
Appendix for "Online Constrained Meta-Learning: Provable
Guarantees for Generalization"

A Notation checklist

Table 3: Notation checklist.

Notation Definition

t Round index
i Constraint index (1 ≤ i ≤ m)
Tt Task at round t
D0,t Data distribution of loss function for task Tt

Di,t (1 ≤ i ≤ m) Data distribution of constraint functions for task Tt
Dt = {D0,t,D1,t, . . . ,Dm,t} Data distribution for task Tt

Dtr
0,t Training dataset of loss function for task Tt

Dtr
i,t (1 ≤ i ≤ m) Training dataset of constraint functions for task Tt

Dt = {Dtr
0,t,Dtr

1,t, . . . ,Dtr
m,t} Training dataset for task Tt

Dval
0,t Validation dataset of loss function for task Tt

Dval
i,t (1 ≤ i ≤ m) Validation dataset of constraint functions for task Tt

Dval
t = {Dval

0,t , · · · ,Dval
m,t} Validation dataset for task Tt

|Dtr
0 | Number of data points in Dtr

0,t (same for task Tt)
|Dtr

+ | Number of data points in Dtr
i,t (same for task Tt and any i)

|Dval
0 | Number of data points in Dval

0,t (same for task Tt)
Lval(θ,Dval

0,t ) Loss of θ on Dval
0,t

p(T ) Task distribution
θ∗t Optimal solution parameter for task Tt
θt Task-specific parameter for task Tt

Dist(ϕ, T1:T ) Distance between ϕ and optimal parameters of T1:T
S∗(p(T )) Task dissimilarity of p(T )

λ regularization weight
Alg Within-task algorithm
ϕ / ϕt Meta-parameter
R0,t Optimality gap
Ri,t The i-th constraint violation

R̄0,[1:T ] Ttask-averaged optimality gap (TAOG)
R̄i,[1:T ] Task-averaged constraint violatio (TACV)

B Practical Algorithm and Implementation Details

In Sections 3 and 4, we develop a theoretically guaranteed algorithm with Assumptions 1 and 2. In
many practical machine learning problems, the assumptions may not be satisfied. For example, some
problems have non-convex loss functions ℓi. However, methods designed for convex loss functions,
such as [47, 24], often perform well in non-convex settings. Inspired by these successes, we develop a
practical instantiation of the online constrained meta-learning algorithm and evaluate its performance
in Section 5.

Algorithm 2 states the practical algorithm of online constrained meta-learning and tests the perfor-
mance of the deployed models for the sequentially revealed tasks. Compared with Algorithm 1,
Algorithm 2 considers that (a) the constrained bilevel optimization problem in (4) has no closed-form
solution; (b) the training data Dtr

0,t are limited and fixed for each task, which limits the generalization
of the learned model; (c) since S∗(T1:T ) and S∗(p(T )) cannot be obtained before the task sequence
is revealed, we cannot compute λ as shown in Theorem 1 and Corollary 1. To overcome these
limitations, we propose Algorithm 2 that uses the stochastic optimization steps to optimize the
meta-objective function.

14



Algorithm 2 Practical Algorithm of Online Constrained Meta-Learning
Require: Initial regularization weight λ1 > 0; Initial meta parameter ϕ1.

1: Initialize a empty task buffer BT ← ∅
2: for t = 1, · · · , T do
3: Sample and restore the training datasets Dtr

t from the distributions Dt for task Tt
4: Adapt task-specific parameter as θt = Alg(λt, ϕt,Dtr

t ) and deploy θt for task Tt
5: Test and record the performance of θt for task Tt if running a test for the algorithm
6: Sample and restore the evaluation dataset Dval

0,t from the distributions D0,t

7: Update the task buffer BT ← BT ∪ {Tt}
8: Initialize ϕ

(0)
t+1 = ϕt, λ

(0)
t+1 = λt

9: for n = 1, · · · , Nm do
10: Sample a task Tk from the buffer BT , and pick the datasets Dtr

k and Dval
k

11: Randomly allocate Dtr
k ∪ Dval

k to Dtr+
k and Dval+

k without overlapping
12: Solve θ∗ = Alg(λ(n−1)

t+1 , ϕ
(n−1)
t+1 ,Dtr

k ) defined in (3) to obtain θ∗ and the multipliers µ∗ by
the primal-dual approach [7].

13: Compute g(n) = ∇ϕLval(Alg(λ(n−1)
t+1 , ϕ,Dtr+

k ),Dval+
0,k )|

ϕ=ϕ
(n−1)
t+1

by (6)

14: Compute q(n) = ∇λLval(Alg(λ, ϕ(n−1)
t+1 ,Dtr+

k ),Dval+
0,k )|

λ=λ
(n−1)
t+1

15: ϕ
(n)
t+1 = ϕ

(n−1)
t+1 − η1g

(n) and λ
(n)
t+1 = λ

(n−1)
t+1 − η2q

(n) (or Adam [36])
16: end for
17: ϕt+1 = ϕ

(Nm)
t+1 and λt+1 = λ

(Nm)
t+1

18: end for

In the beginning of Algorithm 2, when a new task Tt is revealed at round t, similar to Algorithm
1, the agent samples the dataset Dtr

t and run θt = Alg(λt, ϕt,Dtr
t ) to quickly adapt θt from the

current meta-parameter ϕt and deploy it to Tt. To test Algorithm 2 in Section 5, line 5 tests and
records the performance of the deployed model on Tt. Next, the evaluation dataset Dval

0,t used in the
meta-objective function (4) is sampled. To optimize the meta-objective function, as shown in lines 7
to 15, we use multiple stochastic gradient descent steps. At step n, the agent randomly samples a
task Tk from all previously revealed tasks and picks the training dataset Dtr

k and evaluation dataset
Dval

k , which is similar to the training data sampling at each step of the SGD. Then, the data included
in Dtr

k ∪ Dval
k are randomly allocated to a new training dataset Dtr+

k and a new evaluation dataset
Dval+

k , and keep |Dtr
k | = |D

tr+
k |, |Dval

k | = |D
val+
k |, and no overlapping between Dtr+

k and Dval+
k .

As we expect the task-specific adaptation Alg(λt, ϕt,Dtr
t ) can perform well for any sampled dataset

with the data number |Dtr
t |, the dataset reallocation enables the agent to see a different training dataset

Dtr+
k , when the task Tk is repeatedly sampled at different step n (line 10), and thus improves the

generalization of the model. When the task Tk is sampled at step n, the current stochastic gradient
descent step focuses on the descent on Lval(Alg(λ, ϕ,Dtr+

k ),Dval+
0,k ). According to the constrained

bilevel optimization method shown in [55], we have

∇ϕLval(Alg(λ, ϕ,Dtr+
k ),Dval+

0,k ) = ∇⊤
ϕAlg(λ, ϕ,Dtr+

k )∇θLval(θ,Dval+
0,k )|θ=θ∗ (6)

where ∇ϕAlg(λ, ϕ,Dtr+
k ) = −M(ϕ, θ∗, µ∗)−1N(ϕ, θ∗, µ∗),

M ≜


∇2

θL (∇θp1)
⊤ · · · (∇θpm)

⊤

µ∗
1∇θp1 p1 · · · 0

...
...

. . . 0
µ∗
m∇θpm 0 · · · pm

 and N ≜
[
∇2

θϕL
⊤, 0, · · · , 0

]⊤
.

Here, θ∗ is the optimal solution of Alg(λ, ϕ,Dtr+
k ), pi(θ) ≜ 1

|Dtr
i,t|
∑

z∈Dtr
i,t

ℓi(θ, z) − ci,t,

L(ϕ, θ, µ∗) ≜ 1
|Dtr

0,t|
∑

z∈Dtr
0,t

ℓ0(θ, z) +
λ
2 ∥θ − ϕ∥2 +

∑m
i=1 µ

∗
i (

1
|Dtr

i,t|
∑

z∈Dtr
i,t

ℓi(θ, z) − ci,t) is

the Lagrangian of the problem Alg(λ, ϕ,Dtr+
k ), and µ∗ is its Lagrangian multiplier. In the gradient

computation (6), the optimal solution θ∗ and the multiplier µ∗ can be solved by the convex optimiza-
tion algorithm [10, 6]. Then, in line 14, the gradient in (6) is applied to the gradient descent step with a
learning rate η1. After Nm steps of the stochastic gradient descent (or Adam [36]), the meta-parameter
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ϕt+1 for the next revealed task is updated. Similarly, the regularization weight λt can be optimized
by the gradient descent (or Adam [36]), where the gradient ∇λLval(Alg(λ, ϕ,Dtr+

k ),Dval+
0,k ) is

computed by replacing each ∇ϕ by∇λ and replacing∇θϕ by∇θλ in (6).

C Experimental Supplement

All experiments are executed on a computer with a 4.10 GHz Intel Core i5 CPU and an RTX 3080
GPU.

C.1 Meta imitation learning

Problem formulation. Imitation learning [8] has been widely studied as a way to transfer human
skills to robots. In [30, 29], imitation learning is formulated by kernelized movement primitives, and
takes into account nonlinear hard constraints and obstacle avoidance. In particular, the states of the
robot are modeled as the linear combination of basis functions; the demonstrations from humans are
modeled by a Gaussian mixture model (GMM) where the parameters follow a Gaussian distribution.
The approach minimizes the divergence between the distributions of the robot state model and the
demonstrations, while the hard constraints are satisfied.

