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Abstract

Reinforcement learning has been extremely successful across several applications1

in which agents have to learn to act in environments with sparse feedback. However,2

despite this empirical success there is still a lack of theoretical understanding of3

how the parameters of reinforcement learning models and the features used to4

represent states interact to control the dynamics of learning. In this work, we5

use concepts from statistical physics, to study the typical case learning curves for6

temporal difference learning of a value function with linear function approximators.7

Our theory is derived under a Gaussian equivalence hypothesis where averages8

over the random trajectories are replaced with temporally correlated Gaussian9

feature averages and we validate our assumptions on small scale Markov Decision10

Processes. We find that the stochastic semi-gradient noise due to subsampling the11

space of possible episodes leads to significant plateaus in the value error, unlike12

in traditional gradient descent dynamics. We study how learning dynamics and13

plateaus depend on feature structure, learning rate, discount factor, and reward14

function. We then analyze how strategies like learning rate annealing and reward15

shaping can favorably alter learning dynamics and plateaus. To conclude, our16

work introduces new tools to open a new direction towards developing a theory of17

learning dynamics in reinforcement learning.18

1 Introduction19

Reinforcement learning (RL) is a general paradigm which allows agents to learn from experience the20

relative value of states in their environment and to take actions that maximize long term rewards [1].21

RL algorithms have been successfully applied in a number of real world scenarios such as strategic22

games like backgammon and Go, autonomous vehicles, and fine tuning language models [2–7].23

Despite these empirical successes, a theoretical understanding of the learning dynamics and inductive24

biases of RL algorithms is currently lacking [8]. A large fraction of the theoretical work has focused25

on proving convergence and deriving bounds both in the asymptotic [9–14] and non-asymptotic26

[15–17] limits, but do not provide a full picture of the evolution of the learning dynamics.27

A desired feature of a candidate theory is to elucidate the influence of function approximation to RL28

dynamics and its performance. Early versions of RL operated in a tabular setting, similar to dynamic29

programming [18], where all the states in the environment could be mapped one-to-one to a specific30

value and policy. In large and complex environments, it is not possible to enumerate all the states in31

the environment and the strength of RL approaches in these scenarios arises when the target value and32

policy functions can be distilled through a function approximator. Indeed, the recent success of many33

RL algorithms relies on deep reinforcement learning architectures that combine an RL architecture34

with deep neural networks to build effective value estimators and policy networks [19].35

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



One difficulty in analysing these algorithms compared to supervised learning settings is that the36

distribution of the data received at each time-step is not stationary. This non-stationarity arises from37

two principal sources: First, whether in an episodic or continuous setting, states visited within a38

learning trajectory are dependent on the recent past. Trajectories might be randomly sampled but39

points within a trajectory are correlated. Second, when the policy is updated it also changes the40

distribution of future visited states.41

Here, we will focus on the first form of non-stationarity when learning a value function in the context42

of policy evaluation [1] using a classical RL algorithm, temporal difference (TD) learning [20].43

We develop a theory of learning dynamics for RL in this setting in a high dimensional asymptotic44

limit with a focus on understanding the role of linear function approximation from a set of nonlinear45

and static features. In particular, we leverage ideas from recent work in application of statistical46

physics to machine learning theory to perform an average over the possible sequences of features47

encountered during learning. Our contributions are as follows:48

• We introduce concepts from statistical physics, including a path integral approach to describe49

dynamics [21–25] and the Gaussian equivalence hypothesis [26–29], to derive a theory of learning50

dynamics in TD learning (§3) in an online setting. We provide an analytical formula for the typical51

case learning curve for TD learning.52

• We show that our theory predicts scaling of the learning convergence speed and performance53

plateaus with parameters of the problem including task-feature alignment [30], learning rate,54

discount factor or batch size (§4 and §5). Task-feature alignment is a metric that quantifies how55

features allow fast or slow learning for a given task.56

• We show our theory can be used to understand and guide design principles when choosing meta-57

parameters. Specifically, we show that we can use our theory to infer optimal schedules of learning58

rate annealing and the effects of reward shaping (§5 and §6).59

2 Problem Setup and Related Works60

2.1 Problem Setup61

We consider a set of states denoted by s, possibly continuous, and a fixed policy π which generates a62

distribution over actions given the state. The state dynamics are defined by a distribution p(τ) over63

trajectories through state space τ = {s1, s2, ..., sT }. Note that state transitions do not have to be64

Markovian, but each trajectory is i.i.d. sampled from p(τ). We consider trajectories of length T . Each65

state is represented by an N -dimensional feature vector ψ(s) ∈ RN , and each trajectory generates66

a collection of feature vectors {ψ(st)}Tt=1. The rewards are generated by a reward function R(s)67

which depends on the state. (In general, the features and rewards can depend on action as well but68

this doesn’t change the theory as transition dynamics are still fixed as the policy is fixed).69

At any time, we are interested in characterizing the value function associated with a state, which70

measures the expected discounted sum of future rewards when starting in state s071

V (s0) = R(s0) +
∑
t≥1

Est|s0γ
tR(st) = R(s0) + γEs1|s0V (s1). (1)

We use linear function approximation to learn the value function V̂ (s) = ψ(s) ·w. Similar to kernel72

learning [31], the features ψ should be high dimensional so that they can express a large set of73

possible value functions.74

We study TD learning dynamics given this setup. At each step of the TD iteration, we sample a batch75

of B independent trajectories from the distribution and compute the TD update76

wn+1 = wn +
ηn
TB

B∑
µ=1

T∑
t=1

∆µ
n(t)ψ(sµn(t)),

∆µ
n(t) ≡ R(sµn(t)) + γV̂ (sµn(t+ 1))− V̂ (sµn(t)). (2)

We therefore operate in a online batch regime as the trajectories in each batch are resampled at77

each iteration. This is distinct than an offline setting where the batches would be resampled from78
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a finite-sized buffer [1]. Convergence considerations for infinite-batch online TD learning width79

different types of features ψ are outlined in Appendix A. The specific form for the TD-error ∆µ
n(t)80

depends on the precise variant of TD learning that is used. Here, we will focus on TD(0) but our81

approach can be extended to other TD learning rules and definitions of the return function. We see82

that the iterates wn will form a stochastic process as each sequence of states in an episode {sµn(t)}83

are drawn randomly from p(τ). In general, we allow the learning rate ηn to depend on iteration, a84

point we will revisit later. The distribution of features {ψ(sµn(t))} over random trajectories τ is in85

general quite complicated, depending on the details of the state transitions and the nonlinear feature86

maps, which motivates the following question:87

Question: How can the stochastic dynamics of temporal difference learning be characterized for88

complicated trajectory distributions p(τ) and feature maps ψ(s)?89

To address this question, in this work, we provide an analysis of TD learning that explicitly models90

the statistics of stochastic semi-gradient updates town. Our framework is based on a Gaussian equiv-91

alence conjecture for TD learning and high dimensional mean field theory which predicts the statistics92

of TD errors ∆µ
n(t) and the weight iterateswn. The theory reveals a rich set of phenomena including93

plateaus unique to SGD noise in TD learning which can be ameliorated with learning rate annealing.94

2.2 Related Works95

The dynamics of TD learning have been notoriously difficult to analyse as unlike supervised learning96

settings, data samples are correlated across a trajectory and the algorithms bootstraps its current pre-97

dictions to estimate future states [1]. The focus of the literature has initially been to prove convergence98

and bounds on asymptotic behavior [11–14, 32]. More recently, progress has been made in deriving99

bounds in the non-asymptotic regime. Initial work assumed that data samples were i.i.d. [15–17, 33]100

and recent work has extended those approaches to Markovian noise [15, 34–36]. The majority of101

these proofs use the ODE-like method for stochastic approximation [11, 37], which corresponds to102

a limit of the stochastic semi-gradient dynamics where the effects of mini-batch noise are neglected.103

This is also known as the “mean-path” dynamics of TD learning and will correspond to the infinite104

batch limit of our theory. Furthermore, many of these methods require the use of iterative averaging105

of the learned value function, whereas we study the final iterate convergence. The approach we take106

here differs from many of these results as our goal is not to provide bounds on worst-case behavior107

but instead to provide a full description of the dynamics of the typical case scenario during learning.108

Our approach also highlights the importance of the structure of the representations in controlling the109

dynamics of learning. This had been long been recognized in reinforcement learning and previous110

works proposed to improve feature representations to improve algorithmic performance [38–40].111

