Appendix for '"Online Constrained Meta-Learning: Provable
Guarantees for Generalization"

A Notation checklist

Table 3: Notation checklist.

Notation Definition
t Round index
1 Constraint index (1 <7 < m)
T: Task at round ¢
Do+ Data distribution of loss function for task 7;

Dit (1 <i<m)
Dt = {DO,t7 Dl,ta v 7Dm,t}
2
D, (1 <i<m)
D, = {Dé’:t,th, e 7D%,t}
Dggl
D¢ (1 <i<m)
Dy =Dy, Dt}
1Dy
D]
D5
ﬁval(e’ Dgfjél)
p(7)
0;
0y
DZSt((;S? 7-1:T)
5*(p(T))
A
Alg
oy gon
Ro
Ry
Ry 1.1
R; 1.1

Data distribution of constraint functions for task 7;
Data distribution for task 7;

Training dataset of loss function for task 7;
Training dataset of constraint functions for task 7;
Training dataset for task 7;

Validation dataset of loss function for task 7;
Validation dataset of constraint functions for task 7;
Validation dataset for task 7;

Number of data points in fot (same for task 7;)
Number of data points in Dfrt (same for task 7; and any 7)
Number of data points in Dg;gl (same for task 7;)
Loss of # on Dy4!

Task distribution
Optimal solution parameter for task 7;
Task-specific parameter for task 7;
Distance between ¢ and optimal parameters of 77.p
Task dissimilarity of p(7)
regularization weight
Within-task algorithm
Meta-parameter
Optimality gap
The ¢-th constraint violation
Ttask-averaged optimality gap (TAOG)
Task-averaged constraint violatio (TACV)

B Practical Algorithm and Implementation Details

In Sections [3]and i we develop a theoretically guaranteed algorithm with Assumptions[T|and[2] In
many practical machine learning problems, the assumptions may not be satisfied. For example, some
problems have non-convex loss functions ¢;. However, methods designed for convex loss functions,
such as [47} 24]], often perform well in non-convex settings. Inspired by these successes, we develop a
practical instantiation of the online constrained meta-learning algorithm and evaluate its performance
in Section

Algorithm [2]states the practical algorithm of online constrained meta-learning and tests the perfor-
mance of the deployed models for the sequentially revealed tasks. Compared with Algorithm [T}
Algorithm 2| considers that (a) the constrained bilevel optimization problem in () has no closed-form
solution; (b) the training data Df{"t are limited and fixed for each task, which limits the generalization
of the learned model; (c) since S*(71.7) and S*(p(7)) cannot be obtained before the task sequence
is revealed, we cannot compute A as shown in Theorem [I| and Corollary [I| To overcome these
limitations, we propose Algorithm [2] that uses the stochastic optimization steps to optimize the
meta-objective function.
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Algorithm 2 Practical Algorithm of Online Constrained Meta-Learning

Require: Initial regularization weight A; > 0; Initial meta parameter ¢ .

1: Initialize a empty task buffer B < ()

2: fort=1,---,T do

3:  Sample and restore the training datasets Di" from the distributions D; for task 7;
Adapt task-specific parameter as 6; = Alg(\¢, ¢¢, Di") and deploy 6, for task T;
Test and record the performance of 6, for task 7; if running a test for the algorithm
Sample and restore the evaluation dataset Dggl from the distributions Dy ;
Update the task buffer By < By U {T;}
Initialize ¢\ = ¢, ALY, = As
9: forn=1,---,N,, do

® Uk

10: Sample a task 7y, from the buffer B7, and pick the datasets D" and Dz‘”

11: Randomly allocate D{" U D! to D} + and DZ“H without overlapping

12: Solve 0* = Alg(/\gizl), gbgizl), Di") defined in (3] to obtain 6* and the multipliers p* by
the primal-dual approach [7]].

13: Compute g(") = V¢£”“1(Alg()\§izl), ¢, DY), Dg?ﬂkf+)|¢:¢£1;1) by (6

14: Compute ¢(™ = V, LU (Alg(), qﬁl(ﬁr;l), DY), DS%J”)\)\:/\g;l)

15: ¢Ei)1 = gbgiIl) — g™ and A,(fi)l = )\gifl) — 12¢™ (or Adam [36])

16:  end for (Vo) (Vo)

170 frpr = @1 and Appn = Ay

18: end for

In the beginning of Algorithm [2] when a new task 7; is revealed at round ¢, similar to Algorithm
the agent samples the dataset D" and run 6; = Alg(\s, ¢, Di") to quickly adapt 6; from the
current meta-parameter ¢, and deploy it to 7;. To test Algorithm [2]in Section [3] line 5 tests and
records the performance of the deployed model on 7;. Next, the evaluation dataset D% used in the
meta-objective function (@) is sampled. To optimize the meta-objective function, as shown in lines 7
to 15, we use multiple stochastic gradient descent steps. At step n, the agent randomly samples a
task 7y from all previously revealed tasks and picks the training dataset D} and evaluation dataset
D}C’al, which is similar to the training data sampling at each step of the SGD. Then, the data included
in DI U Dy are randomly allocated to a new training dataset DZ,H' and a new evaluation dataset
DY, and keep |Di7| = | DIt |Dyet| = | Dy, and no overlapping between D" and DY,
As we expect the task-specific adaptation Alg(\s, ¢, DI") can perform well for any sampled dataset
with the data number | D{"|, the dataset reallocation enables the agent to see a different training dataset
DZ“L, when the task 7Ty, is repeatedly sampled at different step n (line 10), and thus improves the
generalization of the model. When the task 7, is sampled at step n, the current stochastic gradient
descent step focuses on the descent on L' (Alg(), ¢, DZ”“), DS%JF). According to the constrained
bilevel optimization method shown in [55]], we have

VoL (Alg(X, ¢, D), D) = V5 Alg(A, &, DY)V L0, Dy ) |o=o- (©6)
where V4 Alg(A, ¢, DtkH) = —M(¢,0%, u*) LN (o, 0%, n*),

V3L (Vep1)' -+ (Vepm)'
*y/ 0
e | e P and N 2 [V2,L7,0,---,0] .
: : 0
M VoPm 0 Pm

Here, 0* is the optimal solution of Alg(\,¢, D)’ 1), pi(0) = ﬁzzepﬁ 0;(0,2) — cit,

L(6,0,1%) 2 b Socmy, £0(0:2) + 310 = 0117 + S0y 17 (kg S, 60, 2) — i) is
the Lagrangian of the problem Alg(), ¢, D" "), and p* is its Lagrangian multiplier. In the gradient
computation (6)), the optimal solution 6* and the multiplier 11* can be solved by the convex optimiza-
tion algorithm [[T0L/6]. Then, in line 14, the gradient in (6) is applied to the gradient descent step with a
learning rate n;. After IV, steps of the stochastic gradient descent (or Adam [36]), the meta-parameter
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@141 for the next revealed task is updated. Similarly, the regularization weight A\, can be optimized
by the gradient descent (or Adam [36]), where the gradient VL (Alg(), ¢, D} ), Dgka) is
computed by replacing each V4 by V and replacing Vg, by Vg in (6).

C Experimental Supplement

All experiments are executed on a computer with a 4.10 GHz Intel Core i5 CPU and an RTX 3080
GPU.

C.1 Meta imitation learning

Problem formulation. Imitation learning [8] has been widely studied as a way to transfer human
skills to robots. In [30, |29], imitation learning is formulated by kernelized movement primitives, and
takes into account nonlinear hard constraints and obstacle avoidance. In particular, the states of the
robot are modeled as the linear combination of basis functions; the demonstrations from humans are
modeled by a Gaussian mixture model (GMM) where the parameters follow a Gaussian distribution.
The approach minimizes the divergence between the distributions of the robot state model and the
demonstrations, while the hard constraints are satisfied.

In this experiment, instead of the linear combination of basis functions, we model the states of
the robot by a neural network. In particular, the robot’s state £(w, t), including the joint position
q(w,t) € R? and velocity ¢(w,t), is parameterized by w and is modeled as

o= | 40

where ¢(w, t) is a neural network and takes ¢ as the input and the location g(w, t) as the output. The
demonstrations include H trajectories, where IV time-state pairs are contained in each trajectory, and

are denoted as {{tn hynn )N M H 4, and are modeled by a GMM. Then, each demonstration state én
associated with ¢,, is described by a conditional probability distribution with mean /i,, and covariance
Yo, e én | tn ~ N (jin, in), where fi,, and 3, can be computed by the GMM. Following the
problem formulation in [30} 29]], an imitation learning task is to solve the following constrained
optimization problem:

. 1 T .
min E 7(£(wvt) - /Lt)TZt 1(€(w7t) - p’t)

W tefto,tn] [2 (7
S.t. gi(f(w,t)) <, Vte [to,tN], 1=1,...,m,

where g; is the ¢-th state constraint and the total constraint number is m; fi; and f]t are the mean
and variance of the demonstration state £(t), i.e., £ | ¢ ~ N (jit, X¢). Here, the training dataset
{tn; fin, Xn }2_; is provided by the GMM. Note that the given demonstrations are collected under a
no-collision environment and thus may not be able to avoid the collision.

