straightforward solution is to send the raw training texts to the LLMs and72

ask them to output all the entities along with their types. However, we find such a naive strategy fails73

to achieve satisfactory NER performance. To mitigate this problem, we design a novel in-context74

learning algorithm that exploits self-generated text-tag pairs to guide the tagging process.75

Automatic Text-Tag Pair Generation. Our ultimate goal is to perform few-shot in-context76

learning that better guides the LLMs to locate the entities and output their types. To achieve this,77

we may assume a set of demonstration text-tag pair samples are available. Besides, this set ought to78

be diverse and representative enough to guide in-context learning. However, the training samples79

are unsupervised and cannot be utilized directly. To address this problem, we propose to generate80

sentences by ChatGPT itself, while ensuring the diversity of the generated results to cover all entity81

types. Additionally, we randomly retrieve unlabeled samples from the training set and employ82

ChatGPT to automatically generate a comprehensive set of sentences, including their corresponding83

entity tags. An example prompt is shown in Figure 6.84

Few-Shot In-Context Learning for NER Tagging. After that, we ask the ChatGPT to tag the85

whole training set by using its self-generated demonstrations. However, directly feeding all the86

generated samples for ICL may exceed contextual limits and incur high computational costs. To87

remedy this problem, before feeding the true query sentence, we retrieve the top-k demo samples by88

the cosine similarity. Empirically, we exploit the BERT embedding for similarity calculation, which89

performs generally better than ChatGPT embedding. Finally, we instruct ChatGPT to output the NER90

tags for the entire unsupervised training set. An example prompt is shown in Figure 7.91
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Figure 7: An example prompt for few-shot in-context tagging for a query sentence. The demonstra-
tions are automatically generated and selected.

C.1.2 Modification of DesERT for Multi-Source Distant Labels92

One may directly use the ChatGPT labels to train the DSNER models. However, the original knowl-93

edge base-driven distant supervision is also free lunch for DSNER. and can be further incorporated.94

Notably, such a hybrid distant label from multiple sources problem has never been touched in the95

NER community. Fortunately, our DesERT algorithm can well address such hybrid labels with only a96

few modifications. Assume we are given knowledge base-driven labels ykb (KB Labels) and ChatGPT97

Labels ycg for a token x, where we slightly abuse the subscript to distinguish these two labels. To98

warm up the model, we calculate a mean soft label by,99

ŷmean = (OneHot(ykb) + OneHot(ycg))/2

Therefore, the model fits equal confidence on these two labels when a token receives two disagreed100

labels. After that, we develop a modified selection protocol. Take the binary head as an example, we101

receive a set of transformed distant labels Ỹ b = {ỹbkb, ỹbcg} for each token and then perform the token102

selection by,103

Dl
b = {(x, Ỹ b)|I(ŷb ∈ Ỹ b) ∧ (max(pb, 1− pb) > τ)}

In other words, we regard either distant label as a candidate of the ground truth. Once there is one104

label in this label set that exhibits high confidence, we regard it as a clean token. Finally, we run the105

DesERT algorithm without any further modification. Notably, these can be easily extended to more106

sources of distant supervision, e.g., when there is more than one LLM available.107

C.1.3 Experimental Results with ChatGPT Supervision108

Our experiments are conducted on the CoNLL03 dataset. In specific, we generate a total of 100109

automatically generated samples with the help of 10 demonstration training samples. When tagging110

training data, we select the 10 most similar generated samples for ICL. In Figure 8, we plot the111

confusion matrix of the ChatGPT labels. It can be observed that ChatGPT supervision demonstrates112

similar trends to KB labels and is still biased. Nevertheless, ChatGPT labels have three main113

characteristics: (1) it classifies far more non-entity tokens as an entity; (2) it produces more balanced114

clean tokens; (3) the confusion patterns on fine-grained entity types are different than KB labels.115

In Table 3, we report the results of DesERT when it faces different sources of distant supervision116

signals. In particular, we compare three types of baselines: (1) ChatGPT: we employ the ChatGPT117

model to produce zero-shot tagging on testing data; (2) ChatGPT-A: we employ ChatGPT to generate118
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Table 3: Performance of DesERT with different sources of distant labels.
Supervision Unsupervised ChatGPT Labels KB Labels Hybrid Labels

Model ChatGPT ChatGPT-A SCDL DesERT SCDL DesERT SCDL* DesERT*

Precision 68.95 79.11 68.39 81.91 87.96 86.23 83.87 87.24
Recall 64.16 63.13 72.74 77.38 79.82 87.28 85.50 88.93

