
Appendix

A Implementation Strategy Analysis for HQ

As §1.1 mentions, existing solutions to HQ are designed in a “decomposition-assembly” model,
where a HQ is decomposed to two subqueries—that is, the ANNS is based on a vector index and
AF is based on an attribute index. There are currently two implementation strategies regarding the
execution order of these two subqueries, i.e., Strategies A and B in Fig. 11. By contrast, our solution
works by using a new fusion strategy (Strategy C).

Strategy A Strategy B

HQHQ

Strategy C

Joint pruning

Top-kTop-k

(Our method)

Vector index Attribute index Composite index

HQHQ

AF

ANNS

Top-kTop-k

HQ

AF

ANNS

Top-k

HQHQ

ANNS

AF

Top-kTop-k

HQ

ANNS

AF

Top-k

Figure 11: Three different HQ strategies.

Strategy A: “first AF, then ANNS.” In general, AF shows higher unit efficiency than ANNS, e.g.,
in our evaluation, the average overhead time is about 0.02µs and 0.50µs for checking whether two
attributes are equal and computing the distance of a pair of feature vectors on SIFT1M dataset [1],
respectively. Therefore, when AF runs first, ANNS can be performed on the obtained candidate
subset rather than the entire object set, which will boost query efficiency to some extent. As a side
effect, this strategy suffers from memory and efficiency issues regarding vector index construction
for searching similar vectors, as we analyzed in §1.1 (L4). To address this problem, existing efforts
[54, 51] encode the feature vectors by PQ [28] for approximating Euclidean distance (Eq. 1). Yet,
they yield remarkably low query accuracy, especially compared to ANNS on top of the PG-based
vector index [33].

Strategy B: “first ANNS, then AF.” This strategy can be classified into two different categories:
(1) One is to perform AF after completing ANNS; that is, we only need to check the attributes of
the returned top-k objects. (2) The other is to perform AF after each step of ANNS; that is, we
need to check the attributes for each object explored during the ANNS. According to our evaluation,
(1) is more efficient than (2) in most cases, so that (1) is adopted more widely [32, 29]. One
possible explanation is that, current vector indexes are built with feature vectors rather than attributes,
prematurely filtering the object that mismatches the attributes in each search step may impair ANNS’s
performance [52]. Nevertheless, a HQ working off (1) usually requires ANNS to return much more
than k candidates for subsequent AF (e.g., it may need to process 300 candidates for obtaining top-10
results), which limits ANNS’s efficiency (§1.1, L3).

In addition, Strategies A and B must maintain the attribute index and vector index simultaneously (Fig.
11), and separately searching on the two indexes would increase computational overhead (discussed
in §1.1, L1–2). To overcome these limitations, we design the following novel solution.

Strategy C: “joint AF and ANNS”. This strategy carries out ANNS and AF concurrently on a
composite index (Fig. 11) that contains both the feature vectors’ and attributes’ information, which
obviously differs from the vector index or attribute index in Strategies A and B. For Strategy C,
given a query object and a composite index, we jointly prune unpromising objects with dissimilar
vectors and mismatched attributes during query processing, so that we return query results in one
step without intermediate candidates. To the best of our knowledge, this is the first work to present a
HQ solution in a fused way. With this essential difference, compared to existing solutions we achieve
10× improvement in accuracy and efficiency.

15

B Intuition for NHQ framework

Rather than answering a HQ by two separate subqueries on different indexes, we propose a NHQ
framework, with a well-designed composite index to support both feature vector and attribute
constraints. To build a purpose-built index for HQ, it is natural to assemble both feature vector
and attribute information in this index (i.e., a composite index). Research suggests that the graph
has inherent advantages in fusing complex information [61, 26, 10]. For example, the multimodal
knowledge graph embeds various modal data (e.g., image, text) into a graph, thereby benefiting
a multitude of downstream tasks [64, 30]. Driven by this, we explore how to integrate various
types of information into a graph as our composite index. Recently, the mainstream vector index
is implemented based on PG (see Def. 4 in §3), which has been proven to offer state-of-the-art
performance compared to other index types [18, 63, 62]. However, existing PGs only contain feature
vectors’ neighborhood relationship while excluding attributes, so they cannot be used directly for
building the composite index.

C PG Analysis

In Def. 4, B determines how many neighbors each vertex ui has. A higher B means more neighbors
for ui, which increases the search space and reduces the efficiency [36]. A lower B may disconnect
the PG and affect the accuracy [19]. Different PGs mainly differ in how they implement (2) in Def. 4
(e.g., DPG [33] and NSG [19]). A recent survey [52] analyzes various PG-based index algorithms
and their performance, strengths, and pitfalls.

D Composite Index

The ordinary PGs construct the neighborhood relationship between two objects based on their feature
vector distance (Eq. 1) alone. By contrast, we take into consideration both the distances of feature
vectors and attribute vectors by Eq. 6, thereby generating a new PG and we can take it as the
composite index. Algorithm 1 shows how to build a composite index. In our evaluation, B′ has an
optimal value to achieve a robust query performance. We found that B′ is strongly related to the
out-degree, and the upper bound of out-degree is always 20 for an optimal B′ on most datasets. We
can determine this value via a grid search [25].

E Joint pruning

We prune the objects that have both dissimilar feature vectors and mismatched attributes (using
the fusion distance, Eq. 6) based on the composite index. This is different from the existing work
[54, 51, 32] that prunes feature vector and attribute constraints separately (see Strategies A and B in
Fig. 11). Algorithm 2 shows how to do joint pruning.