Consider that a set of imitation learning tasks are revealed sequentially. In each round ¢, a new task

of Problem (7) is revealed, and its data D" = {t,, fi,, ¥ }_; and the collision area denoted by
{g:} and {¢;}[* are given. In round T a model wr is required to be updated and deployed by
the robot. We apply the proposed constrained meta-learning approach to solving this problem. In
particular, we solve the following constrained bilevel optimization problem at round 7:

T-1

¢r = argmin Z L(Alg(\, ¢, DI™), D),
¢

t=1
with
A
Alg(\, ¢, D7) = argmin L(w,Di") + §||w — qb||2

1
st—Zgi E(wyty)) <e¢yi=1,...,m,
=[N]
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where £(w, D) is the loss function of the model parameter w on a dataset D" = {t,,, fi,,, ﬁ‘,n}flvzl
and L(w, D) = 5 3 L(&(w,ty) — fin) TS (E(w, b)) — fin). After ¢r is updated, for a new
n=[N]

task 77, the task-specific model can be computed by wr = Alg(\, ¢, D).

Few-shot imitation learning. We use the demonstration data given by [30]. In different rounds, the
robot needs to imitate the demonstration, and move and write the capital letter "A" with different
sizes, angles, and locations, i.e., the different demonstration dataset D" = {t,,, ji,, ¥, }N_,. The
sizes, angles, and locations for the sequential tasks are sampled from a Gaussian distribution. The
robot also needs to avoid a circle collision area, which defines m, g1, and c; in asm = 1,
c1 = 0.5and g1(z) = o(y/(z1 — d1)2 + (v2 — d2)? — 1), where o(x) is a barrier function and
= % log(1 + exp(Bx)), r is the radius of the collision area and r = 6, and (d;, d2) is the center of
the collision area and is sampled from the Gaussian distribution A/ (0, 1) for each task. The full
demonstrations for each imitation learning task contain 400 data points, but the robot only can obtain

20 data points in each round.

We model the position of the robot by a four-layer neural network with 128 which consists of an
input layer of size 8, followed by 3 hidden layers of size 128 with the ReLU nonlinearities and an
output layer of size 2. The neural network takes {t, %, 3, ¢ sin(t), cos(2t),sin(2t), cos(2t)} as the
inputs and ¢(w, t) as the outputs.

Improve full-shot imitation learning by meta-learning. In this experiment, the collision area is
defined by g1(z) = o(—+/(z1 — d1)2 + (v2 — d2)? + ), where r = 2 and (d1, d2) is is sampled
from the Gaussian distribution A/ (0, 1) for each task. For each task, the robot can access the full
shot of demonstrations including 400 data points. Other settings are exactly the same as the few-shot
imitation learning.

C.2 Few-shot image classification with robustness

Problem formulation. Similar to the problem formulation in [12], we formulate the problem of
robust learning for a single image classification task 7; as:

07 =argmin E, p, [¢p(0, 2)]
0co
st. Exup, p) [€(0,2)] — (1+ @)E.p, [¢(0,2)] <O0.

where 0 < « < 1 is the robustness tolerance parameter, and / is the loss function. Here, D; is the
distribution of the original data, and Dy |pj is the distribution of the perturbed data, which is generated
by the Projected Gradient Descent (PGD) method on D;. This formulation minimizes the loss on the
original data while maintaining the robustness, i.e., the loss on the perturbed data is constrained in an
acceptable range.

In the problem of few-shot learning with robustness, only N-shot of training data is given, we expect
the model to have both high accuracy on original test data and high accuracy on perturbed test data.
We apply the proposed constrained meta-learning approach to solving this problem. In particular, we
solve the following constrained bilevel optimization problem at round 7"
T—1
¢r = argmin Y L(Alg(A, 6, D), D),

=1

with )
Alg(), 6, Di") = axgmin £(9,Di") + 5110 — 0|
0

st L(0,D}p) — (14 @) L(0,D}") < 0.

Here, £(0, D'") is the loss function of the model parameter 6 on a dataset D'". The dataset D;" is
the INV-shot dataset for the meta-training (the support dataset), the dataset Dfr[ Pl is also N-shot and

generated by the PGD on D!", and Dy is the dataset for the meta-validation (the query dataset).
After ¢ is updated, for a new task 77, the task-specific model can be computed by Alg(\, ¢7, D).
In the experiment, « is selected as 0.3, A is selected as A = 1.0 for 5-shot learning, A = 8.0 for
1-shot learning.
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Experiments setting. Experiments are conducted on two datasets, CUB-200-2011 (referred to as
CUB) [53] and mini-ImageNet [52]. We used the same class splits used in [27} 48, |57]. In particular,
the mini-ImageNet dataset holds 64 classes for training data, 16 classes for validation data, and the
remaining 20 classes as a test set; the CUB dataset holds 100 classes for training data, 50 classes for
validation data, and the remaining 50 classes as a test set. The input images are resized to 84 x 84 for
both two datasets and applied data augmentation following [57]. A four-layer convolutional neural
network (Conv-4) is used as the backbone, which consists of four blocks. Each of which consists of
a convolution layer with 64 kernels of size 3 x 3, stride 1, and zero padding, a batch normalization
layer, a ReLU activation function, and a max-pooling layer with the pooling size 2 x 2. After the
convolutional layers, a fully-connected linear layer with 5 neurons is used as a classifier to output the
prediction for the input image.

During the online meta-training, in each round, we sample a task only from the training data classes
and regard it as the revealed task, i.e., sample a 5-way k-shot learning task (5 classes and k images for
each class). There are 200 rounds of online learning, and thus we sample 200 tasks from the training
data. In the meta-test for Tables @] and@ we use the test dataset. From the test classes, we sample 600
tasks, i.e., 600 times of 5-way k-shot data sampling from the test classes, which means that the image
classes in the 600 meta-test tasks are unseen in training tasks.

The optimizer Adam [36] with a learning rate of 0.001 is used for the optimization. The cross-entropy
is selected as the loss function. The adversarial attack on the query set is performed by the PGD
attack with a perturbation size € = 2/255 and it takes 7 iterative steps with the step size of 2.5¢. To
guarantee a fair comparison, we keep all the above setting for all methods, including (i) MAML [23]]
with constraint penalty (CP); (ii) ProtoNet [49] with CP; (iii) BOIL [44] with CP; (iv) MAML with
MOML [57]]; (v) ProtoNet with MOML; (vi) BOIL with MOML,; (vii) our constrained meta-learning
approach.

Supplementary results. Table [] and Fig. [5|show the test result on the dataset CUB. From the
results, we can get similar conclusions to the experimental results on dataset mini-ImageNet. It is
shown in Table [ that our method significantly improves the PGD accuracy and the B-score than the
benchmarks and keeps the clean accuracy comparable. Fig. [5|shows that our method outperforms the
benchmarks in terms of both learning speed and test accuracy.

Table 4: Clean accuracy (abbreviated as "Clean Acc.") and PGD accuracy (abbreviated as "PGD
Acc.") on the CUB dataset for 5-way 5-shot and 5-way 1-shot learning.

Setting Method Clean Acc. PGD Acc. B-score
MAML + CP 49.60 £0.81 36.42+049 41.89+0.84
MAML + MOML  48.66 £0.87 3837 £0.90 42.75+0.89
ProtoNet + CP 48.04 £091 28.53£0.85 3542+0.90

1-shot  ProtoNet + MOML 4226 +0.89 32.19+£0.82 36.24 £0.85
BOIL + CP 5429 £0.83 33.65+0.67 41.34+0.71
BOIL + MOML 52.15+£0.93 4044 +094 4555+094
CML (ours) 5045 +0.73 4191 +0.83 45.84 £0.76
MAML + CP 68.50 £0.69 5296 +0.87 59.63 +0.77
MAML + MOML  67.57£0.78 5526 £0.87 60.68 £ 0.83
ProtoNet + CP 72.51 £0.68 52.61 +£0.77 60.81 £0.72

5-shot  ProtoNet+ MOML 71.10£0.74 56.11 £0.87 62.73 £0.76
BOIL + CP 76.25 £0.60 44.86 +0.81 56.28 £0.73
BOIL + MOML 71.03 £0.74 56.05+0.84 62.65 £ 0.81
CML (ours) 72.05+0.73 60.16 = 0.83 66.01 £ 0.76
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Dataset: CUB (5-way 5-shot) Dataset: CUB (5-way 5-shot)
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Figure 5: Test accuracy v.s. training task index on dataset CUB (5-way, 5-shot). Left: Clean accuracy;
Middle: PGD accuracy; Right: B-score.