This line of work has shown the importance of the relative smoothness of the representations and112

target functions in the ODE limit of TD dynamics [40, 41]. Similarly, several methods have been113

proposed to empirically learn a better shaping function [42, 43]. In policy learning it has also been114

recognized that using a gradient aligned to the statistics of the tasks, such as the natural gradient [44]115

can greatly speed up convergence [45]. Our work does not explore such feature learning per se but116

could be used as a diagnostic tool to analyse learned representations.117

We adopt the perspective of statistical physics, by working with a simplified feature distribution which118

captures the learning dynamics and solving the theory in a high-dimensional limit [46–48]. We derive119

TD reinforcement learning curves from a mean field theory formalism which is exact for infinite120

dimensional features and batch size. Similar calculations for supervised learning on Gaussian data121

have been shown to provide an accurate description of high dimensional dynamics [49–51]. Further,122

even when data is not actually Gaussian, several algorithms, such as kernel or random-features123

regression, exhibit universality in their loss behavior, enabling analysis of the learning curve with124

a simpler Gaussian proxy [26–28, 30, 52]. We exploit this idea in the TD learning setting to some125

success. We note that Gaussian equivalence or universality is not a panacea, and in many cases the126

Gaussian proxy can fail to capture important machine learning phenomena [27, 53, 54].127

3 Theoretical Results for Online TD Learning128

In this section we compute the typical case analysis of temporal difference RL.129
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3.1 Gaussian Equivalence130

To develop a predictive theory of TD learning, we take inspiration from similar works in supervised131

learning, specifically kernel regression and random feature learning theory [26–29]. Concretely, we132

will work under the following conjecture.133

Gaussian Equivalence Conjecture. The learning curves for a TD learner with high dimensional134

features {ψ(st)}Tt=1 over random τ are equivalent to the learning curves of a TD learner trained135

with Gaussian features ψG ∼ N (µ,Σ + µµ>) with matching mean and correlations136

µ(t) = 〈ψ(st)〉τ∼p(τ) , Σ(t, t′) =
〈
ψ(st)ψ(st′)

>〉
τ∼p(τ)

. (3)

where averages are taken over sequences of states {s(t)} ∼ p(τ).137

Example Trajectories

(a) 2D Exploration (b) Place Cell Features ψ(st)
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(e) Large batch B = 30
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(f) Small batch B = 3

Figure 1: An illustration of Gaussian equivalence for TD learning. (a) A diffusion process in a 2D
grid world generates many possible trajectories through state space. Each colored line is a different
trajectory. Reward function is shown in red, with darker red indicating higher reward. (b) When
combined with nonlinear place cell feature representation, the state transitions generate a distribution
over observed features {ψ(st)}. (c) The value error associated with TD learning for a bump reward
function on the true features generated from a single set of MDP trajectories (blue) is compared
to training on sampled Gaussian vectors {ψt} with matching within-episode covariance structure.
These single runs of TD learning on either set of features are consistent with the typical case theory
(black dashed). (d) The structure of the features alters learning dynamics. We consider, for simplicity,
altering the bandwidth (BW) of the place cell features. (e) Varying place cell BW changes the
dynamics for both large batch (B = 30) and (f) small batch (B = 3) TD learning. There is an optimal
BW for a given step size. Small batch stochastic semi-gradient noise is more severe.

One interpretation of this conjecture is that the dependence of the learning curve on higher order138

cumulants of the features is negligible in high dimensional feature spaces under the square loss. This139

approximation has been shown to provide an accurate description on realistic supervised learning140

settings with non-Gaussian data with the square loss in prior works [26, 27, 29, 30, 52, 55]. As shown141

in these works, for standard supervised learning, even highly non-Gaussian features {ψ(st)} have142

least squares learning curves which are only sensitive to the first two cumulants of the distribution.143

We do not aim to provide a rigorous proof of this conjecture for TD learning but instead compute the144

learning curve implied by this assumption and compare to experiments on simple Markov Decision145

Processes (MDPs). The benefit of this hypothesis in the RL setting is that it abstracts away details of146

transitions in the state space and instead deals with the correlations of sampled features through time.147

To illustrate the validity of the Gaussian Equivalence conjecture, in Figure 1, we consider an MDP148

which is defined by diffusion through a 2-dimensional (2D) state space (Figure 1(a)). We choose149
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the features ψ(s) to be a collection of localized 2D bumps which tile the 2D space, similarly to the150

“place cell” neurons found in the mammalian hippocampus [56, 57] (Figure 1(b)). The feature map is151

parameterized by the bandwidth of individual “place cells”. In Figure 1(c), we show the value error152

learning curve as a function of the number of steps n (blue) and compare the value estimation error153

of the MDP with a Gaussian distribution for ψ(t) with matching first and second moments (orange).154

Lastly, we plot the theoretical prediction of our theory (described in Section 3), which is computed155

under the Gaussian equivalence conjecture (black dashed). We see a remarkable match of the three156

curves. The equivalence can be used to predict the speed of TD learning for different features, such157

as place cells with varying bandwidth as we illustrated in Figure 1 (d)-(f). In Figure 1 (e) and (f), we158

plot the loss trajectories for a single run of TD for each feature set. We observe that bandwidth affects159

both the learning dynamics and the asymptotic error with an optimal bandwidth at any step. One of160

our goals will be to elucidate the role of feature quality in learning dynamics. While the large batch161

dynamics are approximately self-averaging, as shown by the fact that single runs of TD learning162

coincide with our theoretical typical case theory curves, there is significant semi-gradient variance in163

the value error at small batch sizes.164

3.2 Computation of Learning Curves Under Gaussian Equivalence165

Under the Gaussian equivalence conjecture, a dynamical mean field theory (DMFT) formalism can166

be utilized to compute the learning curves. We provide the full derivation of the DMFT in Appendix167

B. This computation consists of tracking the moment generating function for the iterates wn over168

the trajectories of randomly sampled features {ψnµ(t)}Tt=1. In an appropriate high dimensional169

asymptotic limit, the results of our theory can be summarized as the following proposition.170

Proposition 3.1. Let N,B →∞ with B/N = O(1) and episode length T = O(1). Let the ground171

truth reward function be R(s) = wR ·ψ(s) and value function V (s) = wTD ·ψ(s) in the basis of172

our features. Define matrices173

Σ̄ ≡ 1

T

∑
t

Σ(t, t), Σ̄+ ≡
1

T

∑
t

Σ(t, t+ 1), A ≡ Σ̄− γΣ̄+, (4)

and assume that the features are such that matrixA is of extensive rank in N . Then the typical value174

estimation error Ln =

〈(
V (s)− V̂n(s)

)2
〉
s

after n steps has the form175

Ln =
1

N
TrΣ̄Mn, (5)

Mn+1 = (I − ηA)Mn(I − ηA)> +
η2

α2T 2

∑
tt′

Qn(t, t′)Σ(t, t′) (6)

Qn(t, t′) =
1

N

〈
(wR −wn)>Σ(t, t′)(wR −wn)

〉
+
γ

N

〈
(wR −wn)>Σ(t, t′ + 1)wn

〉
+
γ

N

〈
w>nΣ(t+ 1, t′)(wR −wn)

〉
+
γ2

N

〈
w>nΣ(t+ 1, t′ + 1)wn

〉
, (7)

where α = B/N and Qn(t, t′) = 〈∆n(t)∆n(t′)〉 is the correlation of randomly sampled TD-errors176

at episodic times t, t′ and iteration n. The average over weights 〈〉 denotes a Gaussian average whose177

moments are related to Mn. The correlation function Qn(t, t′) depends on Mn and the average178

weights 〈wn〉; we provide its full formula in Appendix B.3, equation (B.17).179

Proof. The full derivation is in Appendix B. At a high level, we track the moment gen-180

erating function of the iterates wn over random draws of features {ψµn(t)}, Z[{jn}] =181

E{ψµn(t)} exp (i
∑
n jn ·wn) ∝

∫
Dq exp

(
N
2 S[q, {jn}]

)
where S is a O(1) action and q are a set182

of order parameters of the theory which include the following overlaps Cn(t, t′) = 1
Nw