In this experiment, instead of the linear combination of basis functions, we model the states of
the robot by a neural network. In particular, the robot’s state ξ(w, t), including the joint position
q(w, t) ∈ RO and velocity q̇(w, t), is parameterized by w and is modeled as

ξ(w, t) =

[
q(w, t)
q̇(w, t)

]
,

where q(w, t) is a neural network and takes t as the input and the location q(w, t) as the output. The
demonstrations include H trajectories, where N time-state pairs are contained in each trajectory, and
are denoted as {{tn,h, ξ̂n,h}Nn=1}Hh=1 and are modeled by a GMM. Then, each demonstration state ξ̂n
associated with tn is described by a conditional probability distribution with mean µ̂n and covariance
Σ̂n, i.e., ξ̂n | tn ∼ N (µ̂n, Σ̂n), where µ̂n and Σ̂n can be computed by the GMM. Following the
problem formulation in [30, 29], an imitation learning task is to solve the following constrained
optimization problem:

min
w

E
t∈[t0,tN ]

[
1

2
(ξ(w, t)− µ̂t)

⊤Σ̂−1
t (ξ(w, t)− µ̂t)

]
s.t. gi(ξ(w, t)) ≤ ci, ∀t ∈ [t0, tN ], i = 1, . . . ,m,

(7)

where gi is the i-th state constraint and the total constraint number is m; µ̂t and Σ̂t are the mean
and variance of the demonstration state ξ̂(t), i.e., ξ̂ | t ∼ N (µ̂t, Σ̂t). Here, the training dataset
{tn, µ̂n, Σ̂n}Nn=1 is provided by the GMM. Note that the given demonstrations are collected under a
no-collision environment and thus may not be able to avoid the collision.

Consider that a set of imitation learning tasks are revealed sequentially. In each round t, a new task
of Problem (7) is revealed, and its data Dtr

t = {tn, µ̂n, Σ̂n}Nn=1 and the collision area denoted by
{gi}mi=1 and {ci}mi=1 are given. In round T , a model wT is required to be updated and deployed by
the robot. We apply the proposed constrained meta-learning approach to solving this problem. In
particular, we solve the following constrained bilevel optimization problem at round T :

ϕT = argmin
ϕ

T−1∑
t=1

L(Alg(λ, ϕ,Dtr
t ),Dval

t ),

with

Alg(λ, ϕ,Dtr
t ) = argmin

w
L(w,Dtr

t ) +
λ

2
∥w − ϕ∥2

s.t.
1

N

∑
n=[N ]

gi(ξ(w, tn)) ≤ ci, i = 1, . . . ,m,
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where L(w,Dtr) is the loss function of the model parameter w on a dataset Dtr = {tn, µ̂n, Σ̂n}Nn=1

and L(w,Dtr) = 1
N

∑
n=[N ]

1
2 (ξ(w, tn)− µ̂n)

⊤Σ̂−1
n (ξ(w, tn)− µ̂n). After ϕT is updated, for a new

task TT , the task-specific model can be computed by wT = Alg(λ, ϕT ,Dtr
T ).

Few-shot imitation learning. We use the demonstration data given by [30]. In different rounds, the
robot needs to imitate the demonstration, and move and write the capital letter "A" with different
sizes, angles, and locations, i.e., the different demonstration dataset Dtr

t = {tn, µ̂n, Σ̂n}Nn=1. The
sizes, angles, and locations for the sequential tasks are sampled from a Gaussian distribution. The
robot also needs to avoid a circle collision area, which defines m, g1, and c1 in (7) as m = 1,
c1 = 0.5 and g1(x) = σ(

√
(x1 − d1)2 + (x2 − d2)2 − r), where σ(x) is a barrier function and

= 1
β log(1 + exp(βx)), r is the radius of the collision area and r = 6, and (d1, d2) is the center of

the collision area and is sampled from the Gaussian distribution N (0, 1) for each task. The full
demonstrations for each imitation learning task contain 400 data points, but the robot only can obtain
20 data points in each round.

We model the position of the robot by a four-layer neural network with 128 which consists of an
input layer of size 8, followed by 3 hidden layers of size 128 with the ReLU nonlinearities and an
output layer of size 2. The neural network takes {t, t2, t3, t4, sin(t), cos(2t), sin(2t), cos(2t)} as the
inputs and q(w, t) as the outputs.

Improve full-shot imitation learning by meta-learning. In this experiment, the collision area is
defined by g1(x) = σ(−

√
(x1 − d1)2 + (x2 − d2)2 + r), where r = 2 and (d1, d2) is is sampled

from the Gaussian distribution N (0, 1) for each task. For each task, the robot can access the full
shot of demonstrations including 400 data points. Other settings are exactly the same as the few-shot
imitation learning.

C.2 Few-shot image classification with robustness

Problem formulation. Similar to the problem formulation in [12], we formulate the problem of
robust learning for a single image classification task Tt as:

θ∗t = argmin
θ∈Θ

Ez∼Dt
[ℓ0(θ, z)]

s.t. Ez∼Dt,[P ]
[ℓ(θ, z)]− (1 + α)Ez∼Dt

[ℓ(θ, z)] ≤ 0.

where 0 < α < 1 is the robustness tolerance parameter, and ℓ is the loss function. Here, Dt is the
distribution of the original data, andDt,[P ] is the distribution of the perturbed data, which is generated
by the Projected Gradient Descent (PGD) method on Dt. This formulation minimizes the loss on the
original data while maintaining the robustness, i.e., the loss on the perturbed data is constrained in an
acceptable range.

In the problem of few-shot learning with robustness, only N -shot of training data is given, we expect
the model to have both high accuracy on original test data and high accuracy on perturbed test data.
We apply the proposed constrained meta-learning approach to solving this problem. In particular, we
solve the following constrained bilevel optimization problem at round T :

ϕT = argmin
ϕ

T−1∑
t=1

L(Alg(λ, ϕ,Dtr
t ),Dval

t ),

with
Alg(λ, ϕ,Dtr

t ) = argmin
θ
L(θ,Dtr

t ) +
λ

2
∥θ − ϕ∥2

s.t. L(θ,Dtr
t,[P ])− (1 + α)L(θ,Dtr

t ) ≤ 0.

Here, L(θ,Dtr) is the loss function of the model parameter θ on a dataset Dtr. The dataset Dtr
t is

the N -shot dataset for the meta-training (the support dataset), the dataset Dtr
t,[P ] is also N -shot and

generated by the PGD on Dtr
t , and Dval

t is the dataset for the meta-validation (the query dataset).
After ϕT is updated, for a new task TT , the task-specific model can be computed by Alg(λ, ϕT ,Dtr

T ).
In the experiment, α is selected as 0.3, λ is selected as λ = 1.0 for 5-shot learning, λ = 8.0 for
1-shot learning.

17



Experiments setting. Experiments are conducted on two datasets, CUB-200-2011 (referred to as
CUB) [53] and mini-ImageNet [52]. We used the same class splits used in [27, 48, 57]. In particular,
the mini-ImageNet dataset holds 64 classes for training data, 16 classes for validation data, and the
remaining 20 classes as a test set; the CUB dataset holds 100 classes for training data, 50 classes for
validation data, and the remaining 50 classes as a test set. The input images are resized to 84 × 84 for
both two datasets and applied data augmentation following [57]. A four-layer convolutional neural
network (Conv-4) is used as the backbone, which consists of four blocks. Each of which consists of
a convolution layer with 64 kernels of size 3 × 3, stride 1, and zero padding, a batch normalization
layer, a ReLU activation function, and a max-pooling layer with the pooling size 2 × 2. After the
convolutional layers, a fully-connected linear layer with 5 neurons is used as a classifier to output the
prediction for the input image.

During the online meta-training, in each round, we sample a task only from the training data classes
and regard it as the revealed task, i.e., sample a 5-way k-shot learning task (5 classes and k images for
each class). There are 200 rounds of online learning, and thus we sample 200 tasks from the training
data. In the meta-test for Tables 2 and 4, we use the test dataset. From the test classes, we sample 600
tasks, i.e., 600 times of 5-way k-shot data sampling from the test classes, which means that the image
classes in the 600 meta-test tasks are unseen in training tasks.

The optimizer Adam [36] with a learning rate of 0.001 is used for the optimization. The cross-entropy
is selected as the loss function. The adversarial attack on the query set is performed by the PGD
attack with a perturbation size ϵ = 2/255 and it takes 7 iterative steps with the step size of 2.5ϵ. To
guarantee a fair comparison, we keep all the above setting for all methods, including (i) MAML [23]
with constraint penalty (CP); (ii) ProtoNet [49] with CP; (iii) BOIL [44] with CP; (iv) MAML with
MOML [57]; (v) ProtoNet with MOML; (vi) BOIL with MOML; (vii) our constrained meta-learning
approach.

Supplementary results. Table 4 and Fig. 5 show the test result on the dataset CUB. From the
results, we can get similar conclusions to the experimental results on dataset mini-ImageNet. It is
shown in Table 4 that our method significantly improves the PGD accuracy and the B-score than the
benchmarks and keeps the clean accuracy comparable. Fig. 5 shows that our method outperforms the
benchmarks in terms of both learning speed and test accuracy.

Table 4: Clean accuracy (abbreviated as "Clean Acc.") and PGD accuracy (abbreviated as "PGD
Acc.") on the CUB dataset for 5-way 5-shot and 5-way 1-shot learning.