Analysis and Proof

D Intermediate Results

In this section, we list several results that will be helpful in proofs of our main results.

D.1 Sensitivity analysis for optimization
Consider that an optimization problem P(e) which is parameterized by e:

r*(€) = argmin g(x,¢) s.t. h;(z,e) <0, i€l 2{1,...,m}.

Suppose that g is twice continuously differentiable and h; is twice continuously differentiable for all
1 € 1. We define the Lagrangian as

£(.13, 12 6) £ g(l‘, 6) + Zizl,uihi(xa 6)7

where (1; are Lagrange multipliers and 1 > 0. Suppose that the optimal solution z*(¢) is unique
for problem P(e), we define the set I(¢) = {i € I | hi(z*(¢),¢) = 0} and I®(e) = {i € T |
hi(z*(€),e) < 0}.

Lemma 1 (Modified from [53],[22]). Suppose that for all €, the function g(x, €) is strongly-convex
w.rt. z; hi(x,€) is convex w.rt. x for each i € I; the LICQ holds for P(¢). Then, the following
properties hold for any e.

(i) The global minimum x*(€) of P () exists and is unique. The Karush-Kuhn-Tucker (KKT) conditions
hold at x*(¢) with unique Lagrangian multipliers 1(€).

(ii) The vector function z(€) = [x*(e) ", u(e) 7] is continuous and locally Lipschitz. The directional

derivative of z(€) on any direction exists, and the directional derivative ¥V gz*(¢€) is computed as

Vax*(e) 1
=—-M d)N d)d
[ Vapie,a(e) b (& dNp(ed)

where (i1 q) is a vector function that contain all ji; with 1 € I(e,d) C I, and

Vit V.h
A z %] (e,d) *
Mp(e,d) = [ vwhl(e,d) 0 } (z*(e), ple), €)

is nonsingular and

).

Np(e,d) £ [V2,LT,Vehj g] (@ (), ule), e
)C L

Here, hy(c,q) is a vector function that contain all h; with i € I(e,d

(iii) If x* is differentiable at ¢, then the gradient is computed as

Vex*(e) _ _
oy | = o
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and

ve.ulc(e)(e) =0,
where jiy(e) is a vector function that contain all pi; with i € I(€); pijc (e is a vector function that
contain all ju; with i € 1€ (e);

VL V.h],

O RO Ll [ CNTOR

is nonsingular and
Ni(€) £ [VZ,LT, Ve o] (2" (), ple), ).
Here, hy(c) is a vector function that contain all h; with i € I(e) C I.

D.2 Sample average approximation for stochastic optimization

Consider the stochastic optimization problem with compound functions:
il’él;(lHQ(l‘) :hO (.’L‘,Ef]_(l’,f),...7Efl(l‘7£)), (8)

where £ € = C R is a random variable defined on some probability space; the function f;(z, z) :
XxEZE—=Ryi=1,...,1,and ho(z,y) : X x Rt = R.

The sample average approximation for the stochastic optimization problem (8)) is:

minH{f (x’gn) = ho (1‘, (1/n) Z fl (l’,fk) LR (1/n) Z fl (Qf,gk)> ) 9
k=1 k=1

rzeX

where each &, is i.i.d sampled from its probability distribution. Let H*, H be optimal values of
problems (8) and (@), respectively; X*, X be the sets of their optimal solutions; and
X! ={zreX:Hy(z) < H" +¢€}
Xpe={ze X Hy (x,6") < H, + €}
be the sets of e-approximate solutions in problems (8) and (9), respectively, and € > 0. Let
AXE XY = inf ||z’ —z|, AX',X)= inf ||z’ — z|.
(6 X7) = sup nf [l —al. (XX = sup inf a' o
The following lemma states the rate of convergence of the sample average approximation method for
compound stochastic optimization.

Lemma 2 (Simplified from Theorem 4.1 of [19]). Suppose that X C R< is a compact set with
diameter Dx and the following assumptions are satisfied.

(i) The function family {f;(-,%)}.e= is uniformly bounded by M for all j, i.e.,
SUP,ex .ez | fi(2,2)| < M; the function f;(-, z) is Lipschitz continuous with constant L. for
all jand all z € =.

(i)) The function ho(x,y) satisfies that, sup,cx ez |ho(z,0)] <  +oo, and
|h(z,y',2) — h(z,y",2)| < Ly ||y — y"| forall y',y" € R and all x € X.

Then, the following estimates hold ture:
C
ElH, - H"[ < —
nOt

and
2CDx
en®
where C = 2IN;Ly, Ny = Vd(L.Dx + M/+/(1 — 2a)e), and o can be arbitrarily determined in
a€(0,1/2).

EA (X!

eny

X7) <

Remark 2. In Lemma we pick that o« = & — 52—, we have that o € (0,1/2) withn > 1, then we
have that
2Ly v d(L:.D M1
B — 11| < 2/ ALeDx £ MVinn) (10)
vn
and
4DxIL L.D M1
EA (X7, x7) < ADxtaVd(LDx + Myinn) (11

ev/n '
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D.3 Rademacher average

For a set of points (z1,...,2,) = 2" in = and a sequence of functions {f (-,2;) : X — R},
define Rademacher average R,, (f,2") as

R, (f,2") 2 E, sup

Zozf x Zz

where o; are i.i.d random numbers such that o; € {£1} with probabilities 1/2;E, denotes
mathematical expectation over 0 = (o71,...,0,). Rademacher average of a family of functions
{f(-,2) : X = R},cz is defined as

R,(f,Z) 2 sup R, (f,2").

ZN~E

The following results and their proofs are shown in Theorem 3.1 of [9] and Theorem 3.2 of [19].

Lemma 3. For a random function f(-,£) : X — R and i.i.d random variables (&1, ...,&,) = "
sampled from =. Then, we have

Eennz lsup = Yo f(@&) - EEGEf(xug)‘ < 2Rn(f,5).

zeX | i—1
[2In L
< 2Rn(fa E) + 75'
n

The following lemma states the Rademacher average of Lipschitz functions f (-, 2;).

With probability at least 1 — 6,

n

LS 0~ Eecs(a,2)

=1

sup
zeX

Lemma 4 (Simplified from Theorem B.2 of [19]). Let compact set X C R be contained in
a cube with edge of length D, and functions {f (-, z;) : X — R}, be uniformly bounded by
constant M (z;) and Lipschitz continuous on X with constants L > 0, i.e., |f (x,2;)| < M and
If (x,2:) — f (y, )| < L||x —yl|| for any z,y € X and z;. Then, for any 2",

R, (f,2") < Vd(LD + M+1nn)//n. (12)

Remark 3. From the proofs of Lemmas Eland shown in [9 [19]], it is easy to extend Lemmas 3|and
to the vector function f(-,z;) : X — R, i.e

Ry (f,2") = Eq sup

Zazf 55 Zz

ifIIf (@, z)| < Mand || f (z,2) — f(y,2)|l < Ll — yll for any z,y € X and z;.

7

< 2R, (f,5), (13)

Zf 55 fz EEGEf(xﬂS)H

E¢nnz [sup

where R,,(f,Z) = Vd(LD + M~/Inn)//n. With probability at least 1 — §,

< 2R, (f,E)+ 212 f(LDJrMF)/fﬂ/an
(14)

n

S8~ Bz fr,2)

i=1

sup
reX

Here, we show and prove a further result.
Lemma 5. For the function f in Remark[3] we have

<4R,(f,B)* +

Eﬁ”NE Sup Zf x €z EﬁEEf($7£)
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Proof. When the random variable Y > 0, we compute the expectation as

BY)= [ (1= Fy() dy,
0
where  Fy(y) is the cumulative distribution function. Let Y =
SUP,ex ||% S f(@,&) — Eeexf(z, 5)“2. From (T4)), we have that,

2In } 2In §
Fe [ QRA(£,2)+ 1| =2 | = PV S @Ra(£,3) +\| =2) | 215,

n

ie.,

n(\/@— 2R, (f, E))2

1= Fy(y) < exp(- . ).
Moreover, when /y < 2R, (f,Z), we have
1-— Fy(:l/) S 1.
Then,
4R, (f,E)2 0 —92R = 2
E(Y) < / 1dy + / exp(—”(ﬁ 2£,E)) )dy
0 4R, (f,E)2 2
=\2 - nt? =\\2
:4Rn(fa‘:) + exp(—T)d(t—l—QRn(f,:))
0
o0 12 oo nt?
:4Rn(f,5)2+/ 4Rn(f,5)exp(—7)dt+/ 2texp(—7)dt
0 0
2
AR, (f,2)% + 4R, ([,5) ] — + =
Ro(£,Z) +ARa(£, D)) 5 +

n

Then, from (12)), we have
2

Eenaz 21612 i;f (7,&i) — Eeexf(,§) <
VA(LD; + MvInn)(4LDyvd + 4M+/dInn + 6)

)

n
where 2/n is omitted.