>
nΣ(t, t′)wn183

and Qn(t, t′) = 1
B

∑B
µ=1 ∆µ

n(t)∆µ
n(t′). In this high dimension N,B →∞ limit with B/N = O(1)184

and episode length T = O(1), the order parameters can be obtained from saddle point integration,185

which requires solving ∂S
∂q = 0. This procedure results in a deterministic learning curve given in186

equations (5),(6),(7) even though the realization of sampled states are disordered. The TD-error187

variables ∆n(t) become mean zero Gaussians and the {wn} also follow a Gaussian distribution with188

mean and variance determined by the order parameters.189
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Before we explore the predictions of this theory, we first make a few remarks about this result.190

Remark 1. Though the theory is technically derived for large batch size B, we will show that it191

provides an accurate description of the loss trajectory even for batches as small as B = 1. An192

alternative formulation in terms of recursive averaging reveals transparently which approximations193

lead to the same result as the mean field theory (Appendix B.5).194

Remark 2. The case where the reward function and/or the value function are inexpressible by the195

features ψ can also be handled within this framework. In this case, the unlearnable components of196

the value function act as additional noise which limits performance [29].197

Remark 3. The limit where γ = 0 recovers known results in online supervised learning with stochastic198

gradient methods [29, 55, 58]. In this limit, the dynamics will converge to zero loss provided the199

model features are sufficiently rich to represent the true value function.200

Remark 4. The TD learner with perfect coverage (infinite batch size) at each step will converge to201

the ground truth wTD =
(
Σ̄− γΣ̄+

)−1
Σ̄wR (see Appendix A).202

Remark 5. If the reward or value function cannot be fully explainable by the features, there will be203

unlearnable components. These can also be handled by our theory, see Appendix A.204

Remark 6. Mn is equivalently defined as Mn =
〈
(w −wTD)(w −wTD)>

〉
{τµ
n′}n′<n

, which205

measures deviation from the fixed point of gradient flow dynamicswTD over random sets of sampled206

episodes (Appendix B).207

4 Spectral Perspective on Hard Reward Functions208
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Figure 2: Reward functions and dynamics which lead to value functions with high spectral alignment
to the features can be learned more quickly than those that do not. (a) A sparse and dense reward
function in a 2D spatial navigation task can illustrate this effect. (b) The cumulative power distribution
C(k) defined from the spectral decomposition ofA = Σ̄− γΣ̄+. Concretely we letAuk = λkuk
with λk ordered by real part and wTD =

∑
k wkuk. In the B →∞ limit the task which has rapidly

rising C(k) =
∑
`<k w

2
`∑

` w
2
`

will converge more quickly than the task with slowly rising C(k). (c) Indeed,
for large batch regime (B = 20) the value error decreases more rapidly for R2 than for R1.

Our theory can provide some insights into the structure of tasks which can be learned easily and209

which require more sampled trajectories to estimate based on spectral decompositions of the feature210

covariances. We note that similar spectral arguments have been given in the ODE-limit [41] and are211

intimately related to the source conditions used in recent work to identify power-law rates in the large212

batch regime [36].213

To build our argument, we diagonalize the matrixA = Σ̄− γΣ̄+, obtainingAuk = λkuk, noting214

that eigenvalues λk can be complex. We then expand the TD solution in this basiswTD =
∑
k wkuk.215

The theory predicts that, the average learned weights will be 〈wn〉 =
∑
k |1 − ηλk|neiθknwkuk,216

where | · | is complex modulus and θk = Arg(1 − ηλk). We can therefore order the modes by217

their convergence timescales |1− ηλk|. Given this ordering of timescales, we can order the modes218

k from those with smallest to largest timescales. Given this ordering, we see that tasks can be219

learned efficiently are those with most of the norm of wk in the modes with small timescales. We220

quantify how well aligned a task is to a given feature representation by computing a cumulative power221

distribution for the target weights C(k) =
∑
`<k w

2
`∑

` w
2
`

. If this quantity rises rapidly with k then the task222

can be learned from a small number of samples [30].223
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We consider again, the setting of Figure 1, the 2D exploration MDP but now contrast two different224

reward functions. In Figure 2 we show that this spectral decomposition can account for the gaps in225

loss for a place cell code in learning a sparse or dense reward function (Figure 2(a)). As expected226

the cumulative power rises more rapidly for the dense reward function R2(s) (Figure 2(b)). As a227

consequence, the value error converges to zero more rapidly than for the sparse rewards.228

5 Stochastic Semi-Gradient Learning Plateaus and Annealing Strategies229

100 101 102

steps

10 3

10 2

10 1

100

Va
lu

e 
Er

ro
r

batch = 1
batch = 5
batch = 10
batch = 25
batch = 50

(a) Episodic Batches
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(c) Fixed Learning Rate
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(d) Annealed Learning Rate
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(e) Optimal Annealing

Figure 3: Finite batch size, discount factor and learning rate all contribute to a stochastic semi-gradient
plateau in the TD dynamics. The features are generated from a synthetic power law covariance with
exponential temporal autocorrelation (see Appendix D). Dashed black lines are theory. In general, for
fixed learning rate η, the plateau scales as O(ηγ2B−1). (a) Larger batch sizes B reduce SGD noise
and leads to a lower plateau in the reducible value error for a decoupled power-law feature model.
(b) Larger discount factor γ and (c) larger learning rate η lead to higher SGD plateau floor. (d) An
annealing strategy ηn ∼ η0n

−χ for χ > 0 can allow one to avoid the plateau. For slow annealing
(small χ), the error scales as Ln ∼ O(n−χ). (e) The value error as a function of the learning rate
annealing exponent χ defined by ηn = η0n

−χ. For this task, the optimal exponent balances the scale
of the asymptote with the rate of convergence.

The stochastic noise from TD learning has striking qualitative differences from SGD noise in the230

standard supervised case. In standard supervised learning (such as γ = 0 version of this theory), the231

stochastic gradient noise does not prevent the model from fitting the target function with zero error232

provided the features are sufficiently rich to represent the target function. However, this is not the233

case in TD learning, where the predicted value V̂ (s) is bootstrapped using the model’s weightswn at234

each iteration n. This leads to asymptotic plateaus in learning curves. Our theory can predict these235

plateaus and their scaling whose proof is given in Appendix B.6.236

Proposition 5.1. Our theoretical learning curves exhibit a fixed point for the value error dynamics237

for finite B and non-zero η and γ. For small ηγ2

B , we deduce that M satisfies a self-consistent238

asymptotic scaling of the form M = O
(
ηγ2

B

)
impliying an asymptotic value error scaling of239

L ∼ 1
N TrMΣ̄ ∼ O

(
ηγ2

B

)
.240

In Figure 3, we demonstrate that our theory predicts the plateaus and their scaling as a function of241

finite batch size B (Figure 3(a)), non-zero discount factor γ > 0 (Figure 3(b)) and non-negligible242

learning rate (Figure 3(c)).243

A strategy used in the literature to increase rates of convergence and improve asymptotic behavior244

is adaptation of the learning learning through an annealing schedule [1, 59, 60]. To overcome this245

7



𝜃

(1 + 𝛽)𝑤!" 𝑤!" cos 𝜃
+ 𝑤#sin(𝜃)

𝑤!"

(a) Geometry of Reward Shaping
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(b) Scale-based Shaping
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(c) Rotation-based Shaping

Figure 4: The theory can be used to understand how reward shaping decisions alter temporal difference
learning dynamics. (a) A visualization of possible reward shaping potentials φ(s) = wφ · ψ(s)
strategies in feature space. Probability density level curves for the features are depicted in blue.
Reshaping with wφ = βwTD for scale factor β merely changes the scale of weights which must be
recovered (gold) and does not change timescales of TD dynamics. (b) The value error dynamics for
the scale based reward shaping for the features in Figure 3. On the other hand, rotation based reward
shaping where wφ is not parallel towV (red) leads to a potentially helpful mixture of timescales if
the new target vector is more aligned with feature dimensions with high variance (purple). In (c), we
plot loss curves for rotation angle θ between the original mode wV and the top eigenvector of the
feature covariance matrix Σ̄. Dashed black lines are theory.

plateau in the loss, we consider annealing the learning rate ηn with iteration n. In Figure 3(d), we246

show the effect of annealing the learning rate as a power law ηn = η0n
−χ for some non-negative247

exponent χ. For χ = 0 the learning rate is constant and a fixed plateau is reached. For small248

nonzero χ, such as χ = 0.2, the value error is, after an initial transient, always near its instantaneous249

fixed point plateau so the loss scales linearly with the learning rate, giving the asymptotic rate250