Setting Method Clean Acc. PGD Acc. B-score

1-shot

MAML + CP 49.60 ± 0.81 36.42 ± 0.49 41.89 ± 0.84
MAML + MOML 48.66 ± 0.87 38.37 ± 0.90 42.75 ± 0.89
ProtoNet + CP 48.04 ± 0.91 28.53 ± 0.85 35.42 ± 0.90
ProtoNet + MOML 42.26 ± 0.89 32.19 ± 0.82 36.24 ± 0.85
BOIL + CP 54.29 ± 0.83 33.65 ± 0.67 41.34 ± 0.71
BOIL + MOML 52.15 ± 0.93 40.44 ± 0.94 45.55 ± 0.94
CML (ours) 50.45 ± 0.73 41.91 ± 0.83 45.84 ± 0.76

5-shot

MAML + CP 68.50 ± 0.69 52.96 ± 0.87 59.63 ± 0.77
MAML + MOML 67.57 ± 0.78 55.26 ± 0.87 60.68 ± 0.83
ProtoNet + CP 72.51 ± 0.68 52.61 ± 0.77 60.81 ± 0.72
ProtoNet + MOML 71.10 ± 0.74 56.11 ± 0.87 62.73 ± 0.76
BOIL + CP 76.25 ± 0.60 44.86 ± 0.81 56.28 ± 0.73
BOIL + MOML 71.03 ± 0.74 56.05 ± 0.84 62.65 ± 0.81
CML (ours) 72.05 ± 0.73 60.16 ± 0.83 66.01 ± 0.76
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Figure 5: Test accuracy v.s. training task index on dataset CUB (5-way, 5-shot). Left: Clean accuracy;
Middle: PGD accuracy; Right: B-score.

Analysis and Proof

D Intermediate Results

In this section, we list several results that will be helpful in proofs of our main results.

D.1 Sensitivity analysis for optimization

Consider that an optimization problem P (ϵ) which is parameterized by ϵ:

x∗(ϵ) = argmin
x

g(x, ϵ) s.t. hi (x, ϵ) ≤ 0, i ∈ I ≜ {1, . . . ,m}.

Suppose that g is twice continuously differentiable and hi is twice continuously differentiable for all
i ∈ I . We define the Lagrangian as

L(x, µ, ϵ) ≜ g(x, ϵ) +
∑m

i=1
µihi(x, ϵ),

where µi are Lagrange multipliers and µ ≥ 0. Suppose that the optimal solution x∗(ϵ) is unique
for problem P (ϵ), we define the set I(ϵ) ≜ {i ∈ I | hi(x

∗(ϵ), ϵ) = 0} and IC(ϵ) ≜ {i ∈ I |
hi(x

∗(ϵ), ϵ) < 0}.
Lemma 1 (Modified from [55],[22]). Suppose that for all ϵ, the function g(x, ϵ) is strongly-convex
w.r.t. x; hi(x, ϵ) is convex w.r.t. x for each i ∈ I; the LICQ holds for P (ϵ). Then, the following
properties hold for any ϵ.

(i) The global minimum x∗(ϵ) of P (ϵ) exists and is unique. The Karush-Kuhn-Tucker (KKT) conditions
hold at x∗(ϵ) with unique Lagrangian multipliers µ(ϵ).

(ii) The vector function z(ϵ) ≜ [x∗(ϵ)⊤, µ(ϵ)⊤]⊤ is continuous and locally Lipschitz. The directional
derivative of z(ϵ) on any direction exists, and the directional derivative∇dx

∗(ϵ) is computed as[
∇dx

∗(ϵ)
∇dµI(ϵ,d)(ϵ)

]
= −M−1

D (ϵ, d)ND(ϵ, d)d

where µI(ϵ,d) is a vector function that contain all µi with i ∈ I(ϵ, d) ⊆ I , and

MD(ϵ, d) ≜

[
∇2

xL ∇xh
⊤
I(ϵ,d)

∇xhI(ϵ,d) 0

]
(x∗(ϵ), µ(ϵ), ϵ)

is nonsingular and
ND(ϵ, d) ≜ [∇2

ϵxL⊤,∇ϵh
⊤
I(ϵ,d)]

⊤(x∗(ϵ), µ(ϵ), ϵ).

Here, hI(ϵ,d) is a vector function that contain all hi with i ∈ I(ϵ, d) ⊆ I .

(iii) If x∗ is differentiable at ϵ, then the gradient is computed as[
∇ϵx

∗(ϵ)
∇ϵµI(ϵ)(ϵ)

]
= −M−1

+ (ϵ)N+(ϵ)
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and
∇ϵµIC(ϵ)(ϵ) = 0,

where µI(ϵ) is a vector function that contain all µi with i ∈ I(ϵ); µIC(ϵ) is a vector function that
contain all µi with i ∈ IC(ϵ);

M+(ϵ) ≜

[
∇2

xL ∇xh
⊤
I(ϵ)

∇xhI(ϵ) 0

]
(x∗(ϵ), µ(ϵ), ϵ)

is nonsingular and
N+(ϵ) ≜ [∇2

ϵxL⊤,∇ϵh
⊤
I(ϵ)]

⊤(x∗(ϵ), µ(ϵ), ϵ).

Here, hI(ϵ) is a vector function that contain all hi with i ∈ I(ϵ) ⊆ I .

D.2 Sample average approximation for stochastic optimization

Consider the stochastic optimization problem with compound functions:
min
x∈X

H0(x) = h0 (x,Ef1(x, ξ), . . . ,Efl(x, ξ)) , (8)

where ξ ∈ Ξ ⊆ Rc is a random variable defined on some probability space; the function fi(x, z) :
X × Ξ→ R, i = 1, . . . , l, and h0(x, y) : X × Rl → R.

The sample average approximation for the stochastic optimization problem (8) is:

min
x∈X

Hn
0 (x, ξn) = h0

(
x, (1/n)

n∑
k=1

f1 (x, ξk) , . . . , (1/n)

n∑
k=1

fl (x, ξk)

)
, (9)

where each ξk is i.i.d sampled from its probability distribution. Let H∗, H∗
n be optimal values of

problems (8) and (9), respectively; X∗, X∗
n be the sets of their optimal solutions; and

X∗
ϵ = {x ∈ X : H0(x) ≤ H∗ + ϵ}

X∗
nϵ = {x ∈ X : Hn

0 (x, ξn) ≤ H∗
n + ϵ}

be the sets of ϵ-approximate solutions in problems (8) and (9), respectively, and ϵ > 0. Let
∆(X∗

n, X
∗) = sup

x′∈X∗
n

inf
x∈X∗

∥x′ − x∥, ∆(X∗
ϵn, X

∗
ϵ ) = sup

x′∈X∗
ϵn

inf
x∈X∗

ϵ

∥x′ − x∥.

The following lemma states the rate of convergence of the sample average approximation method for
compound stochastic optimization.
Lemma 2 (Simplified from Theorem 4.1 of [19]). Suppose that X ⊂ Rd is a compact set with
diameter DX and the following assumptions are satisfied.

(i) The function family {fj(·, z)}z∈Ξ is uniformly bounded by M for all j, i.e.,
supx∈X,z∈Ξ |fj(x, z)| ≤ M ; the function fj(·, z) is Lipschitz continuous with constant Lc for
all j and all z ∈ Ξ.

(ii) The function h0(x, y) satisfies that, supx∈X,z∈Ξ |h0(x, 0)| < +∞, and
|h (x, y′, z)− h (x, y′′, z)| ≤ Lh ∥y′ − y′′∥ for all y′, y′′ ∈ Rl and all x ∈ X .

Then, the following estimates hold ture:

E |H∗
n −H∗| ≤ C

nα

and
E∆(X∗

ϵn, X
∗
ϵ ) ≤

2CDX

ϵnα
.

where C = 2lNfLh, Nf =
√
d(LcDX +M/

√
(1− 2α)e), and α can be arbitrarily determined in

α ∈ (0, 1/2).
Remark 2. In Lemma 2, we pick that α = 1

2 −
1

2 lnn , we have that α ∈ (0, 1/2) with n > 1, then we
have that

E |H∗
n −H∗| ≤ 2lLh

√
d(LcDX +M

√
lnn)√

n
(10)

and

E∆(X∗
ϵn, X

∗
ϵ ) ≤

4DX lLh

√
d(LcDX +M

√
lnn)

ϵ
√
n

. (11)
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D.3 Rademacher average

For a set of points (z1, . . . , zn) = zn in Ξ and a sequence of functions {f (·, zi) : X → R}ni=1
define Rademacher average Rn (f, z

n) as

Rn (f, z
n) ≜ Eσ sup

x∈X

∣∣∣∣∣ 1n
n∑

i=1

σif (x, zi)

∣∣∣∣∣
where σi are i.i.d random numbers such that σi ∈ {±1} with probabilities 1/2;Eσ denotes
mathematical expectation over σ = (σ1, . . . , σn). Rademacher average of a family of functions
{f(·, z) : X → R}z∈Ξ is defined as

Rn(f,Ξ) ≜ sup
zn∼Ξ

Rn (f, z
n) .

The following results and their proofs are shown in Theorem 3.1 of [9] and Theorem 3.2 of [19].
Lemma 3. For a random function f(·, ξ) : X → R and i.i.d random variables (ξ1, . . . , ξn) = ξn

sampled from Ξ. Then, we have

Eξn∼Ξ

[
sup
x∈X

∣∣∣∣∣ 1n
n∑

i=1

f (x, ξi)− Eξ∈Ξf(x, ξ)

∣∣∣∣∣
]
≤ 2Rn(f,Ξ).

With probability at least 1− δ,

sup
x∈X

∣∣∣∣∣ 1n
n∑

i=1

f (x, ξ)− Ez∈Ξf(x, z)

∣∣∣∣∣ ≤ 2Rn(f,Ξ) +

√
2 ln 1

δ

n
.