D.4 Non-convex online learning

Here, we provide a review of the online algorithms we use. Paper [50] studies the problem of online
learning with non-convex losses and proposes the Follow-the-Perturbed-Leader (FTPL) algorithm.

At each round ¢, the FTPL algorithm minimizes a perturbed summation of the loss functions revealed
from round 1 to ¢ — 1. In particular, at each round ¢, the parameter x; is obtained by following
optimization problem:

t
o1 = argmin »  fu(z) — o/ ¢,
roop=1
where the random perturbed vector o; € R is i.i.d sampled by {o; };lzl ~ Exp(n) with a contant
n > 0 ateach t.
Lemma 6 (Simplified from Theorem 1 of [50]). Let D; be the {, diameter of X. Suppose the losses

encountered by the learner are L-Lipschitz w.r.t {1 norm. For any fixed n, the predictions of FTPL
satisfy the following regret bound:

1 ZT Ly dD
T T 7 < 2pr?+ 7).
T & fe (xt) T zlgx;ft(”) <0 (nd L2+ o )
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E Proofs of Propositions I and 2]

We first define some notations used in proofs of our results. For data distributions D =
{Dy, D1, ..., Dy} and the training datasets {D!", DE", ..., DI}, we denote Dy = {Dy,..., D}

and DY £ (Dl ... D!}, which are data distributions and training datasets for constraint sat-
isfaction. Similarly, for data distributions D; = {Dgy ¢, D14, ..., Dm,+} and the training datasets

{Di",,Df,,...,Dlr ,},denote D4y £ {D1y,..., Dy} and DY, £ {DV",, ... DIy }. Recall the
notations defined in Section we use D" ~ D; to represent that all elements of datasets D" are i.i.d
sampled from the distribution D;, D' ~ D to represent D!" ~ D; for all 0 < i < m, and DY ~ D
to represent D! ~ D; for all 1 < i < m. Similar for Df’; ~ D; ¢+ and Djf",t ~ Dy

Denote 6* as the optimal solution of problem
Iergél E.p, [4o(8, 2)]
st. E,op, [:(0,2)] <c¢i,i=1,...,m.
Denote 0y, (Dy, D) as the optimal solution of the optimization problem
in B, [lo(6,2)] + 50 — B
min E, ., )2 -0 —
geo P00 2 (15)
st. E.op, [€i(0,2)] <¢i,i=1,...,m.
Denote 0, (Dy, DY) as the optimal solution of the optimization problem

A 2
min E...p, [6o(6,2)] + 116

1 (16)
St —— E 6;(0,2)<c¢,i=1,....,m

tr
|D’L | zEDfT

Denote 0, (Df", D) as the optimal solution of the optimization problem

A
_ 0o(6,2) + 2116 — b2
96@ |Dt | ;:7 2 (17)

s.t. E.vp, [&(9,2)} <c,i=1,....,m.

Denote 0, (D§", DY) = Alg(, h, D”) as the optimal solution of the optimization problem

A 2
th i 00300
(18)
< =1,.
|D”| ZE 0,2) <¢yi=
zeDi"

Define the feasible set in Problems (T3) and (T7) as K* £ {0 | E,up, [¢:(0,2)] < ci, i =1,...,m},
and define the feasible set in Problems (T6)) and (T8) as K" = {4 | ﬁ Y oeeper li(0,2) <y i =
1,...,m}. '

Define some functions for the following lemmas and the proof of Propositions|T]and [2]

Lp,(0) = Ezwo [bo(6, 2)],

L (0) |1>tr| D 4o(6,2)

2Dy
Lo,(0) 2 £0,(0) + 116 — b7,

A
Ly n(0) £ Loy (0) + 5“9 —hlP?,
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Cp, (0) £ E.up, [L:(0, 2)],

1
Cpir(0) £ D > 40, ).

zeDi"

To simplify the notation, we restate Assumptions [I|and 2] for a single constrained learning task as
Assumptions [3]and ]

Assumption 3 (Constraint qualifications). (i) For the data distributions D and training datasets D"
are sampled from D, with probability 1, the feasible sets K* in (I3) and K'" in (I8)) are bounded in a

compact set with diameter B.

(ii) For the data distributions D, the Slater’s condition (SC) holds for Problem (13)) with the margin
C > 0. For datasets D' sampled from D, with probability 1, the SC holds for Problem (I8) with C.

(iii) For the data distributions D, the linear independence constraint qualification (LICQ) holds for
Problem (13).

Assumption 4 (Function properties). (i) For any z € Z, the loss function {y(-, z) and the constraint
Sunctions 01(-,2),- -+ , € (-, z) are twice continuously differentiable.

(ii) For any z € Z, Ly(-, z) is Lo-Lipschitz, i.e.,
w,u € R

lo(w, 2) = Lo(u, 2)|| < Lollw — ul| for any

(iii) For any z € Z, Ly(-, z) is p-smooth, i.e.,
w,u € R

|Vl (w,z) — Vi(u, z)|| < pllw — ul| for any

(iv) Forany z € Z and 1 < i <'m, £;(+, z) is L.-Lipschitz, i.e.,
for any w,u € R,

Ci(w, z) = biu, 2)|| < Leflw — ul|

(v) Forany z € Z and 0 < i < m, £;(-, z) is convex.
(vi) Forany z € Z, and 1 < i <m, {;(w, z) — ¢; are bounded by M.

We introduce some lemmas required in the proof of Propositions [T]and 2}

Lemma 7. Suppose that the vector function 0 : [a,b] — R? is Lipschitz on [a,b] and the left
derivative V _0 and the right derivative V 1.0 of 0 always exists. Then, for any € ;" € [a, b].

10(") = 0(e")| < supeepo,y{max ([V-0(e)ll, [V6(e) )} — €”]l.

Proof. Assume that there exists €', ¢’ € [a, b,
10(€") = (")l = supeeia,py{max ([V-0(e)l, [V+0(e) ) }HIe" — €”[| + ¢

where ¢ > 0, then
> 110(ers1) = 0(er)]| = [10(€") = 0(€)| = supeeay {max (IV_0(e)|, [V +0(e))}HIe' —€” ||+,
k=0

where ¢g = € < -+ < € < €11 < -+ < €, = €’. Then, for the largest Lipschitz L; con-
stant on [ex, €x11], there must have Ly > supccjo,;j{max (|[V_0(e)[|, [V40(e)[)} + o=
For a sufficient large n, from the definition of the left and right derivative, we have L; <
max (||V_0k(e)||, |V+0(ex)||) + 0 for arbitrarily small 6 > 0, which contradicts that L, >
supecioimax ([V_0(e)l[, IV40(e)l)} + m Therefore,

16(e") = O < supeepo,y{max ([IV-6(e)ll, [V1O(e)[)}Ie" — €]l

O

Lemma 8. Consider an optimization problem
min g(z) s.t. hi(z) <0, i€ {1,...,m}. (19)
Suppose that the functions g and hy, - - - , hy, are convex; the Slater’s condition holds for Problem

(T9) with the margin C > 0; the constraint set K = {z | hi(z) <0, i € {1,...,m} is bounded with
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the diameter B; the function g is Lipschitz continuous with Lipschitz constant Ly. Then, Problem
(T9) is equivalent to the following problem.:

min g(x) + L* Z max {0, h;(z)}, (20)

i=1

where L* = LoB/C.

Proof. Since the optimization problem (I9) is convex and the Slater’s condition holds, then the KKT
condition holds at the optimal solution z* with the Lagrangian multiplier u*, and the strong duality
holds.

(a) We first show that Problem (T9) is equivalent to Problem (20), if L* is selected as L* >
max; {u}}.

Let 2* be an optimal solution solution for Problem (I9), for any = we have

g(:v)—l—L*Zmax{O,h( )} > g(x +Zmax{0uh( )} > g(x +Zuh

=1 i=1

From the Lagrangian saddle-point theorem in [6], since the the strong duality holds and (z*, u*) is a
pair of primal and dual optimal solutions,

m

D+ Y uthi(@) > g@) + > uthi(a?) 1)
=1 =1

for any . From the KKT condition at (z*,u*), we have Y .~ | ufh;(z*) = 0. Then,

g(x)+ L") max {0, hi(z)} > g(a*).

i=1
for any 2. Thus, 2* is an optimal solution of Problem (20).