F1 66.47 70.22 70.50 79.58 83.69 86.75 84.67 88.08

a set of text-tag pairs and use it for few-shot ICL on testing data; (3) SCDL: the most competitive119

baseline in our main Table. From Table 3, we have the following observation:120

• ChatGPT-A is much better than vanilla ChatGPT, verifying the superiority of our automatic121

demonstration process. But, ChatGPT and ChatGPT-A underperform other DSNER algo-122

rithms on the testing set. Though ChatGPT is a wonderful general-purpose LLM, we may123

draw the same conclusion as [5] that fine-tuned SLMs still play an important role in NLP.124

• Given ChatGPT labels, both SCDL and DesERT underperform their counterparts when125

supervised by KB labels. We postulate that current DSNER algorithms are particularly126

designed for KB-based supervision and thus can not fully handle such new sources of labels.127

• Our proposed DesERT algorithm consistently outperforms baselines on different supervised128

signals. In particular, when trained with hybrid labels, the modified DesERT (DesERT*)129

improves the KB label-trained counterpart by +1.32 F1 score. It suggests that distant130

supervision from LLMs does indeed brings helpful information for the DSNER task.131

Figure 8: Left: Confusion matrix of true labels and
ChatGPT labels on CoNLL03. Right: The confusion
matrix displays noise among true entity-type labels in
ChatGPT labels.

In summary, our work makes the first at-132

tempt to employ LLMs to generate distant133

supervision. Moreover, our DesERT algo-134

rithm can be easily extended to learn from135

multi-source distant labels and demon-136

strates improved performance.137

C.2 More Experimental Details138

In this section, we provide more experi-139

mental details for a better understanding of140

our training process and also to ensure thee141

reproducibility.142

C.2.1 Computation Resources143

All experiments are conducted on a workstation with 8 NVIDIA RTX A6000 GPUs. It takes about144

{8, 72, 0.5, 1, 2} hours for training on five benchmarking datasets (ordered as in Table 1) with one145

single GPU. We adopt the Huggingface Transformer library for the RoBERTa-base (125M parameters)146

and DistilRoBERTa-base (66M parameters) models: https://huggingface.co/transformers/. We run all147

the experiments three times and report the mean results.148

C.2.2 Datasets Details149

The data statistics of five benchmarking NER datasets are shown in Table 4.150

C.3 More Implementation Details151

Tagging scheme for NER As for tagging scheme, we follow the classic BIO format. To be specific,152

the first token of an entity mentioned with type X is tagged as B-X while the remaining tokens inside153

that entity are labeled as I-X, and the non-entity tokens are annotated as O. Such a scheme is more154

difficult than a simple IO format, especially for distant supervision.155
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Table 4: The statistics of five datasets, shows the number of entity types and the number of sentences
in the Train/Dev/Test set.

Dataset Types Train Dev Test

CoNLL03 4 14,041 3,250 3,453
OntoNotes5.0 18 115,812 15,680 12,217

Webpage 4 385 99 135
Wikigold 4 1,142 280 274
Twitter 10 2,393 999 3,844

Clean token selection for the binary pathway In general, the precision of entity labels is relatively156

high, e.g., about 97.96%(23, 649/24, 141) in the CoNLL03 dataset. That indicates us most distantly-157

labeled entity tokens are real entities if omit fine-grained entity types. Therefore, when performing158

clean token selection on the binary pathway, it only selects non-entity tokens by the matched and159

high-confidence strategy while including all tokens labeled as entities.160

Soft label for the entity pathway When training on the selected clean token set, the binary pathway161

regards distant labels as true labels. However, we discard the distant hard labels but adopt the teacher162

model’s output logits to derive soft labels [6] for the entity pathway, given by:163

ŷsi,j =
ppp2i,j/

∑
i pppi,j∑

j′(ppp
2
i,j/

∑
i pppi,j′)

where pppi,j = softmax(fi,j(xxx; θt)), is the probability of i-th token belonging to class j in sentence164

xxx, then calculate a Kullback-Leibler divergence loss. Because soft labels usually preserve sufficient165

information and encourage a more balanced assignment of target labels.166

The implementation of teacher-student newtork When splitting the clean token set and the167

noisy token set, we let the teacher model select respective clean tokens to train the student model.168