Ln ∼ O(n−χ). For large χ, the learning rate decreases very quickly and the plateau is never reached.251

Our approach can be used to find an optimal annealing exponent χ and in Figure 3(e), we show that252

the optimal annealing exponent balances these effects and is well predicted by our theory.253

6 Reward Shaping254

Another strategy to improve the learning dynamics in reinforcement learning algorithms is reward255

shaping [61]. In standard supervised learning, the goal is to directly approximate the target objective256

given a cost function. However, in reinforcement learning, the objective is not to estimate rewards257

at each state directly but the discounted sum of future rewards, the value function. Importantly,258

many different reward schedules can lead to identical value functions. Reward shaping exploits this259

symmetry to speed up learning by altering the structure of TD updates and SGD noise. Here, we260

provide a theoretical description of the changes in the learning dynamics due to reward shaping which261

suggests they can be understood through a change of the alignment between the original rewards and262

the reshaped rewards in the space of the features used to represent the states.263

The original ideas around reward shaping were inspired by work in experimental psychology and264

were closer to what is now studied as curriculum learning [62–64]. Reward shaping as currently used265

in reinforcement learning directly changes the reward function by adding a potential-based shaping266

function F such that F (st, a, st+1) = γφ(st+1)− φ(st) [61]. In each step of the algorithm we feed267

the following reshaped rewards R̃ to the TD learner268

R̃(st) =

{
R(st)− γφ(st+1) t = 0

R(st) + φ(st)− γφ(st+1) t > 0
. (8)

We note that this transformation simply offsets the target value function by φ(s) as the series above269

telescopes with a cancellation of φ(st) between the t − 1 and t-th terms [61] (see Appendix C).270

However, the dynamics of TD learning with these reshaped rewards R̃ is quite distinct from the271

dynamics with original rewards R. Here, we study the case where we can express φ(s) as a linear272

function of our features: φ(s) = ψ(s) · wφ. This leads to a change in the dynamics for Mn and273

〈wn〉 that we describe in the Appendix C.274

In Figure 4, we illustrate the possible benefits of reward shaping. We explore two types of reward275

shaping. First, a scale based reward shaping where wφ is parallel to the target TD weights wTD.276
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This merely changes the overall scale of the weights needed to converge in the dynamics, leading277

to similar timescales and an identical plateau for TD learning as we show in Figure 4 (b). On the278

other hand, reward shaping which rotates the fixed point of the TD dynamics into directions of higher279

feature variance can improve timescales of convergence. In Figure 4 (c), we show an example where280

we vary the angle θ of the shaped-TD fixed point (see also Appendix C).281

7 Discussion282

Our work presents a new approach using concepts from statistical physics to derive average-case283

learning curve for policy evaluation in TD-learning. However, it is only a first step towards a new284

theory of learning dynamics in reinforcement learning.285

One major limitation of the present work is that it concerns linear function approximation where286

the features representing states/actions are fixed throughout learning. This limit can apply to neural287

networks in the “lazy” regime of training [65, 66], however it cannot account for neural networks288

that adapt their internal representations to the structure of the reward function. This differs from the289

setting of most practical algorithms, including in deep reinforcement learning, that specifically adapt290

their representations.291

Our theory provides a description of learning dynamics through a set of iterative equations (Propo-292

sition 3.1). In Figure 1 we evaluate these dynamics for a simple MDP but although the predicted293

dynamics present an excellent fit to the empirical simulations, the iterative equations can be difficult294

to interpret and computationally expensive to evaluate in a larger network and more realistic tasks.295

Nevertheless, our equations can be used to derive some scaling between key parameters of the296

algorithm for example by studying their fixed points as in Proposition 5.1.297

Here, we considered the simplest form of temporal difference learning, batched online TD(0). In298

future work, it will be important to further characterize the behavior for online TD(0) with batch299

size B = 1 and to expand our approach to TD(λ) and other return distributions. Similarly, expanding300

our theory to the offline setting, in which the buffer of resampled trajectories would be of finite size,301

could provide an understanding of how the interactions between parameters govern convergence302

and divergence [1, 67–69].303

Another limitation of our work is that we only considered the setting of policy evaluation with a304

fixed policy. The goal of an RL agent is to learn how to act in the work and not merely to represent305

the value is its states. Unlike in supervised learning, the changes in the value function affect the306

policy but in many of RL algorithms, for example in actor-critic architecture, there is a separation307

of the policy evaluation (critic) and the policy learning (actor) [70, 71]. Such algorithms estimate the308

value associated with state/action pairs under a given policy and then use this information to make309

beneficial updates to the policy, usually with the value and policy functions approximated by separate310

neural networks. In this paper, we only treated the first part of this process. Recently, a related311

approach has been used to analyse the dynamics of policy learning in an “RL perceptron" setup [72].312

A full theory of reinforcement learning combining policy evaluation and policy learning remains313

difficult due to the interaction between the two processes, but combining these approaches would be314

fruitful. One promising direction is in settings where the timescales of the two processes are different315

[73], such as when policy learning occurring at a much slower rate which is often the case in practice.316

Beyond developing a theory of learning dynamics in reinforcement learning, the approach could317

be used in neuroscience to understand how neural representation of space or value can shape the318

learning dynamics at the behavioral level. Ideas from reinforcement learning have been extremely319

influential to understand phenomena observed in neuroscience and have been mapped directly onto320

specific brain circuits [74–76]. The place cells of the hippocampus [56] exhibit localized tuning as321

the example in Figure 1 and together with grid cells in enthorinal cortex are thought to be crucial for322

navigation in spatial and cognitive spaces and their tuning is shaped by experience [57, 76–78]. Our323

theory specifically link the structure of representations, policy and reward to learning rates, which can324

all be experimentally measured simultaneously and could shed on light on how the spectral properties325

of representations govern learning and navigation [76, 79], similarly to how the mean field theories326

we have used here can explain learning of sensory features [80].327

To summarize, our work provide a new promising direction towards a theory of learning dynamics328

in reinforcement learning in artificial and biological agents.329

9



References330

[1] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,331

2018.332

[2] Gerald Tesauro. Temporal difference learning and td-gammon. Communications of the ACM,333

38(3):58–69, 1995.334

[3] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G335

Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.336

Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.337

[4] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-338

che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-339

tering the game of go with deep neural networks and tree search. nature, 529(7587):484–489,340

2016.341

[5] Peter R Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,342

Thomas J Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, et al.343

Outracing champion gran turismo drivers with deep reinforcement learning. Nature, 602(7896):344

223–228, 2022.345

[6] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil346

Yogamani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey.347

IEEE Transactions on Intelligent Transportation Systems, 23(6):4909–4926, 2021.348

[7] Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei,349

Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences.350

arXiv preprint arXiv:1909.08593, 2019.351

[8] Matteo Hessel, Hado van Hasselt, Joseph Modayil, and David Silver. On inductive biases in352

deep reinforcement learning. arXiv preprint arXiv:1907.02908, 2019.353

[9] Peter Dayan. The convergence of td () for general. Machine learning, 8(3):341–362, 1992.354

[10] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292, 1992.355

[11] JN Tsitsiklis and B Vanroy. An analysis of temporal-difference learning with function approxi-356

mation. IEEE Transactions on Automatic Control, 42(5):674–690, 1997.357

[12] Geoffrey J Gordon. Reinforcement learning with function approximation converges to a region.358

Advances in neural information processing systems, 13, 2000.359

[13] Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time.360

Machine learning, 49:209–232, 2002.361

[14] Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for reinforcement362

learning. Advances in neural information processing systems, 21, 2008.363

[15] Jalaj Bhandari, Daniel Russo, and Raghav Singal. A finite time analysis of temporal difference364

learning with linear function approximation, 2018. URL https://arxiv.org/abs/1806.365

02450.366

[16] Gal Dalal, Balázs Szörényi, Gugan Thoppe, and Shie Mannor. Finite sample analyses for td (0)367

with function approximation. In Proceedings of the AAAI Conference on Artificial Intelligence,368

volume 32, 2018.369

[17] Chandrashekar Lakshminarayanan and Csaba Szepesvári. Linear stochastic approximation:370

Constant step-size and iterate averaging. arXiv preprint arXiv:1709.04073, 2017.371

[18] Richard E Bellman. Dynamic programming. Princeton university press, 2010.372

[19] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. Deep373

reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26–38, 2017.374

10

https://arxiv.org/abs/1806.02450
https://arxiv.org/abs/1806.02450
https://arxiv.org/abs/1806.02450