The following lemma states the Rademacher average of Lipschitz functions f (·, zi).
Lemma 4 (Simplified from Theorem B.2 of [19]). Let compact set X ⊂ Rd be contained in
a cube with edge of length Dl, and functions {f (·, zi) : X → R}ni=1 be uniformly bounded by
constant M (zi) and Lipschitz continuous on X with constants L > 0, i.e., |f (x, zi)| ≤ M and
|f (x, zi)− f (y, zi)| ≤ L∥x− y∥ for any x, y ∈ X and zi. Then, for any zn,

Rn (f, z
n) ≤

√
d(LD +M

√
lnn)/

√
n. (12)

Remark 3. From the proofs of Lemmas 3 and 4 shown in [9, 19], it is easy to extend Lemmas 3 and
4 to the vector function f(·, zi) : X → Rk, i.e.,

Rn (f, z
n) ≜ Eσ sup

x∈X

∥∥∥∥∥ 1n
n∑

i=1

σif (x, zi)

∥∥∥∥∥ ;
if ∥f (x, zi)∥ ≤M and ∥f (x, zi)− f (y, zi)∥ ≤ L∥x− y∥ for any x, y ∈ X and zi.

Eξn∼Ξ

[
sup
x∈X

∥∥∥∥∥ 1n
n∑

i=1

f (x, ξi)− Eξ∈Ξf(x, ξ)

∥∥∥∥∥
]
≤ 2Rn(f,Ξ), (13)

where Rn(f,Ξ) =
√
d(LD +M

√
lnn)/

√
n. With probability at least 1− δ,

sup
x∈X

∥∥∥∥∥ 1n
n∑

i=1

f (x, ξ)− Ez∈Ξf(x, z)

∥∥∥∥∥ ≤ 2Rn(f,Ξ)+

√
2 ln 1

δ

n
≤ 2
√
d(LD+M

√
lnn)/

√
n+

√
2 ln 1

δ

n
.

(14)

Here, we show and prove a further result.
Lemma 5. For the function f in Remark 3, we have

Eξn∼Ξ

sup
x∈X

∥∥∥∥∥ 1n
n∑

i=1

f (x, ξi)− Eξ∈Ξf(x, ξ)

∥∥∥∥∥
2
 ≤ 4Rn(f,Ξ)

2 +
6Rn(f,Ξ)√

n
+

2

n
.
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Proof. When the random variable Y > 0, we compute the expectation as

E(Y ) =

∫ ∞

0

(1− FY (y)) dy,

where FY (y) is the cumulative distribution function. Let Y =

supx∈X

∥∥ 1
n

∑n
i=1 f (x, ξi)− Eξ∈Ξf(x, ξ)

∥∥2. From (14), we have that,

FY

(2Rn(f,Ξ) +

√
2 ln 1

δ

n
)2

 = P

Y ≤ (2Rn(f,Ξ) +

√
2 ln 1

δ

n
)2

 ≥ 1− δ,

i.e.,

1− FY (y) ≤ exp(−
n(
√
y − 2Rn(f,Ξ))

2

2
).

Moreover, when
√
y ≤ 2Rn(f,Ξ), we have

1− FY (y) ≤ 1.

Then,

E(Y ) ≤
∫ 4Rn(f,Ξ)2

0

1dy +

∫ ∞

4Rn(f,Ξ)2
exp(−

n(
√
y − 2Rn(f,Ξ))

2

2
)dy

=4Rn(f,Ξ)
2 +

∫ ∞

0

exp(−nt2

2
)d(t+ 2Rn(f,Ξ))

2

=4Rn(f,Ξ)
2 +

∫ ∞

0

4Rn(f,Ξ) exp(−
nt2

2
)dt+

∫ ∞

0

2t exp(−nt2

2
)dt

=4Rn(f,Ξ)
2 + 4Rn(f,Ξ)

√
π

2n
+

2

n

≤4Rn(f,Ξ)
2 + 6Rn(f,Ξ)

√
1

n
+

2

n
.

Then, from (12), we have

Eξn∼Ξ

sup
x∈X

∥∥∥∥∥ 1n
n∑

i=1

f (x, ξi)− Eξ∈Ξf(x, ξ)

∥∥∥∥∥
2
 ≤

√
d(LDl +M

√
lnn)(4LDl

√
d+ 4M

√
d lnn+ 6)

n
,

where 2/n is omitted.

D.4 Non-convex online learning

Here, we provide a review of the online algorithms we use. Paper [50] studies the problem of online
learning with non-convex losses and proposes the Follow-the-Perturbed-Leader (FTPL) algorithm.

At each round t, the FTPL algorithm minimizes a perturbed summation of the loss functions revealed
from round 1 to t − 1. In particular, at each round t, the parameter xt is obtained by following
optimization problem:

xt+1 = argmin
x

t∑
t′=1

ft′(x)− σ⊤
t ϕ,

where the random perturbed vector σt ∈ Rd is i.i.d sampled by {σt,j}dj=1 ∼ Exp(η) with a contant
η > 0 at each t.
Lemma 6 (Simplified from Theorem 1 of [50]). Let Dl be the ℓ∞ diameter of X . Suppose the losses
encountered by the learner are L-Lipschitz w.r.t ℓ1 norm. For any fixed η, the predictions of FTPL
satisfy the following regret bound:

E

[
1

T

T∑
t=1

ft (xt)−
1

T
inf
x∈X

T∑
t=1

ft(x)

]
≤ O

(
ηd2DlL

2 +
dDl

ηT

)
.
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E Proofs of Propositions 1 and 2

We first define some notations used in proofs of our results. For data distributions D =
{D0,D1, . . . ,Dm} and the training datasets {Dtr

1 ,Dtr
0 , . . . ,Dtr

m}, we denote D+ ≜ {D1, . . . ,Dm}
and Dtr

+ ≜ {Dtr
1 , . . . ,Dtr

m}, which are data distributions and training datasets for constraint sat-
isfaction. Similarly, for data distributions Dt = {D0,t,D1,t, . . . ,Dm,t} and the training datasets
{Dtr

1,t,Dtr
0,t, . . . ,Dtr

m,t}, denote D+,t ≜ {D1,t, . . . ,Dm,t} and Dtr
+,t ≜ {Dtr

1,t, . . . ,Dtr
m,t}. Recall the

notations defined in Section 1, we useDtr
i ∼ Di to represent that all elements of datasetsDtr

i are i.i.d
sampled from the distribution Di, Dtr ∼ D to represent Dtr

i ∼ Di for all 0 ≤ i ≤ m, and Dtr
+ ∼ D+

to represent Dtr
i ∼ Di for all 1 ≤ i ≤ m. Similar for Dtr

i,t ∼ Di,t and Dtr
+,t ∼ D+,t

Denote θ∗ as the optimal solution of problem

min
θ∈Θ

Ez∼D0
[ℓ0(θ, z)]

s.t. Ez∼Di
[ℓi(θ, z)] ≤ ci, i = 1, . . . ,m.

Denote θh(D0,D+) as the optimal solution of the optimization problem

min
θ∈Θ

Ez∼D0
[ℓ0(θ, z)] +

λ

2
∥θ − h∥2

s.t. Ez∼Di
[ℓi(θ, z)] ≤ ci, i = 1, . . . ,m.

(15)

Denote θh(D0,Dtr
+ ) as the optimal solution of the optimization problem

min
θ∈Θ

Ez∼D0
[ℓ0(θ, z)] +

λ

2
∥θ − h∥2

s.t.
1

|Dtr
i |

∑
z∈Dtr

i

ℓi(θ, z) ≤ ci, i = 1, . . . ,m.
(16)

Denote θh(Dtr
0 ,D+) as the optimal solution of the optimization problem

min
θ∈Θ

1

|Dtr
0 |

∑
z∈Dtr

0

ℓ0(θ, z) +
λ

2
∥θ − h∥2

s.t. Ez∼Di [ℓi(θ, z)] ≤ ci, i = 1, . . . ,m.

(17)

Denote θh(Dtr
0 ,Dtr

+ ) = Alg(λ, h,Dtr) as the optimal solution of the optimization problem

min
θ∈Θ

1

|Dtr
0 |

∑
z∈Dtr

0

ℓ0(θ, z) +
λ

2
∥θ − h∥2

s.t.
1

|Dtr
i |

∑
z∈Dtr

i

ℓi(θ, z) ≤ ci, i = 1, . . . ,m.

(18)

Define the feasible set in Problems (15) and (17) as K∗ ≜ {θ | Ez∼Di
[ℓi(θ, z)] ≤ ci, i = 1, . . . ,m},

and define the feasible set in Problems (16) and (18) as Ktr ≜ {θ | 1
|Dtr

i |
∑

z∈Dtr
i
ℓi(θ, z) ≤ ci, i =

1, . . . ,m}.
Define some functions for the following lemmas and the proof of Propositions 1 and 2.

LD0
(θ) ≜ Ez∼D0

[ℓ0(θ, z)] ,

LDtr
0
(θ) ≜

1

|Dtr
0 |

∑
z∈Dtr

0

ℓ0(θ, z),

LD0,h(θ) ≜ LD0(θ) +
λ

2
∥θ − h∥2,

LDtr
0 ,h(θ) ≜ LDtr

0
(θ) +

λ

2
∥θ − h∥2,

23



CDi(θ) ≜ Ez∼Di [ℓi(θ, z)] ,

CDtr
i
(θ) ≜

1

|Dtr
i |

∑
z∈Dtr

i

ℓi(θ, z).

To simplify the notation, we restate Assumptions 1 and 2 for a single constrained learning task as
Assumptions 3 and 4.

Assumption 3 (Constraint qualifications). (i) For the data distributions D and training datasets Dtr

are sampled from D, with probability 1, the feasible sets K∗ in (15) and Ktr in (18) are bounded in a
compact set with diameter B.

(ii) For the data distributions D, the Slater’s condition (SC) holds for Problem (15) with the margin
C > 0. For datasets Dtr sampled from D, with probability 1, the SC holds for Problem (18) with C.