Specifically, the teacher model’s double-head pathway filters reliable clean tokens independently169

following the previous criterion. Then the double-head of the student model is trained with selected170

clean tokens and corresponding labels. The teacher model parameters are periodically updated by the171

student model with EMA, given by:172

θt = αθt + (1− α)θs

where α is a positive constant and is empirically fixed as 0.99 for Webpage/Wikigold and 0.995 for173

the remaining datasets. Finally, to train the entity pathway, we adopt a KL divergence loss on the174

student model’s output logits and corresponding soft labels from the teacher model’s prediction. The175

formulation is:176

Le_cls(ŷyy
s, f(xxx; θs)) =

∑
i

∑
j

−ŷsij log fij(xxx; θs) + fij(xxx; θs) log(fij(xxx; θs))

Then, the student model’s entity pathway is trained to approximate the soft labels. While for the177

binary pathway, we calculate a standard binary cross-entropy loss, which is given by:178

Lb_cls(ỹ
b, ŷb) = −ỹb log ŷb − (1− ỹb) log(1− ŷb)

where ỹb is the given distant label and ŷb is generated by student model’s binary pathway.179

D Pseudo-Code of DesERT180

We describe the overall training pipeline of DesERT in Algorithm 1.181

E Limitations182

While DesERT has been proven to be effective for distant supervision, it is still subject to certain183

limitations. First, in our debiased self-training procedure, our WCE loss is estimated from pseudo-184

labels instead of the real ones. While we empirically find our WCE loss works well, its performance185
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Algorithm 1 Training workflow of DesERT

Input: Training data D = {(xxxi, ỹyyi)}Mi=1 with distant labels; two sets of teacher-student networks,
θt1, θs1 and θt2, θs2;

1: t← 0
/* Selection and self-training */

2: while t < T1 do
3: Get a batch B = {(xxxi, ỹyyi)}Bi=1 ⊂ D;
4: if t < k then
5: Bb ∪ Be ← B; //decoupled datasets
6: B1b = {Bl,1b ,Bu,1b } ← Sel(f(θt1),Bb);
7: B1e = {Bl,1e ,Bu,1e } ← Sel(f(θt1),Bb);
8: B2b = {Bl,2b ,Bu,2b } ← Sel(f(θt2),Bb);
9: B2e = {Bl,2e ,Bu,2e } ← Sel(f(θt2),Bb);

10: Update θs1 with {B1b ,B
1

e} by minimizing L;
11: Update θs2 with {B2b ,B

2

e} by minimizing L;
12: else
13: XB ← {(xxxi)}Bi=1

14: Bb ∪ Be ← Guess(f(θt1), f(θt2),XB);
15: Update θs1, θs2 with {Bb,Be} by minimizing L
16: end if
17: θt1 ← EMA(α, θt1), θt2 ← EMA(α, θt2)
18: t← t+ 1
19: end while

/* Post-hoc entity pathway finetuning */
20: while t < T1 + T2 do
21: Get a batch B = {(xxxi, ỹyyi)}Bi=1 ⊂ D;
22: XB ← {(xxxi)}Bi=1, ỸB ← {(ỹyyi)}Bi=1

23: B1e ← EntitySel(f(θt1),XB , ỸB);
24: B2e ← EntitySel(f(θt2),XB , ỸB);
25: Finetuning θs1 with B1e
26: Finetuning θs2 with B2e
27: θt1 ← EMA(α, θt1), θt2 ← EMA(α, θt2)
28: t← t+ 1
29: end while

is theoretically restricted. One potential solution is to estimate a small validation set to remedy this186

problem, but we leave it as our future work. Second, while the imbalance between entity labels is187

located in Figure 1, our framework does not particularly integrate special components to explicitly188

overcome this problem. We believe it is not hard to draw inspiration from the recent achievement in189

long-tailed learning to further improve the NER performance. Lastly, since DesERT ensembles two190

sets of teacher-student networks as previous works did [7, 8], we should train peer-student models191

simultaneously and utilize the predictions from dual-teacher models iteratively, thus resulting in192

relatively higher training costs. We hope future efforts are made in alleviating the cost of network193

ensembling.194

F Ethics Statement195

While distant supervision is deemed a cheap way to collect and curated training data, the off-the-shelf196

and external knowledge bases steering the autonomous annotation procedure may include bias and197

unfairness. Indeed, if one trains the model by these biased labels, it may unpleasantly yield unfair198

and biased predictions on the basis of characteristics like race, gender, disabilities, LGBTQ, or199

political orientation. Therefore, when deploying our DesERT framework, it is recommended to equip200

it with some auxiliary tools for labeling censorship so as to improve overall fairness and ethical201
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standard. Grounded on this, we would suggest regarding our DesERT framework as an auxiliary202

weakly-supervised annotation tool for assisting human annotations.203
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