F Proof for Lemma 1

Proof. We determine the parameters B and B′ by a certain upper bound of out-degree R, as shown in
Appendix C and D. We use an adjacency list to store the graph index, which contains the vertex ID
and R neighbor IDs for each vertex2. The index size Λ is:

Λ = |V | · ε · (R+ 1) , (7)

where ε is the size per ID. Given a dataset, the composite index and the ordinary PG maintain the
same R. Therefore, they have the same index size. □

G Proof for Theorem 1

Proof. Let u be any vertex in the composite index. Suppose there are at least |N(u)| other vertices
(denoted by U) that share the same attributes as u. Thus, χ(ℓ(u), ℓ(o)) = 0 for any o ∈ U . By Eq. 6,

2We add padding for assignment when |N(u)| < R for any vertex u ∈ V .

16

Γ (u, o) = δ(ν(u), ν(o)) with the proposed weight configuration. Hence, Ωmin ≤ Γ (u, o) ≤ Ωmax.
We choose U as the neighbors of u and induce 1⃝. If we choose other vertices outside U , we have
two cases: Case 1: if a vertex v has the same attributes as u, then Ωmin ≤ Γ (u, v) ≤ Ωmax; Case 2:
otherwise, Ωmin < Γ (u, v) ≤ 2 · Ωmax for a vertex v. We exclude vertices with Γ (u, v) > Ωmax

based on the B′ bound. Therefore, Ωmin ≤ Γ (u, o) ≤ Ωmax.

Let u be any vertex in the ordinary PG. We select |N(u)| neighbors with the smallest δ(ν(u), ν(o))
for any o ∈ N(u). We have two cases: Case 1: if all o ∈ N(u) have the same attributes as u, then
Ωmin ≤ Γ (u, o) ≤ Ωmax; Case 2: otherwise, Ωmin < Γ (u, v) ≤ 2 · Ωmax for a vertex v. The
ordinary PG only considers the B bound based on feature vector. Thus, Ωmin ≤ Γ (u, o) ≤ 2 ·Ωmax.

□

H Proof for Theorem 2

Proof. Let q be the query object. The composite index and the ordinary PG have the same initial
R (i.e., P). We consider two cases: Case 1: If R does not change in the search procedure, then the
Recall@k is the same; Case 2: If we update R with at least one vertex, then the composite index and
the ordinary PG have different updates. The composite index uses the fusion distance to replace a
vertex in R with a more similar vertex to q in both feature vector and attributes. The ordinary PG uses
only the feature vector distance to replace a vertex in R with a closer vertex to q in feature vector,
ignoring the attributes. Therefore, the composite index has a better R and a higher Recall@k. □

I Analysis for Current Edge Selection Strategies.

Edge selection is a key step in building a PG [52]. Given an object set S , we obtain the neighbors of
each object e in S based on an edge selection strategy. Different strategies produce noteworthy index
structure discrepancies for a PG, thereby impacting search performance on the PG [19, 33].

Intuition. In general, existing PGs focus on two factors during edge selection: distance between two
vertices (D1) and distribution of all vertices (D2) [52]. Early PGs such as NSW [35] and KGraph
[14] only consider D1 when selecting edges—that is, each vertex is connected with a certain number
of its nearest neighbors. [34] argued that only considering D1 would lead to redundant computations
and impair search efficiency, as illustrated in Example 5.

Example 5 Fig. 3(a) illustrates a situation where four nearest neighbors are connected to ui. We
divide ui’s neighborhood into four parts (P1–P4) by a black solid line, and the neighbors located in
each part will guide the search to approach the query object q along this orientation. Suppose we
are going to expand the search space from ui. Because most of ui’s neighbors are in the same area
(such as u0–u2 in P1), we cannot use these neighbors to guide a search toward q that is located in
different areas (e.g., P3). Instead, we need extra computation to find a new route to q’s area, which
adds computational overhead and reduces query efficiency.

Recent PGs add D2 to edge selection, which diversifies the neighbors’ direction while ensuring
a similarity of neighbors [33], thereby improving the search performance. A recent experimental
study [52] concluded that state-of-the-art PGs connect neighbors in more directions through the edge
selection strategy of relative neighborhood graph (RNG).

Definition 6 RNG [49]. A RNG G = (V,E) w.r.t a given object set S holds that Def. 4 (PG’s
definition), and for any two vertices ui, uj from V , we have an edge uiuj ∈ E, iff δ(ν(ui),
ν(uj))<δ(ν(ui), ν(uk)), or δ(ν(ui), ν(uj))<δ(ν(uk), ν(uj)), where ∀ uk ∈ V is a vertex that
satisfies uk ̸= ui ̸= uj .

Example 6 As Fig. 3(b) shows, the yellow lune is formed by two circles’ intersection. For exam-
ple, the small lune is formed by two circles with vertices ui and u0 as the centers and distance
δ(ν(ui), ν(u0)) as the radius. We add an edge between ui and u0, iff the lune formed by ui and u0

does not include any other vertices, which is equivalent to the condition of RNG’s edge selection in
Def. 6 (refer to [6] for proof). Under this rule, RNG’s edge selection prevents ui’s neighbors from
congregating in the same area, so that there is more opportunity to link neighbors in different areas
(such as u5 in P4) [33]. However, RNG’s edge selection is still problematic, e.g., the vertices in P2

17

(a) Greedy search (b) TOGG (c) Our routing

start vertex start vertexstart vertex

result vertex result vertexresult vertex

query queryquery

0
u

1
u

2
u

5
u

3
u

7
u

8
u

9
u

0
u

1
u

2
u

5
u

3
u

0
u

3
u

2
u

1
u

7
u

9
u

8
u

10
u

6
u

6
u

S1:
0
u

3
u

S2:

10
u

2
u

1
u

5
u

0
u

3
u

6
u

7
u

8
u

10
u

9
u

S1:
0
u

3
u

S2:

8
u

8
u4

u
4
u 4

u

11
u

11
u

4
u

11
u

8
u

9
u

8
u

9
u

Figure 12: Different routing strategies on PG. The white vertices do not need to, but the blue ones
must calculate the distance from the query.
and P3 cannot be connected to ui in Fig. 3(b) because they violate the above rule. For instance, the
lune formed by u3 and ui already includes a vertex u2, so we cannot add an edge between u3 and ui.
As a result, for the case that query object q in the area of P2 or P3, we still need more computations
for finding a new route to q’s area.