(iii) For the data distributions D, the linear independence constraint qualification (LICQ) holds for
Problem (15).

Assumption 4 (Function properties). (i) For any z ∈ Z , the loss function ℓ0(·, z) and the constraint
functions ℓ1(·, z), · · · , ℓm(·, z) are twice continuously differentiable.

(ii) For any z ∈ Z , ℓ0(·, z) is L0-Lipschitz, i.e., ∥ℓ0(w, z) − ℓ0(u, z)∥ ≤ L0∥w − u∥ for any
w, u ∈ Rd.

(iii) For any z ∈ Z , ℓ0(·, z) is ρ-smooth, i.e., ∥∇ℓ0(w, z) − ∇ℓ0(u, z)∥ ≤ ρ∥w − u∥ for any
w, u ∈ Rd.

(iv) For any z ∈ Z and 1 ≤ i ≤ m, ℓi(·, z) is Lc-Lipschitz, i.e., ∥ℓi(w, z)− ℓi(u, z)∥ ≤ Lc∥w − u∥
for any w, u ∈ Rd.

(v) For any z ∈ Z and 0 ≤ i ≤ m, ℓi(·, z) is convex.

(vi) For any z ∈ Z , and 1 ≤ i ≤ m, ℓi(w, z)− ci are bounded by M .

We introduce some lemmas required in the proof of Propositions 1 and 2.

Lemma 7. Suppose that the vector function θ : [a, b] → Rd is Lipschitz on [a, b] and the left
derivative∇−θ and the right derivative∇+θ of θ always exists. Then, for any ϵ′, ϵ′′ ∈ [a, b].

∥θ(ϵ′)− θ(ϵ′′)∥ ≤ supϵ∈[0,1]{max (∥∇−θ(ϵ)∥, ∥∇+θ(ϵ)∥)}∥ϵ′ − ϵ′′∥.

Proof. Assume that there exists ϵ′, ϵ′′ ∈ [a, b],

∥θ(ϵ′)− θ(ϵ′′)∥ = supϵ∈[a,b]{max (∥∇−θ(ϵ)∥, ∥∇+θ(ϵ)∥)}∥ϵ′ − ϵ′′∥+ c

where c > 0, then
n∑

k=0

∥θ(ϵk+1)−θ(ϵk)∥ ≥ ∥θ(ϵ′′)−θ(ϵ′)∥ = supϵ∈[a,b]{max (∥∇−θ(ϵ)∥, ∥∇+θ(ϵ)∥)}∥ϵ′−ϵ′′∥+c,

where ϵ0 = ϵ′ < · · · < ϵk < ϵk+1 < · · · < ϵn = ϵ′′. Then, for the largest Lipschitz Lk con-
stant on [ϵk, ϵk+1], there must have Lk ≥ supϵ∈[0,1]{max (∥∇−θ(ϵ)∥, ∥∇+θ(ϵ)∥)} + c

∥ϵ′−ϵ′′∥ .
For a sufficient large n, from the definition of the left and right derivative, we have Lk ≤
max (∥∇−θk(ϵ)∥, ∥∇+θ(ϵk)∥) + δ for arbitrarily small δ > 0, which contradicts that Lk ≥
supϵ∈[0,1]{max (∥∇−θ(ϵ)∥, ∥∇+θ(ϵ)∥)}+ c

∥ϵ′−ϵ′′∥ . Therefore,

∥θ(ϵ′)− θ(ϵ′′)∥ ≤ supϵ∈[0,1]{max (∥∇−θ(ϵ)∥, ∥∇+θ(ϵ)∥)}∥ϵ′ − ϵ′′∥.

Lemma 8. Consider an optimization problem

min g(x) s.t. hi(x) ≤ 0, i ∈ {1, . . . ,m}. (19)

Suppose that the functions g and h1, · · · , hm are convex; the Slater’s condition holds for Problem
(19) with the margin C > 0; the constraint set K = {x | hi(x) ≤ 0, i ∈ {1, . . . ,m} is bounded with
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the diameter B; the function g is Lipschitz continuous with Lipschitz constant L0. Then, Problem
(19) is equivalent to the following problem:

min g(x) + L∗
m∑
i=1

max {0, hi(x)}, (20)

where L∗ = L0B/C.

Proof. Since the optimization problem (19) is convex and the Slater’s condition holds, then the KKT
condition holds at the optimal solution x∗ with the Lagrangian multiplier µ∗, and the strong duality
holds.

(a) We first show that Problem (19) is equivalent to Problem (20), if L∗ is selected as L∗ ≥
maxi {u∗

i }.
Let x∗ be an optimal solution solution for Problem (19), for any x we have

g(x) + L∗
m∑
i=1

max {0, hi(x)} ≥ g(x) +

m∑
i=1

max {0, u∗
i hi(x)} ≥ g(x) +

m∑
i=1

u∗
i hi(x).

From the Lagrangian saddle-point theorem in [6], since the the strong duality holds and (x∗, u∗) is a
pair of primal and dual optimal solutions,

g(x) +

m∑
i=1

u∗
i hi(x) ≥ g(x∗) +

m∑
i=1

u∗
i hi(x

∗) (21)

for any x. From the KKT condition at (x∗, u∗), we have
∑m

i=1 u
∗
i hi(x

∗) = 0. Then,

g(x) + L∗
m∑
i=1

max {0, hi(x)} ≥ g(x∗).

for any x. Thus, x∗ is an optimal solution of Problem (20).

Let x̄ be an optimal solution solution for Problem (20), then

g(x̄) + L∗
m∑
i=1

max {0, hi(x̄)} ≤ g(x∗) + L∗
m∑
i=1

max {0, hi(x
∗)} = g(x∗).

If x̄ ∈ K, then g(x̄) + L∗∑m
i=1 max {0, hi(x̄)} = g(x̄) ≤ g(x∗) ≤ g(x) for any x ∈ K, then x̄ is

an optimal solution of Problem (19).

If x̄ ̸∈ K, then

g(x̄) + L∗
m∑
i=1

max {0, hi(x̄)} ≥ g(x̄) +

m∑
i=1

max {0, u∗
i hi(x̄)}

> g(x̄) +

m∑
i=1

u∗
i hi(x̄) ≥ g(x∗) +

m∑
i=1

u∗
i hi(x

∗) = g(x∗).

Then, g(x̄) + L∗∑m
i=1 max {0, hi(x̄)} > g(x∗), which contradicts that g(x̄) + L∗∑m

i=1 max {0, hi(x̄)} ≤ g(x∗). Thus, x̄ ∈ K and x̄ is an optimal solution of Problem (19).

Then, Problem (19) is equivalent to Problem (20), if L∗ is selected as L∗ ≥ maxi {u∗
i }.

(b) We next show that maxi {u∗
i } ≤ L0B/C.

Since the Slater’s condition holds for Problem (19) with the margin C > 0, there exists x̃ such that
hi(x̃) ≤ −C for all i ∈ {1, . . . ,m}. From (21), we have

g(x̃) +

m∑
i=1

u∗
i hi(x̃) ≥ g(x∗) +

m∑
i=1

u∗
i hi(x

∗) = g(x∗).
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Then,

−C
m∑
i=1

u∗
i ≥

m∑
i=1

u∗
i hi(x̃) ≥ g(x∗)− g(x̃),

and then

C
m∑
i=1

u∗
i ≤ g(x̃)− g(x∗).

Then,

max
i
{u∗

i } ≤
m∑
i=1

u∗
i ≤

g(x̃)− g(x∗)

C
≤ L0B
C

.

From (a)(b), the proof is finished.

Lemma 9. Suppose that Assumptions 3 and 4 are satisfied. Then,

∥θh(Dtr
0 ,D+))− θh(D0,D+)∥ ≤

1

λ
sup
θ∈K∗

∥∇θLDtr
0
(θ)−∇θLD0

(θ)∥.

where λ is selected as λ > 0 for Problems (16) and (18).

Proof. Consider the following optimization problem, which is parameterized by ϵ:

θ̄(ϵ) =min
θ

(1− ϵ)LD0
(θ) + ϵLDtr

0
(θ) +

λ

2
∥θ − h∥2

s.t. Ez∼Di
[ℓi(θ, z)] ≤ ci, i = 1, . . . ,m.

(22)

We denote the optimal solution of Problem (22) as θ̄(ϵ) and consider that ϵ ∈ [0, 1]. We can see that,
Problem (22) is reduced to Problem (16) when ϵ = 0, and Problem (22) is reduced to Problem (18)
when ϵ = 1. Then, θh(D0,D+)) = θ̄(0) and θh(Dtr

0 ,D+)) = θ̄(1).

From part (iii) of Assumption 3, The LICQ holds for the optimization problem Problem (22), since
Problem (15) and Problem (22) hold the same constraints.

From part (v) of Assumption 4, ℓ0(θ, z) is convex. Then, LD0(θ) is convex and LDtr
0
(θ) is convex.

Then,
(1− ϵ)LD0(θ) + ϵLDtr

0
(θ)

is convex. Since λ
2 ∥θ − h∥2 is λ-strongly convex, then

(1− ϵ)LD0(θ) + ϵLDtr
0
(θ) +

λ

2
∥θ − h∥2

is λ-strongly convex.

From part (v) of Assumption 4, ℓi(·, z) is convex, then 1
|Dtr

i |
∑

z∈Dtr
i
ℓi(θ, z) − ci is convex for

i ≤ i ≤ m.