[20] Richard Stuart Sutton. Temporal credit assignment in reinforcement learning. University of375

Massachusetts Amherst, 1984.376

[21] Paul Cecil Martin, ED Siggia, and HA Rose. Statistical dynamics of classical systems. Physical377

Review A, 8(1):423, 1973.378

[22] A Crisanti and H Sompolinsky. Path integral approach to random neural networks. Physical379

Review E, 98(6):062120, 2018.380

[23] Moritz Helias and David Dahmen. Statistical field theory for neural networks, volume 970.381

Springer, 2020.382

[24] Blake Bordelon and Cengiz Pehlevan. Self-consistent dynamical field theory of kernel evolution383

in wide neural networks. arXiv preprint arXiv:2205.09653, 2022.384

[25] Blake Bordelon and Cengiz Pehlevan. The influence of learning rule on representation dynamics385

in wide neural networks. arXiv preprint arXiv:2210.02157, 2022.386

[26] Blake Bordelon, Abdulkadir Canatar, and Cengiz Pehlevan. Spectrum dependent learning387

curves in kernel regression and wide neural networks. In International Conference on Machine388

Learning, pages 1024–1034. PMLR, 2020.389

[27] Bruno Loureiro, Cedric Gerbelot, Hugo Cui, Sebastian Goldt, Florent Krzakala, Marc Mezard,390

and Lenka Zdeborová. Learning curves of generic features maps for realistic datasets with a391

teacher-student model. Advances in Neural Information Processing Systems, 34:18137–18151,392

2021.393

[28] Hong Hu and Yue M Lu. Universality laws for high-dimensional learning with random features.394

IEEE Transactions on Information Theory, 2022.395

[29] Blake Bordelon and Cengiz Pehlevan. Learning curves for SGD on structured features. In396

International Conference on Learning Representations, 2022. URL https://openreview.397

net/forum?id=WPI2vbkAl3Q.398

[30] Abdulkadir Canatar, Blake Bordelon, and Cengiz Pehlevan. Spectral bias and task-model399

alignment explain generalization in kernel regression and infinitely wide neural networks, 2020.400

[31] Bernhard Schölkopf, Alexander J Smola, Francis Bach, et al. Learning with kernels: support401

vector machines, regularization, optimization, and beyond. MIT press, 2002.402

[32] Fernando J Pineda. Mean-field theory for batched td (λ). Neural computation, 9(7):1403–1419,403

1997.404

[33] Gandharv Patil, LA Prashanth, Dheeraj Nagaraj, and Doina Precup. Finite time analysis of tem-405

poral difference learning with linear function approximation: Tail averaging and regularisation.406

In International Conference on Artificial Intelligence and Statistics, pages 5438–5448. PMLR,407

2023.408

[34] Rayadurgam Srikant and Lei Ying. Finite-time error bounds for linear stochastic approximation409

andtd learning. In Conference on Learning Theory, pages 2803–2830. PMLR, 2019.410

[35] LA Prashanth, Nathaniel Korda, and Rémi Munos. Concentration bounds for temporal difference411

learning with linear function approximation: the case of batch data and uniform sampling.412

Machine Learning, 110:559–618, 2021.413

[36] Eloïse Berthier, Ziad Kobeissi, and Francis Bach. A non-asymptotic analysis of414

non-parametric temporal-difference learning. In S. Koyejo, S. Mohamed, A. Agar-415

wal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Informa-416

tion Processing Systems, volume 35, pages 7599–7613. Curran Associates, Inc.,417

2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/418

32246544c237164c365c0527b677a79a-Paper-Conference.pdf.419

[37] Vivek S Borkar and Sean P Meyn. The ode method for convergence of stochastic approximation420

and reinforcement learning. SIAM Journal on Control and Optimization, 38(2):447–469, 2000.421

11

https://openreview.net/forum?id=WPI2vbkAl3Q
https://openreview.net/forum?id=WPI2vbkAl3Q
https://openreview.net/forum?id=WPI2vbkAl3Q
https://proceedings.neurips.cc/paper_files/paper/2022/file/32246544c237164c365c0527b677a79a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/32246544c237164c365c0527b677a79a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/32246544c237164c365c0527b677a79a-Paper-Conference.pdf


[38] Ishai Menache, Shie Mannor, and Nahum Shimkin. Basis function adaptation in temporal422

difference reinforcement learning. Annals of Operations Research, 134(1):215–238, 2005.423

[39] Sridhar Mahadevan and Mauro Maggioni. Proto-value functions: A laplacian framework for424

learning representation and control in markov decision processes. Journal of Machine Learning425

Research, 8(10), 2007.426

[40] Marc Bellemare, Will Dabney, Robert Dadashi, Adrien Ali Taiga, Pablo Samuel Castro, Nicolas427

Le Roux, Dale Schuurmans, Tor Lattimore, and Clare Lyle. A geometric perspective on optimal428

representations for reinforcement learning. Advances in neural information processing systems,429

32, 2019.430

[41] Clare Lyle, Mark Rowland, Will Dabney, Marta Kwiatkowska, and Yarin Gal. Learning431

dynamics and generalization in deep reinforcement learning. In Kamalika Chaudhuri, Ste-432

fanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceed-433

ings of the 39th International Conference on Machine Learning, volume 162 of Proceed-434

ings of Machine Learning Research, pages 14560–14581. PMLR, 17–23 Jul 2022. URL435

https://proceedings.mlr.press/v162/lyle22a.html.436

[42] Yujing Hu, Weixun Wang, Hangtian Jia, Yixiang Wang, Yingfeng Chen, Jianye Hao, Feng Wu,437

and Changjie Fan. Learning to utilize shaping rewards: A new approach of reward shaping.438

Advances in Neural Information Processing Systems, 33:15931–15941, 2020.439

[43] Haosheng Zou, Tongzheng Ren, Dong Yan, Hang Su, and Jun Zhu. Reward shaping via440

meta-learning. arXiv preprint arXiv:1901.09330, 2019.441

[44] Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):442

251–276, 1998.443

[45] Sham M Kakade. A natural policy gradient. Advances in neural information processing systems,444

14, 2001.445

[46] Hyunjune Sebastian Seung, Haim Sompolinsky, and Naftali Tishby. Statistical mechanics of446

learning from examples. Physical review A, 45(8):6056, 1992.447

[47] Andreas Engel and Christian Van den Broeck. Statistical mechanics of learning. Cambridge448

University Press, 2001.449

[48] Yasaman Bahri, Jonathan Kadmon, Jeffrey Pennington, Sam S Schoenholz, Jascha Sohl-450

Dickstein, and Surya Ganguli. Statistical mechanics of deep learning. Annual Review of451

Condensed Matter Physics, 11:501–528, 2020.452

[49] Francesca Mignacco, Florent Krzakala, Pierfrancesco Urbani, and Lenka Zdeborová. Dynamical453

mean-field theory for stochastic gradient descent in gaussian mixture classification. Advances454

in Neural Information Processing Systems, 33:9540–9550, 2020.455

[50] Cedric Gerbelot, Emanuele Troiani, Francesca Mignacco, Florent Krzakala, and Lenka Zde-456

borova. Rigorous dynamical mean field theory for stochastic gradient descent methods. arXiv457

preprint arXiv:2210.06591, 2022.458

[51] Michael Celentano, Chen Cheng, and Andrea Montanari. The high-dimensional asymptotics of459

first order methods with random data. arXiv preprint arXiv:2112.07572, 2021.460

[52] James B. Simon, Madeline Dickens, Dhruva Karkada, and Michael R. DeWeese. The eigen-461

learning framework: A conservation law perspective on kernel regression and wide neural462

networks, 2022.463

[53] Maria Refinetti, Alessandro Ingrosso, and Sebastian Goldt. Neural networks trained with sgd464

learn distributions of increasing complexity, 2022.465

[54] Alessandro Ingrosso and Sebastian Goldt. Data-driven emergence of convolutional structure466

in neural networks. Proceedings of the National Academy of Sciences, 119(40):e2201854119,467

2022.468

12

https://proceedings.mlr.press/v162/lyle22a.html


[55] Aditya Vardhan Varre, Loucas Pillaud-Vivien, and Nicolas Flammarion. Last iterate convergence469

of sgd for least-squares in the interpolation regime. Advances in Neural Information Processing470