J Proof for Theorem 3

Proof. Let G be a graph with vertices and edges, and let N(u) be the set of neighbors of a vertex u in
G. Suppose that there exist two neighbors o and v of a vertex u in G, such that the angle between o
and v regarding u (denoted by σ(o, u, v)) is less than π/3. We consider the triangle△ouv, which
has three angles: σ(u, o, v), σ(u, v, o), and σ(o, u, v). By the triangle angle sum theorem, the sum of
these three angles is 180◦, or π radians. Therefore, the sum of σ(u, o, v) and σ(u, v, o) is more than
(2 · π)/3. We have the following two cases by comparing the edge lengths of uo and uv.

Case 1: If uv > uo, then o is added to N(u) before v. When we check if v can be added to N(u),
we use the landing zone of u and one of its current neighbors in N(u). The landing zone of u
and o, denoted by L(u, o), is the region where a vertex can be added to N(u). Let U(u, o) be the
perpendicular bisector of the line segment between u and o, and let H(o, u) be the half plane that
contains o and is bounded by U(u, o). Then, we have v is in H(o, u). Since L(u, o) = H(u, o) \
B(u, δ(ν(u), ν(o))), where B(u, δ(ν(u), ν(o))) is a ball centered at u with radius δ(ν(u), ν(o)),
that is, v /∈ L(u, o). So, v cannot be added to N(u), which contradicts the assumption (v ∈ N(u)).

Case 2: If uv < uo, we can swap v and o and get the same conclusion. □

K Analysis for Routing Strategies

Routing is a key step of searching on a PG [58]. Given a PG and a query object, the process of
finding the query results is implemented using a proper routing strategy that determines a routing
path from the start vertex to the result vertex [58], e.g., the path indicated by the black arrows in Fig.
12. Obviously, the routing strategy directly affects the efficiency and accuracy of searching on the PG
[39].

Intuition. Most existing PGs adopt a greedy search as their routing strategy, which leads to some
redundant computations (see Example 7) [4, 31]. Some machine learning optimizations [31] are
used to mitigate this problem, which achieve better Speedup vs Recall trade-off at the expense of
more index processing time and memory [52]. A recent study [58] specifies two search stages on
which routing has different requirements, i.e., the stage far from the query object (S1) and the stage
closer to the query object (S2). In S1, it claims that we should quickly locate the query object’s
neighborhood (for efficiency requirement), while in S2, we should focus on comprehensively visiting
vertices nearest to the query object (for accuracy requirement). Therefore, it designs a tailored routing
strategy for each stage, to form a two-stage routing strategy, called TOGG. However, TOGG attaches
a tree-based index (e.g., KD-tree is used) to organize the neighbors of each vertex (see Example 7),
which increases the index construction time and memory overhead.

Our routing. As a simple and effective solution, we design a random TOGG. In S1, for each visited
vertex ui, rather than obtaining partial neighbors of ui for distance calculation by an additional
tree (as TOGG did), we randomly select ui’s ⌈R/h⌉ (1 ≤ h ≤ R, where R is the upper bound of
out-degree) neighbors from N(ui) for distance calculation and quickly approach the query object’s

18

neighborhood. While in S2, we evaluate the distance of all neighbors in N(ui) to the query object
to ensure query accuracy, which is the same as the greedy search. Differ from TOGG, our routing
can achieve the comparable accuracy but does not introduce additional index management overhead
according to our evaluation. We emphasize that this random strategy in S1 does not impair the
accuracy as most of vertices do not need to calculate the distance from the query and a small number
of possibly missed vertices can be made up in S2.

Example 7 Fig. 12 shows the routing process (indicated by black arrows) from the start vertex u0

to the result vertex u9 working off different routing strategies. When we use greedy search as the
routing strategy (Fig 12(a)), neighbors of each visiting vertex are explored fully; e.g., for u0, the
distances from all vertices in N(u0)={u1, u2, u3} to the query object are computed. As a result, the
greedy search has 12 distance calculations. In Fig. 12(b), TOGG organizes each vertex’s neighbors
(N(u0)) in a tree-based index. In S1 (u0→u3→u8), TOGG selects the next hop based on each visited
vertex’s neighbor index. In S2 (u8→u9), TOGG uses a similar routing to the greedy search. Finally,
TOGG only needs nine distance calculations. Instead of an additional tree-based index for each
vertex’s neighbors, our routing randomly selects ⌈R/h⌉=2 neighbors (when we set R=4 and h=2)
for computing the distance to the query object in S1 and performs the greedy search in S2. Similar to
TOGG, our strategy requires only eight distance calculations in Fig. 12(c). It is worth noting that
our routing avoids some unnecessary calculations and improves query efficiency without extra index
processing and memory overhead.

L Proof for Theorem 4

Proof. Let q be the query object. We start with the same initial result set R (i.e., P) as the current
greedy search. In S1, we have two possible cases. Case 1: We can update R in S1 and get a better
initial R for S2. Note that our routing in S2 is the same as the current greedy search. Case 2: We
cannot update R in S1 and we have the same initial R as the current greedy search in S2.

M Implementation Details for Two NPG Algorithms

We present two NPGs, named NPGnsw and NPGkgraph, based on two mainstream PGs, NSW
[35] and KGraph [14], by using our edge selection and routing strategies. To be more precisely, we
construct two NPGs through our edge selection and conduct the search on them through our routing.