From Lemma 1 and above conditions, the optimal solution θ̄(ϵ) of Problem (22) exists and is unique.
The KKT conditions hold at θ̄(ϵ) with unique Lagrangian multipliers µ(ϵ). The vector function
z(ϵ) ≜ [θ̄(ϵ)⊤, µ(ϵ)⊤]⊤ is continuous and locally Lipschitz at any ϵ ∈ [0, 1]. Since the function
z(ϵ) ≜ [θ̄(ϵ)⊤, µ(ϵ)⊤]⊤ is locally Lipschitz on a compact set [0, 1], then z(ϵ) ≜ [θ̄(ϵ)⊤, µ(ϵ)⊤]⊤ is
Lipschitz on [0, 1].

From Lemma 1, The directional derivative of θ̄(ϵ) on any direction exists. For ϵ ∈ [0, 1] ⊂ R, the left
derivative and the right derivative of θ̄(ϵ) always exists. We denote the left derivative as ∇−θ̄(ϵ), and
the right derivative∇+θ̄(ϵ). We have[

∇+θ̄(ϵ)
∇+µI(ϵ,+)(ϵ)

]
= −

[
∇2

θL(θ̄(ϵ), µ(ϵ), ϵ) ∇θqI(ϵ,d)(θ̄(ϵ), ϵ)
⊤

∇θqI(ϵ,+)(θ̄(ϵ), ϵ) 0

]−1 [ ∇2
θϵL(θ̄(ϵ), µ(ϵ), ϵ)
∇ϵqI(ϵ,+)(θ̄(ϵ), ϵ)

]
(23)
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and[
∇−θ̄(ϵ)

∇−µI(ϵ,−)(ϵ)

]
= −

[
∇2

θL(θ̄(ϵ), µ(ϵ), ϵ) ∇θqI(ϵ,d)(θ̄(ϵ), ϵ)
⊤

∇θqI(ϵ,−)(θ̄(ϵ), ϵ) 0

]−1 [ ∇2
θϵL(θ̄(ϵ), µ(ϵ), ϵ)
∇ϵqI(ϵ,−)(θ̄(ϵ), ϵ)

]
.

(24)
Here,

qi(θ, ϵ) =
1

|Dtr
i |

∑
z∈Dtr

i

ℓi(θ, z)− ci,

and qI(ϵ,+) is a vector function that contain all qi with i ∈ I(ϵ,+) ⊆ I; µI(ϵ,+) µI(ϵ,+) is a vector
function that contain all µi with i ∈ I(ϵ,+) ⊆ I; qI(ϵ,−) is a vector function that contain all qi with
i ∈ I(ϵ,−) ⊆ I; µI(ϵ,−) is a vector function that contain all µi with i ∈ I(ϵ,+) ⊆ I . Denote

g(θ, ϵ) = (1− ϵ)LD0(θ) + ϵLDtr
0
(θ) +

λ

2
∥θ − h∥2.

Then,
L(θ, µ, ϵ) = g(θ, ϵ) +

∑m

i=1
µiqi(θ, ϵ).

We can compute
∇ϵqI(ϵ,+) = 0

and
∇2

θϵL(θ, µ, ϵ) = ∇θLDtr
0
(θ)−∇θLD0

(θ)

By the computation of (23), we have

∇+θ̄(ϵ) =
(
∇2

θL−1 −∇2
θL−1∇qI(ϵ,+)(∇qTI(ϵ,+)∇

2
θL−1∇qI(ϵ,+))

−1∇qTI(ϵ,+)∇
2
θL−1

)
(
∇θLDtr

0
(θ̄(ϵ))−∇θLD0

(θ̄(ϵ))
)
.

(25)

Since∇2
θL−1 is symmetric, then it can be represented as∇2

θL−1 = MTM , then

∥∇2
θL−1 −∇2

θL−1∇qI(ϵ,+)(∇qTI(ϵ,+)∇
2
θL−1∇qI(ϵ,+))

−1∇qTI(ϵ,+)∇
2
θL−1∥

=∥MT (I −M∇qI(ϵ,+)(∇qTI(ϵ,+)M
TM∇qI(ϵ,+))

−1∇qTI(ϵ,+)M
T ∥

=∥MT (I −N(NTN)−1NT )M∥
≤∥MT ∥∥I −N(NTN)−1NT ∥∥M∥,

(26)

where N = M∇qI(ϵ,+).

Now, we have ∥M∥ = ∥MT ∥ =
√
λmax(MTM) =

√
λmax(∇2

θL−1) =
√
∥∇2

θL−1∥, where
λmax denotes the largest eigenvalue of the matrix. Then ∥M∥∥MT ∥ = ∥∇2

θL−1∥. We have
L(θ, µ, ϵ) = g(θ, ϵ) +

∑m
i=1µiqi(θ, ϵ) where qi(·, ϵ) is convex for any ϵ and g(·, ϵ) is λ-strongly

convex, and µi ≥ 0, then L is λ-strongly convex. Therefore, ∥∇2
θL∥ ≥ λ and λmin(∇2

θL) ≥ λ,
where λmin denotes the smallest eigenvalue of the matrix. Then,

∥M∥∥MT ∥ = ∥∇2
θL−1∥ = λmax(∇2

θL−1) =
1

λmin(∇2
θL)
≤ 1

λ
. (27)

Also, since all eigenvalues of N(NTN)−1NT are 0 and 1, then

∥I −N(NTN)−1NT ∥ = λmax(I −N(NTN)−1NT ) = 1. (28)

From (25)(26)(27)(28),

∥∇+θ̄(ϵ)∥ ≤∥∇2
θL−1 −∇2

θL−1∇qI(ϵ,+)(∇qTI(ϵ,+)∇
2
θL−1∇qI(ϵ,+))

−1∇qTI(ϵ,+)∇
2
θL−1∥

∥∇θLDtr
0
(θ̄(ϵ))−∇θLD0

(θ̄(ϵ))∥

≤ 1

λ
∥∇θLDtr

0
(θ̄(ϵ))−∇θLD0

(θ̄(ϵ))∥.
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Similarly, we also have

∥∇−θ̄(ϵ)∥ ≤
1

λ
∥∇θLDtr

0
(θ̄(ϵ))−∇θLD0

(θ̄(ϵ))∥.

Now, we know θ̄(ϵ) is Lipschitz on [0, 1], and

∥θh(Dtr
0 ,Dtr

+ ))− θh(D0,Dtr
+ ))∥ = ∥θ̄(1)− θ̄(0)∥ ≤ sup

ϵ∈[0,1]

∥θ̄(ϵ)− θ̄(0)∥.

We denote that ϵ∗ = argmaxϵ∈[0,1] ∥θ̄(ϵ)− θ̄(0)∥. From Lemma 7,

∥θ̄(ϵ∗)− θ̄(0)∥ ≤ sup
ϵ∈[0,ϵ∗]

{max (∥∇−θ̄(ϵ)∥, ∥∇+θ̄(ϵ)∥)}ϵ∗

≤ sup
ϵ∈[0,ϵ∗]

{max (∥∇−θ̄(ϵ)∥, ∥∇+θ̄(ϵ)∥)}.

We donote that ϵ̂ = argmaxϵ∈[0,ϵ∗]{max (∥∇−θ̄(ϵ)∥, ∥∇+θ̄(ϵ)∥)}. Then, we have

∥θh(Dtr
0 ,Dtr

+ ))− θh(D0,Dtr
+ ))∥ = ∥θ̄(1)− θ̄(0)∥ ≤ ∥θ̄(ϵ∗)− θ̄(0)∥

≤ 1

λ
∥∇θLDtr

0
(θ̄(ϵ̂))−∇θLD0(θ̄(ϵ̂))∥

≤ 1

λ
sup
θ∈K∗

∥∇θLDtr
0
(θ)−∇θLD0(θ)∥.

(29)

Lemma 10. Suppose that Assumptions 3 and 4 are satisfied. Then,

EDtr
+ ∼D+

[∣∣∣LDtr
0 ,h(θh(Dtr

0 ,Dtr
+ ))− LDtr

0 ,h(θh(Dtr
0 ,D+))

∣∣∣] ≤
2mB

√
d

(
LcB +M

√
ln |Dtr

+ |
)

L0 + λ(∥θ∗ − h∥+ B)
C
√
|Dtr

+ |
,

where the constants Lc, B, M , L0, C are referred to Assumptions 3 and 4.

Proof. According to the part (i) of Assumption 3, the feasible sets K and Ktr are bounded in a
compact set Θ with diameter B. Then for any θ ∈ Θ, ∥θ − θ∗∥ ≤ B, since θ∗ ∈ Θ. The Lipschitz
constant of LDtr

0 ,h on Θ is

sup
θ∈Θ
∥∇LDtr

0 ,h(θ)∥ = sup
θ∈Θ
∥ 1

|Dtr
0 |

∑
z∈Dtr

0

∇1ℓ0(θ, z) + λ(θ − h)∥

≤ sup
θ∈Θ
∥ 1

|Dtr
0 |

∑
z∈Dtr

0

∇1ℓ0(θ, z)∥+ λ sup
θ∈Θ
∥θ − h∥.

From part (ii) of Assumption 4, ℓ0(·, z) is L0-Lipschitz continuous, then

sup
θ∈Θ
∥ 1

|Dtr
0 |

∑
z∈Dtr

0

∇1ℓ0(θ, z)∥ ≤ L0.

Also, we have
sup
θ∈Θ
∥θ − h∥ ≤ ∥θ∗ − h∥+ sup

θ∈Θ
∥θ − θ∗∥ ≤ ∥θ∗ − h∥+ B.

Thus, the Lipschitz constant of LDtr
0 ,h on Θ is L0 + λ(∥θ∗ − h∥+ B).