Systems, 34:21581–21591, 2021.471

[56] John O’Keefe. Place units in the hippocampus of the freely moving rat. Experimental neurology,472

51(1):78–109, 1976.473

[57] Edvard I Moser, Emilio Kropff, and May-Britt Moser. Place cells, grid cells, and the brain’s474

spatial representation system. Annu. Rev. Neurosci., 31:69–89, 2008.475

[58] Maksim Velikanov, Denis Kuznedelev, and Dmitry Yarotsky. A view of mini-batch sgd via476

generating functions: conditions of convergence, phase transitions, benefit from negative477

momenta, 2023.478

[59] Robert A Jacobs. Increased rates of convergence through learning rate adaptation. Neural479

networks, 1(4):295–307, 1988.480

[60] William Dabney and Andrew Barto. Adaptive step-size for online temporal difference learning.481

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 26, pages 872–878,482

2012.483

[61] Andrew Y Ng, Daishi Harada, and Stuart J Russell. Policy invariance under reward transforma-484

tions: Theory and application to reward shaping. In Proceedings of the Sixteenth International485

Conference on Machine Learning, pages 278–287, 1999.486

[62] Burrhus Frederic Skinner. Science and human behavior. Number 92904. Simon and Schuster,487

1965.488

[63] Vijaykumar Gullapalli and Andrew G Barto. Shaping as a method for accelerating reinforcement489

learning. In Proceedings of the 1992 IEEE international symposium on intelligent control,490

pages 554–559. IEEE, 1992.491

[64] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.492

In Proceedings of the 26th annual international conference on machine learning, pages 41–48,493

2009.494

[65] Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable program-495

ming. Advances in neural information processing systems, 32, 2019.496

[66] Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and497

generalization in neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,498

N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems,499

volume 31, pages 8571–8580. Curran Associates, Inc., 2018. URL https://proceedings.500

neurips.cc/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf.501

[67] Hado Van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph502

Modayil. Deep reinforcement learning and the deadly triad. arXiv preprint arXiv:1812.02648,503

2018.504

[68] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:505

Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.506

[69] Juan C Perdomo, Akshay Krishnamurthy, Peter Bartlett, and Sham Kakade. A sharp charac-507

terization of linear estimators for offline policy evaluation. arXiv preprint arXiv:2203.04236,508

2022.509

[70] Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information510

processing systems, 12, 1999.511

[71] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,512

Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-513

ment learning. In International conference on machine learning, pages 1928–1937. PMLR,514

2016.515

13

https://proceedings.neurips.cc/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf


[72] Nishil Patel, Sebastian Lee, Stefano Sarao Mannelli, Sebastian Goldt, and Andrew M Saxe. The516

rl perceptron: Dynamics of policy learning in high dimensions. In ICLR 2023 Workshop on517

Physics for Machine Learning, 2023.518

[73] Vijay R Konda and John N Tsitsiklis. Convergence rate of linear two-time-scale stochastic519

approximation. Annals of Applied Probability, pages 796–819, 2004.520

[74] Wolfram Schultz, Peter Dayan, and P Read Montague. A neural substrate of prediction and521

reward. Science, 275(5306):1593–1599, 1997.522

[75] Kenji Doya. Modulators of decision making. Nature neuroscience, 11(4):410–416, 2008.523

[76] Timothy EJ Behrens, Timothy H Muller, James CR Whittington, Shirley Mark, Alon B Baram,524

Kimberly L Stachenfeld, and Zeb Kurth-Nelson. What is a cognitive map? organizing knowl-525

edge for flexible behavior. Neuron, 100(2):490–509, 2018.526

[77] Kimberly L Stachenfeld, Matthew M Botvinick, and Samuel J Gershman. The hippocampus as527

a predictive map. Nature neuroscience, 20(11):1643–1653, 2017.528

[78] Marielena Sosa and Lisa M Giocomo. Navigating for reward. Nature Reviews Neuroscience, 22529

(8):472–487, 2021.530

[79] Daniel C McNamee, Kimberly L Stachenfeld, Matthew M Botvinick, and Samuel J Gershman.531

Flexible modulation of sequence generation in the entorhinal–hippocampal system. Nature532

neuroscience, 24(6):851–862, 2021.533

[80] Blake Bordelon and Cengiz Pehlevan. Population codes enable learning from few examples by534

shaping inductive bias. Elife, 11:e78606, 2022.535

14



Appendix536

A General Convergence Considerations for MDPs in Finite State Space537

In this section, we will discuss the infinite batch limit and compare the value function obtained with538

TD to the ground truth value function. We will, for simplicity, consider in this section a Markov539

reward process with transition matrix p(st+1 = s′|st = s) = Π(s, s′). The general theory described540

in the main text does not only apply to MDPs, but the convergence analysis for MDPs is much more541

straightforward so we describe it here. In this case, the ground truth value function satisfies542

V (s) = R(s) + γ
∑
s′

Π(s, s′)V (s′) (A.1)

which gives the vector equation V = (I − γΠ)
−1
R for V ,R ∈ R|S|. Suppose the limiting543

distribution over states is p ∈ R|S| which has entries p(s) = 1
T

∑T
t=1 p(st = s). The fixed point of544

TD dynamics is545

Ψdiag(p)Ψ>wTD = Ψdiag(p)R+ γΨdiag(p)ΠΨ>wTD. (A.2)

We now consider the two possible cases for this fixed point condition.546

Case 1: Underparameterized Regime First, if the feature dimension N is smaller than the size547

of the state space |S| and the features are maximal rank, then the TD learning fixed point is548

wTD =
(
Ψdiag(p)Ψ> − γΨdiag(p)ΠΨ>

)−1
Ψdiag(p)R (A.3)

In this case, the value function is not learned perfectly, as can be seen by computing V̂ = Ψ>wTD549

and comparing to the ground truth V = (I − γΠ)
−1
R. In this case, we would say that TD learning550

has an irreducible value error due to capturing only a N dimensional projection of the value function.551

Case 2: Overparameterized Regime Alternatively, if the feature dimension exceeds the total552

number of states, then the fixed point equation for TD is underspecified. However, throughout TD553

learningwTD ∈ span{ψ(s)}s∈S so we can instead consider the decompostionwV =
∑
s α(s)ψ(s),554

where α ∈ R|S| satisfies555

diag(p)(I − γΠ)Kα = diag(p)R (A.4)

whereK ∈ R|S|×|S| is the kernel computed with featuresK(s, s′) = ψ(s)·ψ(s′). The solution to the556

above equation is unique and the learned value function V̂ = Ψ>wTD = KK−1 (I − γΠ)
−1
R =557

(I − γΠ)
−1
R = V . Therefore, in the over-parameterized limit, the irreducible value error for TD558

learning is zero. This limit was considered dynamically in the infinite batch (vanishing SGD noise)559

setting by [41].560

B Derivation of Learning Curves561

In this section, we now consider the dynamics of TD learning when B random episodes are sampled562

at a time. In this calculation, the finite batch of episodes leads to non-negligible SGD effects which563

can cause undesirable plateaus in TD dynamics.564

B.1 Field Theory Derivation565

In this section we use a Gaussian field theory formalism to compute the learning curve in the high566

dimensional asymptotic limit N,B → ∞ with B/N = α. The episode length T is treated as567

O(1). While this paper focuses on the online setting, where fresh trajectories {τµn } are sampled at568

each iteration n, this model can be straightforwardly extended to the case where a fixed number of569

experience trajectories {τµ} are replayed repeatedly during TD learning. We leave the experience570
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replay dynamic mean field theory calculation for future work. The starting point of our analysis is571

tracking the moment generating function for the iterate dynamics572

Z[{jn}] = E{wn},{sµn(t)} exp

(
i

∞∑
n=0

jn ·wn

)
. (B.1)

To compute this object over random draws of training trajectories, we express the joint average over573

wn, {sµn(t)} into conditional averages over wn, {∆µ
n(t)}|{ψµn(t)}. To simplify the computation, in574

this section, we will compute the learning curve for mean zero features µ(s) = 0 and575

Z =E{ψµn(t)}

∫ ∏
n

dwnδ

(
wn+1 −wn −

η√
BT

∑
µt

∆µ
n(t)ψµn(t)

)
exp

(
i

∞∑
n=0

jn ·wn

)

×
∫ ∏

tµn

d∆µ
n(t) δ

(
∆µ
n(t)− 1√

N
(wR −wn) ·ψµn(t)− γ√

N
wn ·ψµn(t+ 1)