NPGnsw. NPGnsw is constructed by inserting an object incrementally. Specifically, a newly
inserted object ei ∈ S (corresponding to a vertex ui) is regarded as a query object, so we conduct
a greedy search [19] to obtain l vertices closest to ui as ui’s candidate neighbors C(ui) from the
NPGnsw built on previously inserted objects [35]. Then we apply our edge selection to form ui’s
neighbors N(ui). We repeat these operations for each object in S, to eventually yield a NPGnsw

built on S.

NPGkgraph. It is built by iteratively updating neighbors. For each ei ∈ S, we randomly generate
its l initial candidate neighbors C(ui). To make the vertices in C(ui) are closer to ui, we refine
C(ui) through the neighbors of ui’s neighbors, as the neighbors of a vertex’s neighbors are likely to
be neighbors of the vertex [14]. Then we obtain N(ui) by using our edge selection in the final C(ui).
Specifically, we execute the following process until the graph quality (see Def. 7) [7] reaches a preset
threshold (in our experiment, 0.8 is enough to achieve a good performance): for any uj ∈ C(ui) and
uk ∈ C(uj), we add uk to C(ui), if δ(ui, uk) < δ(ui, ut), where ut is the farthest vertex to ui in
C(ui). After the iteration completes, for each ui ∈ V , its neighbors N(ui) are produced from C(ui)
via our edge selection strategy.

Definition 7 Graph quality [52]. Given a PG G = (V,E), we define the graph quality QG of G as
the mean ratio of the number of u’s neighbors (i.e., N(u)) in M(u) over |M(u)| for all u ∈ V (Eq.
8), where M(u) is the k nearest vertices of u in (V \ {u}).

QG =
1

|V |
∑
u∈V

|N(u) ∩M(u)|
k

(8)

Given the two constructed NPGs, we can apply our routing strategy on them directly to return query
results efficiently, starting from a randomly acquired seed vertex.

19

Remarks. In addition to NSW and KGraph, our edge selection and routing also can be applied to
many other PGs, e.g., SPTAG [37]. So, we easily obtain a new PG by improving the basal PG with
our edge selection and routing (just like we built NPGnsw and NPGkgraph). Experiment shows
that our NPGs yield significant performance improvement, comparing to the basal PGs.

N NPG-Based HQ Methods

We integrate the proposed NPGs (i.e., NPGnsw and NPGkgraph) into our NHQ framework, thereby
yielding two practical HQ methods; namely, NHQ-NPGnsw and NHQ-NPGkgraph.

N.1 NPG-Based Composite Index

We modify the build process of NPGs by changing its original Euclidean distance to the fusion
distance (Eq. 6). So, NPGnsw and NPGkgraph can be deployed in NHQ to serve as a composite
index. We emphasize that our NHQ framework is practically flexible, as it is friendly to existing PGs
as well as custom-optimized PGs.

N.2 Joint Pruning Optimization

Driven by our routing strategy, we optimize the joint pruning of NHQ by performing a two-stage
search (stages S1 and S2 mentioned in Sec. 4.2) on a composite index. Specifically, in S1, our search
only visits ⌈R/h⌉ neighbors of each vertex in the search path for efficiency; thus we modify line 5 of
Alg. 2 (joint pruning) to randomly visit each vertex’s ⌈R/h⌉ neighbors, and execute the loop in lines
2–8 until it falls into the local optimum (i.e., it reaches the vicinity of the result vertices). In S2, we
set C = C ∪R, and continue to perform lines 2–8 (without modifying line 5) to visit all neighbors of
the vertices in the search path comprehensively. Finally, R is returned as the query results.

Remarks. (1) In our optimized joint pruning, different stages have specific requirements when
searching on a composite index. In S1, it quickly reaches a small area of objects that are similar to the
given query object’s feature vector and attributes; while in S2, it accurately obtains top-k objects with
similar feature vectors and matched attributes. (2) Given the NHQ-NPGkgraph and NHQ-NPGnsw

built in Sec. N.1, we can apply the optimized joint pruning directly on them to return HQ results
efficiently.

O Evaluation Setting

Datasets. In our experimental datasets, the first nine public datasets are composed of high-dimensional
feature vectors, which do not originally contain attributes; so, we generate attributes for each object
in these datasets following the same method in [51, 56]. For example, we add attributes such as
date, location, size to each image on SIFT1M to form an object set having both feature vectors and
attributes. Unless otherwise specified, we set the dimension of attributes (m) as 3 by default. Paper
is an in-house dataset, each object denotes an individual academic paper that consists of a feature
vector extracted from the textual content and structured attributes (e.g., affiliation, venue, and topic).
We summarize their main characteristics in Tab. 1. LID indicates local intrinsic dimensionality, and a
larger LID value implies a “harder” dataset.

Compared methods. We compare our HQ methods with six existing ones that have been used in
many high-tech companies.

• ADBV [54] is a cost-based HQ method proposed by Alibaba. It optimizes IVFPQ [28] for ANNS.

• Milvus [38, 51] divides the object set through frequently used attributes, and deploys ADBV [54]
on each subset.

• Vearch [29, 32] is developed by Jingdong, which implements the HQ working off Strategy B.

• NGT [59] is a ANNS library released by Yahoo Japan, which answers a HQ to conduct attribute
filtering atop the candidates recalled by NGT (Strategy B).

• Faiss [17] is a ANNS library developed by Facebook, which answers a HQ based on IVFPQ [28]
and Strategy A.