Let Z be an optimal solution solution for Problem (20), then

g(@) + LY max{0,hi(z)} < g(z") + L* Y _max {0, hi(z")} = g(z*).

=1 i=1

If z € K, then g(z) + L* Y., max {0, h;(Z)} = g(Z) < g(z*) < g(x) for any x € K, then T is
an optimal solution of Problem (T9).

If z ¢ K, then

9(@) + LY max{0,hi(z)} > g(z —|—Zmax{0 uthi(z)}

)+ ufhi(@) = g(a*) + Zu}‘hi(w*) = g(a7).
i=1 =1

Then, ¢(z) + L*> ;" max{0,h;(z)} > g¢g(z*), which contradicts that g¢(z) + L*
S max {0, h;(Z)} < g(z*). Thus, Z € K and Z is an optimal solution of Problem (T9).

Then, Problem (T9) is equivalent to Problem (20)), if L* is selected as L* > max; {u}}.
(b) We next show that max; {u}} < LoB/C.

Since the Slater’s condition holds for Problem (I9) with the margin C > 0, there exists Z such that
hi(z) < —Cforalli € {1,...,m}. From 1)), we have

)+ ufhi(@) = g(@®) + Y uihi(z”) = g(a”).
i=1 1=1
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Then,

and then
C> ui <g(@) —gla)
=1
Then,
m ~ * L
max {u}} Z:S 9(Z) g(x)i 28
From (a)(b), the proof is finished. O

Lemma 9. Suppose that Assumptions[3|and[are satisfied. Then,
1
16r(D5", D)) = (Do, Dy)|| < 3 S, [VeoLpir (0) — VoLp, (0)]]-
where \ is selected as \ > 0 for Problems (16) and (I8).

Proof. Consider the following optimization problem, which is parameterized by e:

_ _ \
0(e) =min (1 —€)Lp,(0) + eLper(0) + 5“9 — h|?

S.t. Eszi [Kl(Q,z)] <c,t1=1,...,m.

(22)

We denote the optimal solution of Problem (22) as 6(¢) and consider that € € [0, 1]. We can see that,
Problem (22)) is reduced to Problem (T6) when ¢ = 0, and Problem (22)) is reduced to Problem (T8)
when € = 1. Then, 0 (Do, D)) = 0(0) and 0, (D", D)) = 0(1).

From part (iii) of Assumption[3] The LICQ holds for the optimization problem Problem (22)), since
Problem (I3) and Problem hold the same constraints.

From part (v) of Assumption £o(, 2) is convex. Then, Lp, () is convex and Lp:-(6) is convex.
Then,
(1= €)Lp,(0) + L (6)

is convex. Since 3 |6 — h|? is A-strongly convex, then

A
(1 —€)Lp,(0) + Loz (0) + 5“9 —hl?

is A-strongly convex.

From part (v) of Assumption El, 4;(+, z) is convex, then ﬁ > .epir bi(0, z) — ¢; is convex for
i<i<m. 1

From Lemma and above conditions, the optimal solution f(¢) of Problem (22)) exists and is unique.

The KKT conditions hold at §(e) with unique Lagrangian multipliers p(e). The vector function
z(e) 2 [A(e)T, u(e)T]T is continuous and locally Lipschitz at any ¢ € [0, 1] Since the function
z(€) 2 [0(e) T, u(e) T]T is locally Lipschitz on a compact set [0, 1], then z(e) = [0(e) T, u(e) ] T is
Lipschitz on [0, 1].

From Lemma The directional derivative of §(¢) on any direction exists. For € € [0, 1] C R, the left
derivative and the right derivative of 6(¢) always exists. We denote the left derivative as V_6(¢), and
the right derivative V1.6(e). We have

{ V0(e) } _ [ ViL (), ple),€)  Vodre,a(0(e),e) ] { Vi L(0(c), ple), )
Vi pr(e+)(€) Voqr(e+)(0(€), €) 0 Vetries) (6(c), )(23)

26



and

[ V_0(e) } _ { V3LO(e), u(e)s€)  Voar(e,a(O(e),e) }1 [ Vi L(0(e), ple), €)
V—IU'I(Q—)(E) VGQI(E, (0(6)76) 0 Veq[(e’,)(9(6)76 (24)
Here,

(0, ¢) = |D”| > 0, 2) -
zeDi"

and gy, ) is a vector function that contain all g; with 7 € I(e,+) CI; BI(e,+) MI(e,+) I8 @ vector
function that contain all u; with ¢ € I(e,+) C I; q1(e,—) 18 @ vector function that contain all g; with
i € I(e,—) C I; puy(e,— is a vector function that contain all z1; with i € (e, +) C I. Denote

A
9(0,€) = (1 — €)Lp, (0) + eLoper(0) + §||9 — h|%.
Then,
L0, p,e) =g(0, ¢ +Z Higi(6; ).

We can compute
véqI(e,—i-) =0

and
Ve L(0, 1, €) = VoL (0) — VoL, (0)

By the computation of (23), we have

V.i0(e) = (Vgﬁ_l - v3£_1VQI(e,+)(Vq?(e,Jr)vg‘c_quI(e,Jr))_1Vq?(5,+)v3£_1)

~ ~ (25)
(VoLoy (8(e)) = VoLo, (0(e)))
Since V4L~ is symmetric, then it can be represented as V2L ™1 = M7 M, then
V3L~ = VL Var(e 1)(Vaie ) VoL Vare ) ' Vare ) VoL
=|MT(I = MVqr(e 1y (Vi yM MV a1 1)) Vage M| 26)

—|MT(I = N(NTN)"'NT) M|
<[MTY|IL = N(NTN)TENT[|M ]
where N = MVqr(c 4.

Now, we have |[M|| = [[MT|| = \/Amaz(MTM) = \/Amaz(VZL1) = /][ V2LT
Amaz denotes the largest elgenvalue of the matrix. Then || M ||HM T = V2L~ 1|| We have
L8, p,€) = g(0,€) + > 1" 1iqi(0, €) where g;(-, €) is convex for any € and g(-, €) is A-strongly
convex, and y; > 0, then £ is A-strongly convex. Therefore, ||[V3L|| > A and )\mm(Vgﬁ) >\,
where \,,;, denotes the smallest eigenvalue of the matrix. Then,

1 1
M|[|MT| = [VZL7Y = Anae(VELTH = ————— < <. 27
MM = (VoL (VoL™) (V2D S % 27)

Also, since all eigenvalues of N(NTN)~!N7T are 0 and 1, then
”I - N(NTN)ilNTH = )‘max(l - N(NTN)ilNT) =1 (28)
From @5) ZHEDE.
190000 <IVEL™ = V3L Varie) (Valie o) V3L Vares) " Valie 1 V3L
IVoLper(0(€)) — VoL, (0(e))]l

<3 I¥6Loy (0(0) = VoL, (O]
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Similarly, we also have
_ 1 _ _
IV-8(e)l < S IVoLoy (6(e)) = VoL, (9(e))ll-

Now, we know 6(¢) is Lipschitz on [0, 1], and

10(Dg", DY) = 01(Do, DY) = 110(1) — 0(0)]| < s 16(e) — 0(0)]I-

We denote that €* = arg max.co 1) [|0(€) — 6(0)]|. From Lemma(7|
10(e") = 0(0)[| < S[up*]{maX(HVj@)Hv IV-48(e)ll) }e*

€c

< es[tolp*]{maX(HVj(c)H, IV+0(e)l}-

We donote that ¢ = arg max. (g, -] {max (||[V_6(e)||, | V+0(€)||)}. Then, we have
10x(Dg", DY) — 0n(Do, DY) = 110(1) — 0(0)]| < [|6(e”) — 6(0)]]

< $I¥0Loy (06)) ~ VoL, (6(6))| (29)

1
< 1 sup IVoLper (8) = VoLp,(0)]-
feK*

Lemma 10. Suppose that Assumptions[3|and[d are satisfied. Then,

Epyn, [[Cogn(0n(DE D)) = Loy 1 (0n(DY, D1))]] <
Lo+ (6" — || + B)
N

where the constants L., B, M, Ly, C are referred to Assumptionsand

2omBVd (LCB + M,/In |Dtg>

Proof. According to the part (i) of Assumption [3| the feasible sets K and K!" are bounded in a
compact set © with diameter . Then for any 6 € ©, |0 — 6*|| < B, since §* € O. The Lipschitz
constant of Lper , on © is

1
sup ||V Loy 1 (6)] = sup | i D Vilo(8,2) + A6~ h)|
LEE) 0co | 0l eptr
1
<sup||—= Vilo(0, 2)|| + Asup |6 — h||.
sup | IDé’lzeZDt,. 1600, )]l + Asup 6 = A

From part (ii) of Assumption[d] ¢o(-, z) is Lo-Lipschitz continuous, then
1

sup ||z Vilo(0,2)|| < Lo.
sco | Dy |Z;Dt,.
0

Also, we have
sup || — h[| < [|0" — h|| + sup |0 — 67| < [|60" — h|| + B.
USC] e
Thus, the Lipschitz constant of Lpr 5, on © is Lo + A([|6* — k|| + B).
From the parts (i)(ii) of Assumption [3|and Lemma 8] the optimization problem in (T8} is
mein Lper p(0) st Cpr(0) —¢; <0,
and equivalent to:
LoB + \B([|6* — k|| + B)
meinﬁl(ﬁ) = Lper n(0) + 0°F (HC [+5) Zmax{CDET(G) —¢;,0}.