)
(B.2)

Expressing the Dirac-delta function as a Fourier integral δ(z) =
∫
dẑ
2π exp (iẑz) for each of our576

constraints. Under the Gaussian equivalence ansatz, we can easily average over Gaussian ψ to obtain577

Z =

∫
D∆D∆̂DwDŵ exp

(
− η2

2BT 2

∑
nµ

∑
tt′

∆µ
n(t)∆µ

n(t′)ŵ>nΣ(t, t′)ŵn

)

exp

(
i
∑
n

ŵn · (wn+1 −wn)

)

exp

− 1

2N

∑
nµtt′

[
(wR −wn)∆̂µ

n(t)
]
Σ(t, t′)

[
(wR −wn)∆̂µ

n(t′)
]

exp

− γ2

2N

∑
nµtt′

∆̂µ
n(t− 1)∆̂µ

n(t′ − 1)w>nΣ(t, t′)wn


exp

− γ

N

∑
nµtt′

∆̂µ
n(t− 1)∆̂µ

n(t′)w>nΣ(t, t′)(wR −wn)


exp

− η√
NBT

∑
nµtt′

[
∆̂µ
n(t)(wR −wn) + γ∆̂µ

n(t− 1)wn

]>
Σ(t, t′)ŵn∆µ

n(t′)


exp

(
i
∑
nµt

∆̂µ
n(t)∆µ

n(t) + i
∑
n

jn ·wn

)
(B.3)

where we adopted the shorthand D∆ =
∏
µ,n,t d∆µ

n(t) for the measure for the collection of variables578

{∆µ
n(t)}. Likewise one should interpret Dw =

∏
n dwn. To analyze the high dimensional limit of579

the above moment generating function, we introduce order parameters for the theory580

Qn(t, t′) =
1

B

B∑
µ=1

∆µ
n(t)∆µ

n(t′) , Cn(t, t′) =
1

N
w>nΣ(t, t′)wn

CRn (t, t′) =
1

N
wRΣ(t, t′)wn , Dn(t, t′) = − i

N
ŵ>nΣ(t, t′)wn , D

R
n (t, t′) = − i

N
ŵ>nΣ(t, t′)wR

(B.4)
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For each of these order parameters, we enforce the definition of the order parameter using the Fourier581

representation of a Dirac-delta function582

1 = B

∫
dQn(t, t′)δ

(
BQn(t, t′)−

∑
µ

∆µ
n(t)∆µ

n(t′)

)

= B

∫
dQn(t, t′)dQ̂n(t, t′)

4πi
exp

(
B

2
Q̂n(t, t′)Qn(t, t′)− 1

2

∑
µ

∆µ
n(t)∆µ

n(t′)Q̂n(t, t′)

)
.

(B.5)

Repeating this procedure for all order parameters q = {Q, Q̂, C, Ĉ, CR, ĈR, D, D̂,DR, D̂R} and583

disregarding irrelevant prefactors, we have the following formula for the moment generating function584

Z ∝
∫
Dq exp

(
N

2
S[q]

)
(B.6)

where the action S has the form585

S =
∑
n

∑
tt′

[
αQn(t, t′)Q̂n(t, t′) + Cn(t, t′)Ĉn(t, t′) + CRn (t, t′)ĈRn (t, t′)

]
−2
∑
n

∑
tt′

[
Dn(t, t′)D̂n(t, t′) +DR

n (t, t′)D̂R
n (t, t′)

]
+

2

N
lnZw + 2α lnZ∆

Zw =

∫
DwDŵ exp

(
− η2

2T 2

∑
ntt′

Qn(t, t′)ŵ>nΣ(t, t′)ŵn + i
∑
n

ŵn · (wn+1 −wn)

)

exp

(
−1

2

∑
ntt′

Ĉn(t, t′)w>nΣ(t, t′)wn −
1

2
ĈRn (t, t′)w>RΣ(t, t′)wn

)

exp

(
−i
∑
ntt′

D̂n(t, t′)ŵ>nΣ(t, t′)wn − i
∑
ntt′

D̂R
n (t, t′)ŵ>nΣ(t, t′)wR

)

Z∆ =

∫
D∆D∆̂ exp

(
−1

2

∑
ntt′

Q̂n(t, t′)∆n(t)∆n(t′) + i
∑
nt

∆̂n(t)∆n(t)

)

exp

(
−1

2

∑
ntt′

∆̂n(t)∆̂n(t′)

[
1

N
w>RΣ(t, t′)wR + C(t, t′)

])

exp

(
1

2

∑
ntt′

∆̂n(t)∆̂n(t′)
[
CR(t, t′) + CR(t′, t)

])

exp

−γ∑
t,t′

∆̂n(t)∆̂n(t′ − 1)CRn (t, t′)


exp

−γ2

2

∑
t,t′

∆̂n(t− 1)∆̂n(t′ − 1)Cn(t, t′)


exp

− ηi√
αT

∑
nt,t′

∆̂n(t)
[
DR
n (t′, t)−Dn(t′, t) + γDn(t′, t+ 1)

]
∆n(t′)


(B.7)

The functionZ has the interpretation of an effective partition function conditional on order parameters586

q. To study the N → ∞ limit, we use the steepest descent method and analyze the saddle point587
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∂S
∂q = 0. These saddle point equations give588

∂S

∂Q̂n(t, t′)
= αQn(t, t′)− α 〈∆n(t)∆n(t′)〉 = 0

∂S

∂Qn(t, t′)
= αQ̂n(t, t′)− η2

T 2N

〈
ŵ>nΣ(t, t′)ŵn

〉
= 0

∂S

∂Ĉn(t, t′)
= Cn(t, t′)− 1

N

〈
w>nΣ(t, t′)wn

〉
= 0

∂S

∂Cn(t, t′)
= Ĉn(t, t′)− α

〈
∆̂n(t)∆̂n(t′) + γ2∆̂n(t− 1)∆̂n(t′ − 1)

〉
= 0

∂S

∂ĈRn (t, t′)
= CRn (t, t′)− 1

N

〈
w>RΣ(t, t′)wn

〉
= 0

∂S

∂Cn(t, t′)
= Ĉn(t, t′)− α

〈
∆̂n(t)∆̂n(t′) + γ∆̂n(t)∆̂n(t′ − 1)

〉
= 0

∂S

∂D̂n(t, t′)
= −2Dn(t, t′)− 2i

N

〈
ŵ>nΣ(t, t′)wn

〉
= 0

∂S

∂D̂R
n (t, t′)

= −2DR
n (t, t′)− 2i

N

〈
ŵ>nΣ(t, t′)wn

〉
= 0

∂S

∂Dn(t, t′)
= −2D̂n(t, t′)− 2αηi√

αT

〈
γ∆̂n(t− 1)∆n(t′)− ∆̂n(t)∆n(t′)

〉
= 0

∂S

∂DR
n (t, t′)

= −2D̂R
n (t, t′)− 2αηi√

αT

〈
∆̂n(t)∆n(t′)

〉
= 0 (B.8)

The brackets 〈〉 denote averaging over the stochastic processes defined by moment generating589

functions Z∆,Zw. After these saddle point equations are solved the order parameters q are treated as590

non-random and a Hubbard-Stratonovich transformation is employed. For example,591

exp

(
−1

2
ŵn

[
η2

T 2

∑
tt′

Qn(t, t′)Σ(t, t′)

]
ŵn

)
= Euwn exp

(
i
∑
n

uwn · ŵn

)
(B.9)

where the average is over uwn ∼ N
(
0, η2T−2

∑
tt′ Qn(t, t′)Σ(t, t′)

)
. After introducing these592

Hubbard fields uwn and u∆
n (t), we can perform the integrals over ŵn and ∆̂n(t) which collapse to593

Dirac-Delta functions. The resulting identities of the delta functions define the following stochastic594

processes on wn and u∆
n595

wn+1 = wn + uwn +
∑
tt′

D̂R
n (t, t′)Σ(t, t′)wR +

∑
t,t′

D̂n(t, t′)Σ(t, t′)wn

∆n(t) = u∆
n (t) +

η√
αT

∑
tt′

[DR
n (t, t′)−Dn(t, t′)− γDn(t′, t+ 1)]∆n(t′). (B.10)

Using a similar trick, we can show that for any observable depending on wn or {∆n(t)} that596