20

0.80 0.85 0.90 0.95 1.00
Recall@10

101

102

103

104

Q
PS

NHQ-NPGkgraph NHQ-NPGnsw Vearch ADBV Milvus Faiss SPTAG NGT

0.80 0.85 0.90 0.95 1.00
Recall@10

101

102

103

104

Q
PS

(a) SIFT1M
0.80 0.85 0.90 0.95 1.00

Recall@10

101

102

103

Q
PS

(b) GIST1M
0.80 0.85 0.90 0.95 1.00

Recall@10

101

102

103

104

Q
PS

(c) GloVe
0.80 0.85 0.90 0.95 1.00

Recall@10

101

102

103

104

Q
PS

(d) Crawl

0.80 0.85 0.90 0.95 1.00
Recall@10

101

102

103

104

Q
PS

(e) UQ-V
0.80 0.85 0.90 0.95 1.00

Recall@10

101

102

103

Q
PS

(f) Msong
0.80 0.85 0.90 0.95 1.00

Recall@10

103

104

Q
PS

(g) Audio
0.80 0.85 0.90 0.95 1.00

Recall@10

102

103

Q
PS

(h) Enron

Figure 13: QPS vs Recall of different HQ methods.

• SPTAG [37] is a PG-based ANNS library from Microsoft, which answers HQ on Strategy B.

• NHQ-NPGnsw and NHQ-NPGkgraph are our HQ methods based on NHQ framework inte-
grating two NPGs.

Metrics. For index build performance, we record the index build time and index size. We evaluate
the search efficiency, accuracy and memory overhead to demonstrate search performance. In terms
of ANNS, the search efficiency can be measured by queries per second (QPS) and Speedup; QPS
is the ratio of the number of queries (#q) to the search time (t), i.e., #q/t; Speedup is defined as
|S|/NDC, where |S| is the object set’s size and is also the total number of distance calculations of
the linear scan for a query, and NDC is the number of distance calculations of searching on a PG.
We use the Recall rate to evaluate the search accuracy, which is measured by Eq. 3. As for HQ,
QPS is more suitable for evaluating search efficiency, because different methods’ calculation cost
is distinguishing. Unlike ANNS, attribute constraints are added to the Recall rate formula in Eq. 3
for HQ processing, i.e., the elements in R ∩ T have exactly the same attributes as the query object.
In addition, selectivity is used to evaluate the scalability for the attribute constraints with different
difficulty, it is defined as 1− |P |/|S| in [54], where |P | is the number of objects that match the given
attributes, and |S| is the total number of objects.

Implementation setup. Most methods’ codes are publicly accessible online, otherwise we implement
the corresponding methods according to their papers. Given that all the compared approaches have
parallel versions and SIMD, prefetching instructions’ optimizations in their index construction codes,
we build all the indexes in parallel with 64 threads and turn on these time-saving optimizations.
However, considering that not all algorithms support the parallelization of a single query, we use a
single thread to perform search, which is a mainstream setting in related work [19, 18].

All codes are written in C++, and are compiled by g++ 6.5. All experiments are conducted on a Linux
server with an Intel(R) Xeon(R) Gold 6248R CPU at 3.00GHz, and a 755G memory. We report the
average results of all indicators by performing three repeated trials.

Parameters. Because doing parameters’ adjustment in the entire dataset may cause overfitting [19],
we randomly sample a certain percentage of data from the entire dataset to form a validation dataset
and search for the optimal values of all the adjustable parameters on each validation dataset.

P HQ performance

Fig. 13 shows that our methods outperform existing methods in terms of QPS vs Recall trade-off on
all datasets. For example, NHQ-NPGkgraph achieves two to three orders of magnitude higher QPS
than others when Recall@10 > 0.99. Our methods also have robust and scalable search performance,
especially on harder datasets (e.g., GloVe), where other methods (e.g., NGT) struggle. We do not
include Faiss and SPTAG in most charts, because their recall is below 0.8 regardless of the hyper-
parameters. Moreover, Milvus and ADBV have no Recall data between (about) 0.8 and 0.99, as their
PQ-based plans have limited Recall; they resort to a linear scan to reach a high Recall (Recall@10

21

Table 3: Index build time of different HQ methods.
Algorithm Build Time (s)

SIFT1M GIST1M GloVe Crawl UQ-V Msong Audio Enron
ADBV 1,614 1,812 1,838 2,895 1,598 1,627 478 611
Milvus 2,131 2,526 2,645 3,389 2,116 2,113 607 933
Vearch 108 519 150 406 21 47 1 43
NGT 27 1,124 806 2,745 31 73 1 20
Faiss 1,591 1,721 1,838 2,791 1,598 1,627 478 611
SPTAG 456 2,690 609 1,555 614 1,574 27 276
NHQ-NPGnsw 17 121 83 406 40 207 2 23
NHQ-NPGkgraph 25 70 189 188 25 61 1 3

Table 4: Index size of different PG-based methods.

Algorithm Index Size (MB)
SIFT1M GIST1M GloVe Crawl UQ-V Msong Audio Enron

Vearch 691 3,903 736 2,832 1,141 1,904 50 526
NGT 672 3,939 665 2,688 1,171 1,803 49 530
SPTAG 656 3,830 650 2,611 1,144 1,756 48 512
NHQ-NPGnsw 648 3,745 550 3,050 1,098 1,786 52 529
NHQ-NPGkgraph 561 3,709 491 2,346 1,041 1,678 42 500

=1). NHQ-NPGkgraph can easily obtain a high Recall with high QPS, so its QPS is too high to show
in the figure when Recall@10 < (about) 0.9 on most datasets.

Analysis. Existing methods use “decomposition-assembly” model (Fig. 11 in Appendix A), which
separate AF and ANNS, and limit their HQ ability. Ours combine AF and ANNS by fusing feature
vectors and attributes into a composite index. By pruning jointly, our methods avoid redundant
computation and improve the query efficiency.