From the parts (i)(ii) of Assumption 3 and Lemma 8, the optimization problem in (18) is

min
θ
LDtr

0 ,h(θ) s.t. CDtr
i
(θ)− ci ≤ 0,

and equivalent to:

min
θ
L1(θ) = LDtr

0 ,h(θ) +
L0B + λB(∥θ∗ − h∥+ B)

C

m∑
i=1

max{CDtr
i
(θ)− ci, 0}.
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The optimization problem in (17) is

min
θ
LDtr

0 ,h(θ) s.t. CDi(θ)− ci ≤ 0,

and equivalent to:

min
θ
L2(θ) = LDtr

0 ,h(θ) +
L0B + λB(∥θ∗ − h∥+ B)

C

m∑
i=1

max{CDi(θ)− ci, 0}.

According to Lemma 2 and Remark 2,

EDtr
+ ∼D+

[
|L2(θh(Dtr

0 ,D+))− L1(θh(Dtr
0 ,Dtr

+ ))|
]

≤ 2mB
√
d

(
LcB +M

√
ln |Dtr

+ |
)

L0 + λ(∥θ∗ − h∥+ B)
C
√
|Dtr

+ |
.

Since θh(Dtr
0 ,D+) is the solution of (17), then

L0B + λB(∥θ∗ − h∥+ B)
C

m∑
i=1

max{CDi
(θh(Dtr

0 ,D+))− ci, 0} = 0,

then
L2(θh(Dtr

0 ,D+)) = LDtr
0 ,h(θh(Dtr

0 ,D+)).

Similarly,
L1(θh(Dtr

0 ,Dtr
+ )) = LDtr

0 ,h(θh(Dtr
0 ,Dtr

+ )).

Therefore,
EDtr

+ ∼D+

[∣∣∣LDtr
0 ,h(θh(Dtr

0 ,D+))− LDtr
0 ,h(θh(Dtr

0 ,Dtr
+ ))
∣∣∣]

≤ 2mB
√
d

(
LcB +M

√
ln |Dtr

+ |
)

L0 + λ(∥θ∗ − h∥+ B)
C
√
|Dtr

+ |
.

Lemma 11. Suppose that Assumptions 3 and 4 are satisfied. Then,

EDtr
+ ∼D+

[∥θh(Dtr
0 ,Dtr

+ )− θh(Dtr
0 ,D+)∥]

≤ 4B
√
m
√
d(LcB +M

√
ln |Dtr

+ |)
L0 + λ(∥θ∗ − h∥+ B)

C
√
|Dtr

+ |
,

where the constants Lc, B, M , L0, C are referred to Assumptions 3 and 4.

Proof. From the proof of Lemma 10, Problem (17) is equivalent to minθ L2(θ) and Problem (18) is
equivalent to minθ L1(θ). According to Lemma 2 and Remark 2,

EDtr
+ ∼D+

[
∆
(
Θϵ

h(Dtr
0 ,Dtr

+ ),Θϵ
h(Dtr

0 ,D+)
)]
≤ 4mB

√
d(LcB +M

√
ln |Dtr

+ |)
Lmax

ϵ
√
|Dtr

+ |
,

for any ϵ > 0, and Lmax is selected as

Lmax =
BL0 + λB(∥θ∗ − h∥+ B)

C
,

where the sets
Θϵ

h(Dtr
0 ,D+) =

{
θ ∈ Θ : L1(θ) ≤ L1(θh(Dtr

0 ,Dtr
+ )) + ϵ

}
,

Θϵ
h(Dtr

0 ,Dtr
+ ) =

{
θ ∈ Θ : L2(θ) ≤ L2(θh(Dtr

0 ,D+)) + ϵ
}
.

and

L1(θ) = LDtr
0 ,h(θ) + Lmax

m∑
i=1

max{CDtr
i
(θ)− ci, 0},

29



L2(θ) = LDtr
0 ,h(θ) + Lmax

m∑
i=1

max{CDi
(θ)− ci, 0},

and ∆ is defined in Section D.2.

Then we have

EDtr
+ ∼D+

[
∆
(
Θϵ

h(Dtr
0 ,Dtr

+ ),Θϵ
h(Dtr

0 ,D+)
)]
≤ 4mB

√
d(LcB +M

√
ln |Dtr

+ |)
Lmax

ϵ
√
|Dtr

+ |
,

i.e.,

EDtr
+ ∼D+

[
sup

θ1∈Θϵ
h(D

tr
0 ,Dtr

+ )

inf
θ∈Θϵ

h(D
tr
0 ,D+)

∥θ1 − θ∥

]
≤ 4mB

√
d(LcB +M

√
ln |Dtr

+ |)
Lmax

ϵ
√
|Dtr

+ |
.

Then,

EDtr
+ ∼D+

[
inf

θ∈Θϵ
h(D

tr
0 ,D+)

∥θ1 − θ∥
]
≤ 4mB

√
d(LcB +M

√
ln |Dtr

+ |)
Lmax

ϵ
√
|Dtr

+ |

for any selected θ1 ∈ Θϵ
h(Dtr

0 ,Dtr
+ ). Then,

EDtr
+ ∼D+

[
inf

θ∈Θϵ
h(D

tr
0 ,D+)

∥θh(Dtr
0 ,Dtr

+ )− θ∥
]
≤ 4mB

√
d(LcB +M

√
ln |Dtr

+ |)
Lmax

ϵ
√
|Dtr

+ |

Then, there exists θ ∈ Θϵ
h(Dtr

0 ,D+), such that

EDtr
+ ∼D+

[∥θh(Dtr
0 ,Dtr

+ )− θ∥] ≤ 4mB
√
d(LcB +M

√
ln |Dtr

+ |)
Lmax

ϵ
√
|Dtr

+ |

Then, for any sampled Dtr
+ , there exists θ ∈ Θϵ

h(Dtr
0 ,D+), such that

EDtr
+ ∼D+

[∥θh(Dtr
0 ,Dtr

+ )− θ∥] ≤ 4mB
√
d(LcB +M

√
ln |Dtr

+ |)
Lmax

ϵ
√
|Dtr

+ |
.

Then,

EDtr
+ ∼D+

[∥θh(Dtr
0 ,Dtr

+ )− θh(Dtr
0 ,D+)∥] ≤ EDtr

+ ∼D+
[∥θh(Dtr

0 ,Dtr
+ )− θ∥+ ϵ]

≤ 4mB
√
d(LcB +M

√
ln |Dtr

+ |)
Lmax

ϵ
√
|Dtr

+ |
+ ϵ.

Select that ϵ =
√
4mB

√
d(LcB +M

√
ln |Dtr

+ |) Lmax√
|Dtr

+ |
, we have

EDtr
+ ∼D+

[∥θh(Dtr
0 ,Dtr

+ )− θh(Dtr
0 ,D+)∥] ≤ 4

√
mB
√
d(LcB +M

√
ln |Dtr

+ |)
Lmax√
|Dtr

+ |
.

Substitute Lmax = BL0+λB(∥θ∗−h∥+B)
C into the inequality, we have

EDtr
+ ∼D+

[∥θh(Dtr
0 ,Dtr

+ )− θh(Dtr
0 ,D+)∥]

≤ 4B
√
m
√
d(LcB +M

√
ln |Dtr

+ |)
L0 + λ(∥θ∗ − h∥+ B)

C
√
|Dtr

+ |
.

Propositions 3 and 4 state the generalization with respect to the objective risk and the generalization
with respect to the constraint violations, respectively.
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Proposition 3. Suppose that Assumptions 3 and 4 are satisfied. Pick that λ > 0 for Problems
(15)-(18). Then,

EDtr∼D
[
max

{
LD0

(θh(Dtr
0 ,Dtr

+ ))− LD0
(θ∗), 0

}]
≤ λ

2
∥θ∗ − h∥2

+

√
d(ρB + L0

√
ln |Dtr

0 |)(4ρB
√
d+ 4L0

√
d ln |Dtr

0 |+ 6)

λ|Dtr
0 |

+ 2mB
√
d

(
LcB +M

√
ln |Dtr

+ |
)

L0 + λ(∥θ∗ − h∥+ B)
C
√
|Dtr

+ |

+O

(√
ln |Dtr

0 |
|Dtr

0 |
·
(ln |Dtr

+ |)
1
4

|Dtr
+ |

1
4

)
,

where the constants ρ, Lc, B, M , L0, C are referred to Assumptions 3 and 4.

Proof. For Dtr ∼ D, consider following decomposition:

EDtr∼D
[
max

{
LD0

(θh(Dtr
0 ,Dtr

+ ))− LD0
(θ∗), 0

}]
≤ EDtr∼D

[
max

{
LD0

(θh(Dtr
0 ,Dtr

+ ))− LD0
(θh(Dtr

0 ,D+)), 0
}]

+ EDtr∼D
[
max

{
LD0(θh(Dtr

0 ,D+))− LD0(θ
∗), 0

}]
Since for any Dtr

0 , we have LD0
(θh(Dtr

0 ,D+))− LD0
(θ∗) ≥ 0, then

EDtr∼D
[
max

{
LD0

(θh(Dtr
0 ,D+))− LD0

(θ∗), 0
}]

= EDtr∼D
[
LD0

(θh(Dtr
0 ,D+))− LD0

(θ∗)
]
.