=1
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The optimization problem in (T7) is
rnein Lpir p(0) st Cp,(0) —c; <0,
and equivalent to:

LoB + AB(|0* — h|| + B)
+ C

Z maX{CDZ. (9) — Cj, 0}

i=1

min £(6) = Loy 1(0)

According to Lemma[2]and Remark 2]
Epirop, [[L2(0n(DY, D)) — L1(0(Dy, DY)
Lo + A(||0* — || + B)

]

< 2mBVd (LCB + M,/In D5:|>

Since 0, (D§", Do) is the solution of (T7), then

LoB+ AB(||C9 —MEE) S wax{ep, (04(DY, D4)) - 0} =0,

i=1
then

Lo(0n(DY, D)) = Logr 5 (00(DG", D))
Similarly,

L1(0n(Dy’, DY) = Lpgr 1 (08(Dy", D).
Therefore,

Eptrop, Hﬁpgr,h(eh(pérapﬂ) - ﬁpgr’h(eh(Dé’",Df[))H
Lo+ X\(||0* — || + B)

c\/I|

< 2mBVd (LCB + M,/In |Dt+’">

Lemma 11. Suppose that Assumptions[3|and[d are satisfied. Then,
Eptr o, [10:(DY, DY) — 0n(Dy", D+ )|
Lo+ X(]|0* — k|| + B)
cv/IDY | ’

where the constants L., B, M, Ly, C are referred to Assumptionsand

< 48\/m\/E(LCB + M, /In|DY|)

Proof. From the proof of Lemma 10} Problem (T7) is equivalent to ming £2(6) and Problem (T8) is
equivalent to ming £1(6). According to Lemma[2]and Remark 2]

Lmaw
Epirop, [A(64(DY, DY), 05,(D5, Dy )] < 4mBVA(LB+ My /In|DY))

/DT
for any € > 0, and L, is selected as

BLo + AB(|6° — h|| + B)
Lmax = C )

where the sets
05,(Dy,Dy) = {0 € ©: L1(0) < L1(64(Dy", DY) + €},

@;(Dé"7DZ') = {0 €0:L(0) < Lg(@h(DéT',D+)) + 6} .
and

L1(8) = Loy n(6) + Linaz y_ max{Cp:r(8) — ¢, 0},
i=1
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L(0) = Lpgr 4(0) + Limaz »_ max{Cp, (0) — ¢;, 0},
i—1
and A is defined in Section[D.2]

Then we have

Lmaac
Epirop, [A(64(DY, DY), 05,(DF, Dy))] < 4AmBVA(LB+ M\ /In| Dl |) —2=—

/DT

ie.,
Epwep, |  sup inf [0y — ]| < 4mBVA(LB+ M\ /in D)Lz
* 0,05 (Dgr, Dir) 005, (DY, D) e/|DY|
Then,

L
E,DZ'NDJr |: 1nf H91 — 6||:| S 4mB\/g(LCB + M ln IDfDﬂ

€05, (Dy",D+) e/| D]

for any selected 6, € ©5 (D", DY). Then,

Lmam
EDM[ inf )||eh<D3ﬁsz>en]gmsﬁwcsw In Dy ) =

0€0s, (D" Dy e\/|DY]

Then, there exists 6 € O5,(D§", D), such that

Loax
Epirp, [10n(D§, DY) = 0]]] < 4mBVd(LS + M\ /In | DY) —22—

/D7

Then, for any sampled D", there exists § € G)Z(fo, D.), such that

Lma;v
Epirop, 164(Df DY) — 6] < 4mBVA(L.B + My /ln [Di7 )

/D7
Then,

Epip, [164(DY, D) = 64(DY D)1 < Epirs, [104(DY DY) — 6] +

Lmaz
< AmBVA(LB + M\/In |Dr|) =222 4 ¢,

/D7

Select that € = , [4mBvd(L.B + M+/In[D7 )Lz we have
N

Lmax
Epiro. [104(DY . D7) — 0,(DY D)) < 4\/m6x/&<LcB + My/n D)

Nl

Substitute L4z

= BL“’L’\B(”CQ =h1+5) into the inequality, we have

Epir o, [|04(DF, DY) — 6,(DF, Dy}

Lo + X(||0* — R|| + B)

CVIDY]

< 43\/m\/&(LCB + M\/In|DY|)

O

Propositions 3] and [] state the generalization with respect to the objective risk and the generalization
with respect to the constraint violations, respectively.
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Proposition 3. Suppose that Assumptions 3| and ] are satisfied. Pick that X > 0 for Problems

@-@). Then,
Eptrp [max {Lp, (0,(DY, DY) — Lp,(6%),0}] < |9* R

N Vd(pB + Loy/In |Dgr|)(4p8f +4Lo+/dIn[DE'| + 6)
AIDg|

Lo + A\(||0* — | + B)

¥l

+ 2mBVd (LCB + M,/In |Dt;>

o ( In DYy <1n|2>t:>4> |

1
Dy | D)5
where the constants p, L., B, M, Ly, C are referred to Assumptions [3|and

Proof. For D" ~ D, consider following decomposition:
]EDt'r'ND [max {EDO (Hh(Dér,Dﬁ")) - [’Do 9* 0}]
< Eptrap [max {Lp, (0, (D, DY) — L, (0n(Dy, D)), 0} ]
+ Eptrnp [max { Lp, (01 (D§, D)) — Lp,(6%),0}]
Since for any Df", we have Lp, (0,(DE", D)) — Lp,(6*) > 0, then
E'Dt'r'ND [max {‘CDO (Qh(Dé’", D+)) - ['Do (9*)7 0}] = E'DtT'N’D [,CDO (Gh(Dé’“, D+)) - ‘CDO (9*)] .
Then,
EDtTND [max {£D0 (9h (D(t)r, 'DZ)) EDO O}]
< Epernp [max {Lp, (01(Dy", D)) — Lo, (0n(Dy", D)), 0}]
+Eperep [ﬁbo(eh(fo’ Dy)) = Loy n(0a(Dy, D+))}
+Epin Loy 1 (0n(DF . D)) = Lo, (67)]

< Epnp [max{cm(eh(m%w)) Lo,(04(D . D)), 0} ~ J10x(D§ +>—e*||2}

B
+Epran L0, (04(DE, D)) = Loy (0n(DY, D1))| +Eper [y 1 (00(DE . D)) = L£,(67)]

A C

(i) Consider C', we have
C =Eperp {L:Dé,,h(ah(pg", D.)) — cpo(e*ﬂ
—Epirn, [Epynn, Lo u(0n(DF,D+)) — Lo,(0%)]]
* A *
~Eouran, [Eoga, | Loy a0u(DE . D1)) ~ Loun(®) + 167 - 1P|
* A * 2
Epypy | Loy 0n(DY D+)) = Loy n(07)]| + 51107 = bl
* A * 2
Epypy | Loy s 0n(D, D2))| = Lo (09| + 510" = bl
* A * 2
= E'D“N'D+ [ED“N'DO |:£th7 eh DO ,D+)) - ﬁpér’h(e ):|i| + 5”6 - hH .
The last equality comes from

Epgp, [ Loy 1(67)] = £o,n(67).
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By the definition of 6, (D{", D, ) in (T7), we have
Lper w(0n(Dg, D)) = Logr 1 (67) < 0.
Then,
c <210 — P
<3 .
(ii) Consider A, we have
A=Eperp [£0, (04(DY D)) — Loy (64(DF, D))

< Eperp [Ly(04(DY, D)) = £0,(64(Do, D)) + Log (94(Do, D)) = Loy (0n(DY, D))
Ay
4 Eporp [EDO (64(Do, D)) — Loy (0 (Do, D+))} .