Q Index Build Performance

In Tab. 3, our approaches take the least time to complete index building on almost all datasets.
Regarding the index size in Tab. 4, NHQ-NPGkgraph is lower than other methods on most datasets.
In general, the higher the dataset’s LID, the longer it takes to complete index building, and the larger
the index size. For PQ-based schemes (such as ADBV), clustering on large-scale high-dimensional
vectors results in low index building efficiency; however, these methods’ index size are tiny because
they compress raw vectors into short codes. By contrast, PG-based methods rely on raw feature
vectors, which lead to a larger index size. Nevertheless, our methods show the smallest index size
among them, which is because our edge selection eliminates numerous redundant neighbors (Example
4). It is worth noting our methods reach the state-of-the-art HQ performance with the highest index
building efficiency, which is the priority of most practical applications [19].

R ANNS performance of NPG

We compare the performance of NPG algorithms and the basal PGs (i.e., KGraph and NSW) to verify
the effect of our edge selection and routing strategies. As Fig. 15 shows, NPGkgraph and NPGnsw

achieve better accuracy vs efficiency trade-off on all datasets. As the dimension increases, the search
efficiency of each PG decreases; for example, from SIFT1M to GIST1M ((a) and (b) in Fig. 15), QPS
drops by about one order of magnitude. This is because a PG [52] cannot capture the neighborhood
relationship of a high-dimensional dataset well, which lowers the search performance (i.e., “curse of
dimensionality” [33]). From the results in Appendix T, we see that less distance calculations lead to
higher QPS. For searching on a PG, most of the search time is spent on calculating the vector distance
[63]. NPGs diversify the neighbors’ distribution on the basal PGs and use efficient routing strategy,
thus improving the search performance.

0.85 0.90 0.95 1.00
Recall@10

102

103

Sp
ee

du
p

NPGkgraph

NPGnsw

KGraph
NSW

(a) SIFT1M

0.85 0.90 0.95 1.00
Recall@10

102

Sp
ee

du
p

(b) GIST1M
Figure 14: Speedup vs Recall of different PG-based methods.

22

0.85 0.90 0.95 1.00
Recall@10

103

104

Q
PS NPGkgraph

NPGnsw

KGraph
NSW

(a) SIFT1M
0.85 0.90 0.95 1.00

Recall@10

102Q
PS

(b) GIST1M
0.85 0.90 0.95 1.00

Recall@10

101

102

103

Q
PS

(c) GloVe
0.85 0.90 0.95 1.00

Recall@10

102

103

Q
PS

(d) Crawl

Figure 15: ANNS performance of different PG-based methods.

0.7 0.8 0.9 1.0
Recall@10

102

103

104

Q
PS NHQ-HNSW(Strategy C)

HNSW(Strategy B)
IVFPQ(Strategy A)

(a) HNSW (SIFT1M)
0.7 0.8 0.9 1.0

Recall@10

102

103

104

Q
PS

NHQ-NSG(Strategy C)
NSG(Strategy B)
IVFPQ(Strategy A)

(b) NSG (SIFT1M)
0.7 0.8 0.9 1.0

Recall@10

102

103

104

Q
PS NHQ-NPGkgraph(Strategy C)

NPGkgraph(Strategy B)
IVFPQ(Strategy A)

(c) NPGkgraph (SIFT1M)
0.80 0.85 0.90 0.95 1.00

Recall@10
102

103

104

Q
PS

NHQ-NPGkgraph(Strategy C)
NPGkgraph(Strategy B)

(d) NPGkgraph (GloVe)

Figure 16: HQ performance of different strategies.

0.80 0.85 0.90 0.95 1.00
Recall@10

103

104

Q
PS

v iv iii ii i

(a) Weight settings

0.80 0.85 0.90 0.95 1.00
Recall@10

103

104

Q
PS

106 105 104 103 102

(b) ωℓ/ων

Figure 17: Performance under different ων and ωℓ. In (a), curve i: ων = χ/(δ + χ), ωℓ = δ/(δ + χ);
curve ii modifies χ by Eq. 9 following curve i; curve iii: ων = δ−1

max, ωℓ = χ−1
max; curve iv:

ωℓ/ων = 104; and curve v: ων = 1, ωℓ = δ/χmax.
S Validation of NHQ framework.

We test the universality of our NHQ (Strategy C) by applying the HQ model with “decomposition-
assembly” to different PGs (including HNSW [36], NSG [19], and our NPGkgraph) based on “first
ANNS, then AF” (Strategy B in Appendix A). We also use IVFPQ [28] in “first AF, then ANNS”
(Strategy A in Appendix A) following state-of-the-art implementation [54, 51] because Strategy A
does not support PG (L4 in §1.1). We combine HNSW and NSG with NHQ to form NHQ-HNSW
and NHQ-NSG, respectively. As Fig. 16 shows, NHQ outperforms other strategies on different PGs,
and keeps stable QPS advantage on different datasets; however, the HQ based on Strategy B decline
sharply on dataset with higher dimension (e.g., GloVe). Due to IVFPQ’s limitations, the HQ based
on Strategy A have low accuracy, e.g., Recall@10 < 0.8 on GloVe.

T Speedup Evaluation of PG

Fig. 14 shows the Speedup vs Recall results on two datasets. We can see that the fewer the number of
distance calculations, the larger the QPS.

U Weight Analysis

For NHQ, ων and ωℓ in Eq. 6 are a pair of parameters that regulate the importance of δ(ν(ei), ν(ej))
(abbr. as δ) and χ(ℓ(ei), ℓ(ej)) (abbr. as χ) in Γ (ei, ej) (abbr. as Γ), which impacts the query
performance. In the following, based on experimental observations, we evaluate the different settings’
effects on performance. We only show the results of NHQ-NPGkgraph on SIFT1M, considering
other datasets and methods working off NHQ show similar phenomena.