Then,

EDtr∼D
[
max

{
LD0(θh(Dtr

0 ,Dtr
+ ))− LD0(θ

∗), 0
}]

≤ EDtr∼D
[
max

{
LD0

(θh(Dtr
0 ,Dtr

+ ))− LD0
(θh(Dtr

0 ,D+)), 0
}]

+ EDtr∼D

[
LD0

(θh(Dtr
0 ,D+))− LDtr

0 ,h(θh(Dtr
0 ,D+))

]
+ EDtr∼D

[
LDtr

0 ,h(θh(Dtr
0 ,D+))− LD0

(θ∗)
]

≤ EDtr∼D

[
max

{
LD0

(θh(Dtr
0 ,Dtr

+ ))− LD0
(θh(Dtr

0 ,D+)), 0
}
− λ

2
∥θh(Dtr

0 ,D+)− θ∗∥2
]

︸ ︷︷ ︸
B

+ EDtr∼D

[
LD0

(θh(Dtr
0 ,D+))− LDtr

0
(θh(Dtr

0 ,D+))
]

︸ ︷︷ ︸
A

+EDtr∼D

[
LDtr

0 ,h(θh(Dtr
0 ,D+))− LD0

(θ∗)
]

︸ ︷︷ ︸
C

.

(i) Consider C, we have

C = EDtr∼D

[
LDtr

0 ,h(θh(Dtr
0 ,D+))− LD0

(θ∗)
]

= EDtr
+ ∼D+

[
EDtr

0 ∼D0

[
LDtr

0 ,h(θh(Dtr
0 ,D+))− LD0

(θ∗)
]]

= EDtr
+ ∼D+

[
EDtr

0 ∼D0

[
LDtr

0 ,h(θh(Dtr
0 ,D+))− LD0,h(θ

∗) +
λ

2
∥θ∗ − h∥2

]]
= EDtr

+ ∼D+

[
EDtr

0 ∼D0

[
LDtr

0 ,h(θh(Dtr
0 ,D+))− LD0,h(θ

∗)
]]

+
λ

2
∥θ∗ − h∥2

= EDtr
+ ∼D+

[
EDtr

0 ∼D0

[
LDtr

0 ,h(θh(Dtr
0 ,D+))

]
− LD0,h(θ

∗)
]
+

λ

2
∥θ∗ − h∥2

= EDtr
+ ∼D+

[
EDtr

0 ∼D0

[
LDtr

0 ,h(θh(Dtr
0 ,D+))− LDtr

0 ,h(θ
∗)
]]

+
λ

2
∥θ∗ − h∥2.

The last equality comes from

EDtr
0 ∼D0

[
LDtr

0 ,h(θ
∗)
]
= LD0,h(θ

∗).
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By the definition of θh(Dtr
0 ,D+) in (17), we have

LDtr
0 ,h(θh(Dtr

0 ,D+))− LDtr
0 ,h(θ

∗) ≤ 0.

Then,

C ≤ λ

2
∥θ∗ − h∥2.

(ii) Consider A, we have

A = EDtr∼D

[
LD0

(θh(Dtr
0 ,D+))− LDtr

0
(θh(Dtr

0 ,D+))
]

≤ EDtr∼D

[
LD0

(θh(Dtr
0 ,D+))− LD0

(θh(D0,D+)) + LDtr
0
(θh(D0,D+))− LDtr

0
(θh(Dtr

0 ,D+))
]

︸ ︷︷ ︸
A1

+ EDtr∼D

[
LD0

(θh(D0,D+))− LDtr
0
(θh(D0,D+))

]
︸ ︷︷ ︸

A2

.

For A2, we have

A2 = EDtr∼D

[
LD0(θh(D0,D+))− LDtr

0
(θh(D0,D+))

]
= EDtr

+ ∼D+

[
EDtr

0 ∼D0

[
LD0(θh(D0,D+))− LDtr

0
(θh(D0,D+))

]]
= EDtr

+ ∼D+

[
LD0(θh(D0,D+))− EDtr

0 ∼D0

[
LDtr

0
(θh(D0,D+))

]]
= EDtr

+ ∼D+
[0] = 0.

For A1, we have

A1 = EDtr
+ ∼D+

[
EDtr

0 ∼D0

[
(LD0 − LDtr

0
)(θh(Dtr

0 ,D+))− (LD0 − LDtr
0
)(θh(D0,D+))

]]
.

From Lemma 9,

∥θh(Dtr
0 ,D+))− θh(D0,D+)∥ ≤

1

λ
sup
θ∈K∗

∥∇θLDtr
0
(θ)−∇θLD0

(θ)∥. (30)

From the mean value theorem,∣∣∣(LD0
− LDtr

0
)(θh(Dtr

0 ,D+))− (LD0
− LDtr

0
)(θh(D0,D+))

∣∣∣
≤ ∥∇LD0

(θ)−∇LDtr
0
(θ)∥∥θh(Dtr

0 ,D+))− θh(D0,Dtr
+ )∥,

where θ is in the middle of θh(Dtr
0 ,D+) and θh(D0,D+), i.e., θ = (1 − α)θh(Dtr

0 ,D+) +
αθh(D0,D+), with α ∈ [0, 1]. Then, we have

∥∇LD0(θ)−∇LDtr
0
(θ)∥ ≤ sup

θ∈K∗
∥∇θLDtr

0
(θ)−∇θLD0(θ)∥.

Then, ∣∣∣(LD0
− LDtr

0
)(θh(Dtr

0 ,D+))− (LD0
− LDtr

0
)(θh(D0,D+))

∣∣∣
≤ sup

θ∈K∗
∥∇θLDtr

0
(θ)−∇θLD0(θ)∥∥θh(Dtr

0 ,D+))− θh(D0,Dtr
+ )∥,

From (30), we can get∣∣∣(LD0
− LDtr

0
)(θh(Dtr

0 ,D+))− (LD0
− LDtr

0
)(θh(D0,D+))

∣∣∣
≤ sup

θ∈K∗
∥∇θLDtr

0
(θ)−∇θLD0

(θ)∥ 1
λ

sup
θ∈K∗

∥∇θLDtr
0
(θ)−∇θLD0

(θ)∥

≤ 1

λ
sup
θ∈K∗

∥∇θLDtr
0
(θ)−∇θLD0(θ)∥2.
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From Lemma 5, since the Lipschitz constant of ∇ℓ0(·, z) is ρ and the upper bounded of ∇ℓ0(·, z) is
L0, we have

EDtr
0 ∼D0

[∣∣∣(LD0
− LDtr

0
)(θh(Dtr

0 ,D+))− (LD0
− LDtr

0
)(θh(D0,D+))

∣∣∣]
≤ EDtr

0 ∼D0

[
1

λ
sup
θ∈K∗

∥∇θLDtr
0
(θ)−∇θLD0

(θ)∥2
]

≤
√
d(ρB + L0

√
ln |Dtr

0 |)(4ρB
√
d+ 4L0

√
d ln |Dtr

0 |+ 6)

λ|Dtr
0 |

.

Then,

A ≤ A1 = EDtr
+ ∼D+

[
EDtr

0 ∼D0

[∣∣∣(LD0
− LDtr

0
)(θh(Dtr

0 ,D+))− (LD0
− LDtr

0
)(θh(D0,D+))

∣∣∣]]
≤
√
d(ρB + L0

√
ln |Dtr

0 |)(4ρB
√
d+ 4L0

√
d ln |Dtr

0 |+ 6)

λ|Dtr
0 |

.

(iii) Consider B, we have
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Then,
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From Lemma 10, we have
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For B2, we have
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From Lemma 11,
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Then,

B2 ≤ O

(√
ln |Dtr

0 |
|Dtr

0 |
·
(ln |Dtr

+ |)
1
4

|Dtr
+ |

1
4

)
≪ B1.
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Proposition 4. Suppose that Assumptions 3 and 4 are satisfied.
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for each 1 ≤ i ≤ m, where the constants Lc, B, M , L0, C are referred to Assumptions 3 and 4.

Proof. From Lemmas 3 and 4,
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Proposition 1 can be proven by Propositions 3 and 4. Proposition 2 can be proven by the following
proposition.

Proposition 5. Suppose that Assumptions 1 and 2 are satisfied. For a sequence ϕ1:T = {ϕ1, · · · , ϕT },
pick the regularization parameter
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,∀ i = 1, . . . ,m.

Proof. From Propositions 3 and 4, for problems (15)-(18), we have
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and
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Consider the task sequence {T1, · · · , TT } and
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for the optimization problems in (1) and (3), we have
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Then,
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We omit some constants with small quantities,
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,∀ i = 1, . . . ,m.

By selecting ϕt = ϕ for each t in Proposition 5, Proposition 2 is proven.

F Proof of Theorem 1

As we apply the FTPL algorithm to the meta-objective function in the online constrained meta-
learning problem and formulate the problem (4), we require some properties of the meta-objective
function. Note that Lval(Alg(λ, ϕ,Dtr

t ),Dval
0,t ) in (4) is a function of the solution Alg(λ, ϕ,Dtr

t ) of
the optimization problem (3) and its property is shown in Proposition 6.
Proposition 6. Suppose that Assumptions 1 and 2 are satisfied. Then, Lval(Alg(λ, ·,Dtr
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then, for 0 ≤ α ≤ 1, we have
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From part (iii) of Assumption 1, The LICQ holds for the optimization problem. From part (v) of
Assumption 2, ℓ0(·, z) is convex, then 1
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By Lemma 1 and above conditions, similar to the proof of Lemma 9, we have
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The proof is done.

Proof of Theorem 1. From Proposition 6, Lval(Alg(λ, ·,Dtr
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0,t ) is L0-Lipschitz.

By Lemma 6, we have
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(31)
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From Lemmas 3 and 4, we have
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Combine with (31), we have
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By Proposition (2), pick the regularization parameter
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we have
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By Proposition (2), we also have
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Then,
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Proof of Corollary 1. We have
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and
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Then,
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It is easy to see that
ETt∼p(T )[S∗(T1:T )2] ≤ S∗(p(T ))2.

Similar to the proofs of Theorem 1 and Proposition 5, Corollary 1 is proven.
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