Ay

For A5, we have
Az =Epirap |:£D0(0}L(DO7D+)) - 5@37‘(9h(DO,D+))}
= Epyp, [Epy~n, [£0,(0n(Do, D1)) = Loy (64(Do, D)) |
=Epirop, [ﬁDo(Qh(DOaD+)) —Eptrp, [EDéT(ah(DOaD+))”
For A1, we have
A1 =Epyp, [Epyan, |(£p, = Log)(04(DF D1)) = (£, — Loy )(04(Do, D2))] | -

From Lemma 9}
1
165(D5", D)) = 0n(Do, D)l < 5 sup Vo Lpy(0) = VoL, (0)]- (30)
cicr

From the mean value theorem,

(Lo, = L) (0n(Dy, D+)) — (Lpy — Lpgr ) (01(Do, D))
< VLD, (0) = VLo (0)I[10n (DG, D)) = 04(Do, DL)|I,

where 6 is in the middle of 6,(D§", D) and 0,(Dg,Dy), ie., 0 = (1 — a)0,(DE, D) +
abp (Do, D), with o € [0, 1]. Then, we have

VLD, (0) = VLpy ()] < Sup Ve Loy (0) = VoL, (0)]-
e

Then,
(£, — Lo )08(DE, D1) = (L, — Loy ) (04(Do, D)

< sup IVoLper (0) = VoL, (0)|[10n(Dy, D)) = 01(Do, DY),
e

From (30), we can get

(L0, = Loy ) (04(D D1)) = (L, — Ly )(O4(Do, D-)|

1
< sup [[VoLpy (0) — VoLo, (0)ll 5 sup [[VoLpy (0) = VoLo, (0)]
oK feK

1
< 1 sup [VoLps (0) — VoLp, (0)|.
feK*
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From Lemma 3] since the Lipschitz constant of V4(-, z) is p and the upper bounded of V{y(-, z) is
Lo, we have

Enyny [|(£o0 = Loy JOu(DY, D)) = (£, = Lyy) (04(Do, D-) |

1
< Eogran, |3 20 [Voog(0) - Voln, O)]F

_ Vd(pB 4 Lo/In [DY[)(4pBVd + 4Lo+/dIn [ DY | + 6)
- Dy

Then,
A< AL =Eppp, [Enyon, ||(E00 — L) 0h(DE,D1)) = (£p, — Loy ) (04(Do, D)) ]

_ Vd(pB + Lo/In[DF 1) (4pBYd + 4Lo\/dIn [DF'| +6)
— )\|Dtr‘

(iii) Consider B, we have

B :]EDtrN’D [max {ﬁpo(eh('DéT,'DZ)) ['Do(gh DO 7'D+ } 7”9}1 D D+) — 6‘*||2:|

< Epirp [max {Log (0,(DY D)) ~ Ly (04(DFD1)),0} — J10(DF D) 0*||2]

B,

+Epirp || £ (64(DY D)) = Loy (0(DF D)) + Loy (0u(DY, D)) — Lo, (64(DE . )| ]

B
Then,

By =Eptrap [maX {‘CD})T(eh(IDéTa,DZ)) - EDgr(eh(D(t)'7D+))70} - §||9h(D6'7D+) -0 |2}
< Eperp [max { Loy (04(D§, D)) = Log 1(64(DY . D4)),0}]
<Eptrop Hﬁpgr,h(eh(péra DY) — Loy n(0n(Dy D+))H

=Epg-p, [Enirn, [[Cop (0D, D)) = Loy 1 0n(DF )] -
From LemmalI0] we have
Lo + X(J|0* — || + B)

¢/IDT]

By < 2mBVd (LCB + M,/In |Df[|>

For Bs, we have

By =Eperp || L, (64(DY, DY) = Lo (0,(DY, D)) + Lot (0,(D§, D+)) — Lo, (0n(DG, D))
L 0 0

“Epnn [| (£, — Log ) O4(DF, D) = 00(DF D))

<Eprep | sup | [Volop(6) ~ olo, O)I64(DF. DY) 04D DI
L e *U tr

Then,

B3 <Eptrap , ,iup]c IVoLper(0) — VoL, (‘9)|2} Eptrop [[|0n(DY, DY) — 04(DY, D4)|1?] -
LOeKC*UKtr

From the computation of A;, we have

Epin| sup  [Volog (6) — VoL, (0 M
0cKC*UKET

_ Vd(pB + Loy/In D) (4pBVd + 4Lo+/dIn [Df[ + 6)
- Dg' |
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From Lemma [T}

R . ) In |DY|
Eptrp [||9h(D0 7D+) — 0n(Dy", D4 )| ] =0 |Dtr| )
+

Then,

In[Dy| (In[DY )3
By <O 0l. + Bj.
- ( gl oy ) S

From (i)(ii)(iii), we have
A
Eptrop [max {EDO (9h(D6T,Dﬁ:)) - EDO(G*),O}] < §||0* — h||2

N Vd(pB + Lo+/In | DY [) (4pBVd + 4Lo\/dIn [D| + 6)
AlDg |

Lo + X(||0* — R| + B)

CV/IDY]

+ 2mBVd (LcB + M,/In |Dt;>

Lo lnlbérl.(lnlDiT\)%_
Dy | DY |1

Proposition 4. Suppose that Assumptions[3|and[|are satisfied.
2vd(L.B + M/ |DY])
VDY

for each 1 < i < m, where the constants L., B, M, Ly, C are referred to Assumptionsﬁland

EDtrND [maX{CDi (Gh (Dgr, Dﬁ:)) — Ci, O}] S

Proof. From Lemmas [3]and [4]

2Vd(LB + M/ [D7])
VIDY| '

Eopn, | 5w [Coyr(6) . (0)]] <
OeKtruUK*

Then,

s T T T 2\/&(LCB+M 1n|DtrD
Epyron, |[Cor (6(D, DY) = Co, (6(D§, D)I| < N R

Since
C’DET‘ (Gh(DéT,DZ)) — C; S 0,
and
Eptyn, [max{Cp, (04(Dif, DY) = Corr (6(DY, D)), 0}
< Epg o, [[Cor (0u(DY DY) ~ Co, (04(DF D))
we have
o 2V d(L.B + M+/In DY)
Eptrop, [max{Cp, (0, (D§", DY) — ¢;,0}] < o +U
+
Thus,

Eptrp [max{Cp, (0x(Dg", DY)) — i, 0}]
2vd(L.B + M+/In|DY])
VIDY '

~Epyp, [Eptrp, [max{Co, (6n(Dl, D)) — i, 01]| <
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Proposition [T|can be proven by Propositions[3]and ] Proposition [2]can be proven by the following
proposition.

Proposition 5. Suppose thatAssumptionsandare satisfied. For a sequence 1.7 = {b1,- - , o1},
pick the regularization parameter

2v/d(pB + Lo/In [DY)
A = i b
Dist(¢r.7, Ti.r)\/|DF |

where
1 &1
Dist(dpr.p, Trr)2 2 =S5 21167 — 6|2
ist(rr, Tior) T; 5167 = ol
Then,

T
1 *
f Z EDETNDt [maX {‘CDO,t (Alg()‘a ¢t7 Dfr)) - £Do,f, (Gt )v O}]
t=1
_ In | DY | In | DY |
< O | Dist(¢pr.1, Ti:1) 2+ .
( A

T
1 In |DIr ,
T E Eptrop, [max{Cp, , (Alg(\, ¢, D}")) — ¢;,0}] <O ( |Z|)t:|— > Vi=1,...,m.
t=1 +

Proof. From Propositions [3|and @] for problems (I3)-(I8), we have

. . A
E'Dtr,\,'D [max {L:'Do(gh(DBT7DjZ)) - LDO(Q ),0}] S 5”9 - hH2

N Vd(pB + Lo\/In DY) (4pBv/d + 4Lo\/dIn | DY | + 6)
AIDg|

Lo + X(||0* — h|| + B)

Cy/IDY] '

+ 2mBVd (LCB + M,/In |Df(|>

and
2vd(LB + M/In[DY
Eptrop [max{CDi (Hh(Dér,Df[)) - ci70}] < ( D D4 |)
+
Consider the task sequence {77, -+, 7r} and
1 -1
Dist(¢r.r, Tir)* £ ; 31105 = el

for the optimization problems in (I) and (3), we have
1z
= > Eprp, [max{La,, (Alg(\, 61, D)) = L, (67),0}] < ADist(¢r.r, Tucr)?

t=1
Vd(pB + Loy /In | DY, |) (4pBVd + 4Lo\/dIn D] + 6)

- DY

LO + A(\/ﬁDlSt((ﬁlT, 7-1:T) + B)

¢/ID7]

+2mBVd (LCB + M,/In Dm)

Consider Dist(¢1.7, T1.7) > 0, let
\ 2v/d(pB + Lo\/In |DY|)