In general, we treat feature vectors and attributes equally; that is, δ and χ have the same contribution
to Γ . We set ων = χ/(δ + χ) and ωℓ = δ/(δ + χ), so Γ = 2 · δ · χ/(δ + χ) is the harmonic mean
of δ and χ. As Fig. 17(a) (curve i) shows, this setting does not perform well for HQ. We found that
χ = 0 is a common occurrence (two objects possessing the same attributes), and then Γ = 0 no

23

0.80 0.85 0.90 0.95 1.00
Recall@100

101

102

103

Q
PS

NHQ-NPGkgraph Vearch ADBV Milvus Faiss SPTAG NGT

0.80 0.85 0.90 0.95 1.00
Recall@1

101

102

103

104

Q
PS

(a) SIFT1M (k = 1)

0.80 0.85 0.90 0.95 1.00
Recall@100

101

102

103

Q
PS

(b) SIFT1M (k = 100)
Figure 18: QPS vs Recall comparison under different k.

0.80 0.85 0.90 0.95 1.00
Recall@100

101

102

103

Q
PS

NHQ-NPGkgraph Vearch ADBV Milvus Faiss SPTAG NGT

0.80 0.85 0.90 0.95 1.00
Recall@10

102

103

104

Q
PS

(a) SIFT1M (m = 6)

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall@10

102

103

104

Q
PS

(b) SIFT1M (m = 9)
Figure 19: Performance under different attribute dimensions.

matter what value δ is, which contradicts the same contribution of the two. To resolve this, we adjust
χ as

χ =

{
1 χ = 0

χ · c χ ̸= 0, c > 1
, (9)

where c is a given constant, and it holds that c > 1. This alleviates the defect caused by χ = 0,
and it significantly improves the HQ performance (curve ii, c = 100). Nevertheless, a suitable c is
difficult to obtain, so we turn to the other two options to deal with the fact that δ and χ are in different
value spaces. One option is to map both δ and χ to [0, 1] by setting ων = δ−1

max and ωℓ = χ−1
max,

where δmax and χmax are the max value of δ and χ on a given object set S. We further optimize
query performance under this setting (curve iii). However, it needs to compute δmax of S in advance,
which is not easy in a real-world scenario because S is dynamic. The other option is to map χ to δ’s
value space, i.e., ων = 1 and ωℓ = δ/χmax, where χmax = m, m is the dimension of attributes, and
it can be obtained easily. As curve v depicts, this method achieves the best performance in all our
settings. Additionally, we also study a naive setting method, where ων and ωℓ are fixed as constants.
We traverse multiple possible ωℓ/ων values by grid search. Fig. 17(b) illustrates that different ωℓ/ων

leads to a huge difference in HQ performance, and the optimal value falls to 104 (curve iv in Fig.
17(a)), which makes it close to the median of all δ on S . Thus, we chose the setting of curve v for all
other experiments.

V Parameter Sensitivity

In the following, we present additional experiments in order to investigate the sensitivity of NHQ in
more detail by NHQ-NPGkgraph. We vary three parameters that may affect performance: number
of recall results (k), dimension of attributes (m), and selectivity.

Number of recall results (k). In other experiments, we set k = 10 by default. In this experiment, we
evaluate the effect of varying k from 1 (smaller case) to 100 (larger case) on SIFT1M dataset. From
the results in Fig. 18, as the number of results increases, the QPS of different methods degenerates.
Note that the interval between our methods and others enlarges, which shows our methods’ superiority
when more targets need to be recalled. For existing methods, to improve the Recall, we must obtain
numerous candidates (intermediate results that satisfy one constraint). For example, when k = 10
(Fig. 13(a)), the number of candidates reaches 10× ∼ 1000× larger than k, which undermines the
query efficiency. In contrast, our methods directly return the final results without merging.

Dimension of attributes (m). Attribute dimension corresponds to the number of categories of the
attribute in a set of attributes. By default, we set m = 3 for other experiments. In Fig. 19, we evaluate
the performance when m varies for the given dataset. From the results, as the dimension increases,
each method’s query performance decreases by varying degrees. This is because objects matching

24

0.80 0.85 0.90 0.95 1.00
Recall@10

101

102

103

104

Q
PS

NHQ-NPGkgraph NHQ-NPGnsw Vearch ADBV Milvus Faiss SPTAG NGT

0.00 0.25 0.50 0.75 1.00
selectivity

0.96

0.98

1.00

Re
ca

ll@
10

(a) SIFT1M (Recall)

0.00 0.25 0.50 0.75 1.00
selectivity

103

104

105

106

Re
sp

on
se

Ti
m

e
(m

s)

(b) SIFT1M (Response time)
Figure 20: Performance under different selectivity.

Table 5: Experts output by the academic expert finding engine under different query methods (bold
items are correct).

HNSW Vearch NHQ-NPGkgraph

John Collomosse √ John Collomosse √ John Collomosse √

Mayu Iwata × Rahul Duggal √ Rahul Duggal √

Yanhao Zhang × - Hosnieh Sattar √

Takuma Yamaguchi × - Thanh-Toan Do √

Rahul Duggal √ - Gregory Zelinsky √

attribute constraints are harder to find in this case. Note that our method still retains the advantage in
higher dimension.

Selectivity. A larger selectivity means fewer objects match the given attributes constraint, which
increases the difficulty in answering a HQ. In Fig. 20, Recall@10 decreases under a high selectivity
for most methods. However, NHQ-NPGnsw appears to excel when there is large selectivity. One
explanation is that, the construction strategy inserts objects incrementally facilitates linking some
vertices with the same attributes but farther away from the feature vectors. This improves NHQ-
NPGnsw’s ability to get objects with matched attributes, especially such objects are few (high
selectivity). NHQ-NPGkgraph reaches the highest Recall with the least search time for different
selectivity. In addition, Faiss is not shown in Fig. 20(a) because its Recall@10 is less than 0.7.

W Use Case Study

We deployed our HQ method NHQ-NPGkgraph into an academic expert finding system [57] to
provide HQ processing services for academic papers with attributes on the Paper dataset. An
important component in such system is the semantically similar papers retrieval that supports attribute
filtering. Given a user input HQ with a descriptive text embedded as the feature vector and paper’s
some attributes as the structured attribute constraints, expert finding aims to extract the Top-k experts
from Top-m papers that have the semantically similar vectors to the given query text as well as
satisfying the given attribute constraints. Since we extract the experts from the papers returned by
HQ, the results of HQ would directly affect the retrieved experts. We implemented two different HQ
methods and an ANNS algorithm (i.e., HNSW [36]).

Analysis. Tab. 5 shows the Top-5 experts who have published papers on CVPR for a HQ having
the abstract of [12] as the query text and an attribute constraint as CVPR under a given query time.
Our method obtains the best results in comparing methods. HNSW only returns the experts who
are relevant to the query text without considering the CVPR constraint. Although Vearch adds the
CVPR constraints, the experts are insufficient after attribute filtering. However, the query latency
will surge when increasing the number of candidate experts.

Table 6: The connectivity of PG using the NPGkgraph method. The row # CONN shows the number
of connected components in each graph. The row D shows the average out-degree of each graph.

SIFT1M (w. attribute) SIFT1M (w/o attribute) GIST1M (w. attribute) GIST1M (w/o attribute)
CONN 2 2 3 2
D 24 23 19 21

X Connectivity

We evaluate the connectivity of PG on datasets with and without attribute in Tab. 6. The results show
that PG has similar connectivity in both cases. We know that KNNG has poor connectivity due to

25

the cluster characteristics of datasets. PG diversifies the neighbor distribution and connects clusters.
For datasets with attribute, vectors in different clusters may have the same attributes, which helps
connectivity in NHQ.

Y Storage Cost of NHQ and PQ-based methods

Theoretically. NHQ and PQ-based methods have the same attribute storage cost, so we only
analyze their feature vector storage cost. PQ-based methods compress high-dimensional vectors
into the Cartesian product of multiple sub-codebooks. Let a vector x be split into M sub-vectors uj ,
1 ≤ j ≤M , of dimension D∗ = D/M , where D is a multiple of M . The sub-vectors are quantized
separately using M quantizers with K centroids each. We need to store the M ×K centroids, i.e.,
KMD∗ = KD floating-point values (4KD bytes). Each vector is compressed as the code length
L = M log2 K (L/8 bytes). The storage cost of PQ on N vectors is: 4KD +NL/8 bytes. NHQ
builds a graph index for N vectors with at most R neighbors each. We use the adjacency list (a vertex
id with R neighbor ids) to store the index, costing 4(R + 1) bytes. We also store each raw vector
with ZD bytes. The storage cost of NHQ on N vectors is: ZND + 4(R+ 1) bytes.

On SIFT1M dataset, where D = 128, r = 4, PQ sets K = 256, M = 32, costing 32131072 bytes
(31MB). NHQ sets R = 20, costing 512000084 bytes (488MB).

Note that PQ is often combined with IVF, known as IVFPQ, which adds a coarse step to find probing
centroids near the query. This increases the storage cost of PQ-based methods depending on specific
optimizations.

Experimentally. We compare the storage cost of NHQ and PQ-based methods on eight datasets in
Tab. 7.

Table 7: Storage cost of NHQ (NHQ-NPGkgraph and NHQ-NPGnsw) and PQ-based methods
(Faiss, ADBV, and Milvus). The unit of data in the table is MB.

Dataset→ SIFT1M GIST1M GloVe Crawl UQ-V Msong Audio Enron
Faiss 43 57 50 86 45 48 6 14
Milvus 129 441 147 350 177 248 18 108
ADBV 116 346 133 295 151 203 14 78
NHQ-NPGnsw 651 3,748 553 3,053 1,101 1,789 55 532
NHQ-NPGkgraph 568 3,712 494 2,349 1,044 1,681 45 503

We observe that: (1) NHQ costs more than PQ-based methods, consistent with our theoretical
analysis; (2) different PQ-based methods have different costs due to extra structures for optimization;
(3) the same method has different costs on different datasets due to different optimal parameter
configurations.

Notably, PQ-based methods have low accuracy due to compression loss. As shown in Fig. 7, PQ-
based techniques sacrifice accuracy (<0.8 on most datasets) for cost saving. In contrast, NHQ achieves
close to 1 recall with high efficiency. Therefore, we believe that there is room for improvement in the
trade-off between storage and search performance.

26

	Introduction
	Limitations of Existing Methods
	Our Solution and Contributions

	Preliminaries
	NHQ Framework
	Navigable PG Algorithm
	Edge Selection
	Routing
	NPG with Our Edge Selection and Routing

	Experiments
	Experimental Setting
	HQ Performance
	Scalability on Larger Dataset
	Ablation Study

	Discussion
	Conclusion
	Implementation Strategy Analysis for HQ
	Intuition for NHQ framework
	PG Analysis
	Composite Index
	Joint pruning
	Proof for Lemma 1
	Proof for Theorem 1
	Proof for Theorem 2
	Analysis for Current Edge Selection Strategies.
	Proof for Theorem 3
	Analysis for Routing Strategies
	Proof for Theorem 4
	Implementation Details for Two NPG Algorithms
	NPG-Based HQ Methods
	NPG-Based Composite Index
	Joint Pruning Optimization

	Evaluation Setting
	HQ performance
	Index Build Performance
	ANNS performance of NPG
	Validation of NHQ framework.
	Speedup Evaluation of PG
	Weight Analysis
	Parameter Sensitivity
	Use Case Study
	Connectivity
	Storage Cost of NHQ and PQ-based methods