 Dist(érr, Tir)V/|DY |

)
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Then,

T
1 *
=" B, [£o,, (Alg(\ 61, D7) = Lo, (67)]

t=1

4f(p6 + Lo/In| D) Dist(¢1.1, Tir) + 3Dist(dr.1, Ti.r)
DY

L() + >\(\/§D713t(¢1T7 7—1:T) + B)

]

+ 2mBVd (LCB + M,/In D3:|>

We omit some constants with small quantities,

T .
1 4Vd(pB + Lo/In[Dy ) Dist(¢r.r, Tier)
= Epprap, [Lp,, (Alg(\, 61,D}")) = L, (67)] < | 1, Ti:
T N
, 2LoBmVa(LB + My/WDT])
C |Dt7‘|

and

T
1 2vd(L.B + M+/In|DY])
= Epirop, [max{Cp, (Alg(X, ¢1,D;")) — ¢i,0}] < :
T ; [ ' ] VIDTT

Then, we have

T
1 X
T Z ]ED?"NDt [[:Do,t ('Alg(Aa d)ta Dzr)) - ‘CDU,t (et )]
t=1

, mDy|  [l|D]
< O | Dist(¢pr.1, T1. ol 4 .
( e T g, \/IDZ

T
1 In |Dtr _
T E Epirop, [max{Cp, , (Alg(\, ¢, D}")) — ¢;,0}] <O ( ||Dt:|_ > NVi=1,...,m.
t=1 +

O

By selecting ¢, = ¢ for each ¢ in Proposition 5] Proposition [2is proven.

F Proof of Theorem 1l

As we apply the FTPL algorithm to the meta-objective function in the online constrained meta-
learning problem and formulate the problem (E[) we require some properties of the meta-objective
function. Note that £** (Alg(X, ¢, D}"), Dg4') in @) is a function of the solution Alg(X, ¢, D}") of
the optimization problem (3) and its property is shown in Proposition [f]

Proposition 6. Suppose that Assumpttonsland Iare satisfied. Then, LY (Alg(), -, D), ’D”al)
Lg-Lipschitz.

Proof. Since {y(-, z) is Lo-Lipschitz, i.e., ||[lo(w, 2) — €o(u, 2)|| < Lo|lw
£ (Alg N, w, DY), DY)~ £ (Alg(A,u, D7), D) < Lol Alg(h,w, DY)~ Alg(A,u, DY)

Then, to show Proposition[6] we need to show

, we have

Consider the problem

A
Alg(\, w, D" —argmm Lo(0,2) + =160 — w]||?
(O ,Df7) = g PIRLEES O

1
S.t. ﬁ Z gi(97z)§0i’t7 7;:1,...7m,

D
| g zeDIT,
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then, for 0 < a < 1, we have

Alg(\, aw + (1 — @)u, DI") = argmm

A
§ - 1—a)u—0|?
a D6 lo(0, 2) 2||aw+( a)u — 0

DtT

s.t. ’D ZE@Z <cit t=1,...,m,
‘ | EDt7

From part (iii) of Assumption [T} The LICQ holds for the optimization problem. From part (v) of

Assumption £o(+, ) is convex, then ﬁ ZZEDSTt lo(0,2)+ 5 |l aw+ (1 —a)u— 0% is A-strongly
0,t ,

convex w.r.t. 6.

By Lemma|I| and above conditions, similar to the proof of Lemma|§|, we have

| ALg(\, w, D}") — Alg(X, u, Dy7)|
1

1
<= == - < |lw — ul|.
<3 S = Xl < flw =]

A
“Va92||aw +(1—a)u— 9H2

Then, we have

Hﬁval Alg()\ w 'D”) Dval) £val(Alg()\ " Dt7) Dval)H
< LOHAlg(Aa w7D£T) - AZQ(A,U, IDET)” < LOHw - ’LL”
The proof is done. O

Proof of Theorem[l] From Pr0p051t10n|§|, LYY Alg(N, -, DI, D”‘”) is Lo-Lipschitz.
By Lemmal(6] we have

T T
1 1 : va ' va
E, | 2 £ (Alg(, 60, D). DEG) — o ink > £ (Alg(A, 6.} >,Do,,f>]
t=1 t=1
dD
< DL+ —
@ <77d 1 Lo + 77T>
Select that )
T LAt
we have
T T
1 ‘. va 1 : va Lr va
E, TZLW(Alg(A,@,D; ), Dy — TlngL L(Alg(\, ¢, Dt ),Do’tl)]
t=1 t=1

Dyd3 Ly
<o =0 ).
- ( VT )

T
1. val tr val val tr val
TlngL (Alg(X, ¢, D}"), DS S—ZE (Alg(\, 6", Di"), D84,

t=1

Moreover, we have

where S*(T1.7) £ ming Dist(¢p, T1.r) is the task dissimilarity and ¢* £ arg min, Dist (¢, Ti.7).
Then,

T
%ZEUGZ(AZQ ¢taDtT) Dval)‘|
=t 31)

T
1 va * r va
fzﬁ Z(Alg()‘7¢ 7D§ )7D0,tl)
t=1

Dyd3 Lo
+0 | ===2).
( VT )
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From Lemmas 3] and [ we have
2V dLoB(1 In |Dyal
ED“‘”NDM bup|/j”al(9 D”“l) Lp,,0)]] < VL "’\/TOD.

Here, we represent Lp, ,(0) = E.~p, , [fo(0, 2)]. Then, we have

va o va ., 2V dLoB(1 + \/In |Dg*|)
Epselp,, 1L (Alg(A, ¢, Df"), D§Y) — Lo, ,(Alg(X, ¢4, Df7))[] < ° el |
and

. ! . 2V dLoB(1 + \/In | D)
Bogtpa, (167! (A9 6", DI, DE — Lo, (Alg(a, 7, D)) < 220 |
Combine with (3T)), we have

Eo pgainpy.,

t=1 t=1

4[ dLoB(1 + /In| D) Dyd? Ly
VD] VT

T
1 r
T Z ‘CDO,t (AZQ(A, ¢t7 D)f ))‘| S EJngﬁJN'Do,t

T
=D Lo, (Alg D?»]

Then,

Nl =
M=

(L, (Alg(X, 61, Dy")) — Lo, (92‘))1

Eopyatam.,
t

I
-

<EO’ DvalN'DO +

N[ =
HMH

(‘CDO t ('Alg( ¢*7 DET)) - EDo.t (9:))]

4fLOB 1+ \/ln R Dyd3 Ly
|Dval| \/T ’

which implies that
E [RO, [1:7) ]

T
1
T E RO,t(Alg()‘agbt»DfT))
t=1

= ]Ea,Dg;th,Dy'NDt

i T
1
=Eopyainn,, | T > Epir.p, [Ro,t(Alg(/\,d)t,D?))]]

t=1

T
1
= EU,D&’%LNDOJ ? Z E'Dh ~Dy [max {‘CDO,t (Alg(A, ¢t7 D;T)) — ‘CDO,t (0:), O}]]

t=1
T
< ]Ea,ng;'NDo,, Z DT ~Dy max {»CDO t(Alg( 0", Dir)) - ‘C’Do,t (ef), 0}]]

4{ dLoB(1 + /In|Dyet]) Dyd3 Ly
|'Dval| \/T

=E; pyeinp,

T
%ZEW.NDt [Ro,¢(Alg(A, ¢*7D§T))]1
t=1

4fLOB 14 /In [Dge7)) ) v o (Dld%LO>
By Proposition (2), pick the regularization parameter
_ 2Vd(pB+ Lo/In|DY )
S (Tir)V/IDY]

)
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we have

T
1 In |DE" In | Dt
- E Epirp, [Rot(Alg(\, ¢, D;"))] <O | S*(Ti.r) | o | + | tr+| :
T g 1D§ DY

t=1

Thus, we have

_ In |DE| In |DY| In | Dy 1
E[R : S O|s* 71:T) 0 + + + 0 + —
Hogr) ( | T T G Iy

By Proposition (2), we also have

1« - [Py .
T Z]E'D?N'Dt [Rl,t(Alg()‘7 ¢ ’Dt ))} < @ |Dt7-| ) Vi = 17 ceey, M
t=1 +

Then,

7 In DY
E[Ri,[lzT]]S(9< o] +|>,Vi:1,...,m.

Proof of Corollary[l| We have

T

8" (Tir) 2 min 737 5107 — ol
and
S (GT)? 2 minBrsyir) |5 107 — 0l
Then,

R .
72 5llor ol

S*(p(T))* £ minEr; ... 75mp(7)
¢ t=1

It is easy to see that
E7~pm) (S (Tl:T)Q] <8 (p(T))Q.

Similar to the proofs of Theorem [T]and Proposition[5} Corollary [T]is proven.
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