− i 〈ŵnO(wn)〉 =

〈
∂

∂un
O(wn)

〉
− i
〈

∆̂n(t)O({∆n(t′)})
〉

=

〈
∂

∂u∆
n (t)

O({∆n(t′)})
〉

(B.11)

Since wn is independent. This can be used to conclude597

Dn(t, t′) = 0 , DR
n (t, t′) = 0 (B.12)

which implies that ∆n(t) = u∆
n (t). Consequently the response functions have trivial structure598

D̂n(t) = −η
√
α

T
[δ(t− t′)− γδ(t− 1− t′)] , D̂R

n (t, t′) =

√
αη

T
δ(t− t′). (B.13)
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We therefore obtain a stochastic process of the form599

wn+1 = wn + uwn +
η
√
α

T

∑
t

Σ(t, t)wR −
η
√
α

T

∑
t

[Σ(t, t)− γΣ(t, t+ 1)]wn

un ∼ N

(
0,
η2

T 2

∑
tt′

Qn(t, t′)Σ(t, t′)

)
, {∆n(t)} ∼ N (0,Qn)

Qn(t, t′) = 〈∆n(t)∆n(t′)〉 =
1

N
wRΣ(t, t′)wR − CR(t, t′)− CR(t′, t) + C(t, t′)

Cn(t, t′) =
1

N

〈
w>nΣ(t, t′)wn

〉
, CRn (t, t′) =

1

N

〈
w>RΣ(t, t′)wn

〉

These are the final equations defining the stochastic evolution of wn and ∆n(t).600

B.2 Simplifying the Saddle Point Equations601

Using the above saddle point equations, we see that the variables {∆n(t)} and {wn} will be Gaussian602

random variables. It thus suffices to track their mean and covariance. The {∆n(t)} variables have603

zero mean and covariance given by the Qn(t, t′) function. The {wn} variables have the following604

mean evolution605

〈wn+1〉 = 〈wn〉+ η
√
α
[
Σ̄wR −

[
Σ̄− γΣ̄+

]
〈wn〉

]
= 〈wn〉+ η

√
α
[
Σ̄− γΣ̄+

]
[wTD − 〈wn〉] (B.14)

where wTD =
[
Σ̄− γΣ̄+

]−1
Σ̄wR is the fixed point of the TD dynamics. We next compute606

Mn =
〈

(wn −wTD) (wn −wTD)
>
〉

which admits the recursion607

Mn+1 =
(
I − η

√
α
[
Σ̄− γΣ̄+

])
Mn

(
I − η

√
α
[
Σ̄− γΣ̄+

])
+
η2

T 2

∑
tt′

Qn(t, t′)Σ(t, t′)

(B.15)

To obtain our formulas which hold for finite batch size, we rescale the learning rate by η → η/
√
α608

giving the following evolution609

〈wn+1〉 = 〈wn〉+ η
[
Σ̄− γΣ̄+

]
[wTD − 〈wn〉]

Mn+1 =
(
I − η

[
Σ̄− γΣ̄+

])
Mn

(
I − η

[
Σ̄− γΣ̄+

])>
+

η2

T 2α2

∑
tt′

Qn(t, t′)Σ(t, t′) (B.16)

After this rescaling, we see that the mean evolution for wn is independent of α but that the variance610

picks up an additive term on each step on the order of O(η2α−2) which vanishes in the infinite batch611

limit B/N → ∞. The error for value learning can be obtained from Mn with Ln = 1
N TrMnΣ̄.612

Lastly, we note that we can express the formula for Qn(t, t′) entirely in terms ofMn and 〈wn〉. This613
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gives the lengthy expression614

Qn(t, t′) =
1

N

〈
(wR −wn)>Σ(t, t′)(wR −wn)

〉
+
γ

N

〈
(wR −wn)>Σ(t, t′ + 1)wn

〉
+
γ

N

〈
w>nΣ(t+ 1, t′)(wR −wn)

〉
+
γ2

N

〈
w>nΣ(t+ 1, t′ + 1)wn

〉
=

1

N
TrMnΣ(t, t′) +

1

N
(wTD − 〈wn〉) [Σ(t, t′) + Σ(t′, t)] (wR −wTD)

+
1

N
(wR −wTD)

>
Σ(t, t′) (wR −wTD)

− γ

N
TrMn [Σ(t, t′ + 1) + Σ(t+ 1, t′)]

+
γ

N
(wTD − 〈wn〉) [Σ(t, t′ + 1) + Σ(t+ 1, t′)]wTD

+
γ

N
(wR −wTD)> [Σ(t, t′ + 1) + Σ(t+ 1, t′)] 〈wn〉

+
γ2

N
TrMnΣ(t+ 1, t′ + 1) +

2γ2

N
(〈wn〉 −wTD)Σ(t+ 1, t′ + 1)wTD

+
γ2

N
w>TDΣ(t+ 1, t′ + 1)wTD (B.17)

B.3 Final Result615

Below we state in compact form the full final result for our TD learning curves. The below equations616

give the evolution of the first and second moments ofwn obtained from the mean-field density of the617

previous section. Concretely, these moments obey dynamics618

〈wn+1〉 = 〈wn〉+ η
[
Σ̄− γΣ̄+

]
[wV − 〈wn〉]

Mn+1 =
[
I − ηΣ̄ + ηγΣ̄+

]
Mn

[
I − ηΣ̄ + ηγΣ̄+

]>
+

η2

α2T 2

∑
tt′

Qn(t, t′)Σ(t, t′)

Qn(t, t′) =
1

N

〈
(wR −wn)>Σ(t, t′)(wR −wn)

〉
+
γ

N

〈
(wR −wn)>Σ(t, t′ + 1)wn

〉
+
γ

N

〈
w>nΣ(t+ 1, t′)(wR −wn)

〉
+
γ2

N

〈
w>nΣ(t+ 1, t′ + 1)wn

〉
. (B.18)

These equations can be solved iteratively for w̄n,Mn, Qn. Finite dimensional versions of this result619

can be obtained by replacing α with B/N as written in the main text. The value estimation error is620

Ln =
1

N
TrMnΣ̄. (B.19)

B.4 Non-Zero Mean Feature621

We can also simply modify the DMFT equations if the mean feature is nonvanishing µ(s) 6= 0. In this622

case, when averaging over all possible trajectories through state space, there is a mean feature vector623

at each episodic time µ(t). The above equations are exact for non-zero mean features if Σ(t, t′) is624

regarded as the (non-centered) correlation matrix 〈ψ(t)ψ(t′)〉.625

B.5 Tracking Iterate Moments with Direct Recurrence Relation626

In this section we give a direct calculation of the first two moments of w over the collection of627

randomly sampled features {ψµn(t)} and show which terms can be disregarded.628

LettingA = Σ̄− γΣ̄+, we note that the average evolution of w has the form629

〈wn+1〉 = (Σ− γΣ+) (wTD − 〈wn〉) (B.20)

Thus, if we disregarded fluctuations in wn due to SGD, the model will converge to the correct fixed630

point. Next, we look at Mn = 〈(wn −wTD) (wn −wTD)〉. Under the Gaussian equivalence631
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ansatz, we have632

Mn+1 = Mn − ηAMn − ηMnA
> +

η2

T 2B2

∑
µνtt′

〈∆µ
n(t)∆ν

n(t′)ψµn(t)ψνn(t′)〉

= (I − ηA)Mn(I − ηA)> − η2

B
AMnA

> +
η2

T 2B

∑
tt′

〈
∆n(t)∆n(t′)ψ(t)ψ(t′)>

〉
= (I − ηA)Mn(I − ηA)> +

η2

T 2B

∑
tt′

Qn(t, t′)Σ(t, t′)

+
η2

T 2B

∑
tt′

〈∆n(t′)ψ(t)〉
〈
∆n(t)ψ(t′)>

〉
(B.21)

The mean field theory derived from saddle point integration consists of the first two terms in the633

final expression. Therefore mean field theory disregards the last term which computes cross time634

correlations of RPEs with features, effectively making the approximation635

η2

T 2B

∑
tt′

〈∆n(t′)ψ(t)〉
〈
∆n(t)ψ(t′)>

〉
≈ 0. (B.22)

After making this approximation, we recover the learning curve obtained in the previous Section B.3.636

We show in our experiments that dropping this term does not significantly alter the learning curves.637

B.6 Scaling of Asymptotic Fixed Points638

To identify fixed points in the value error dynamics, we can seek non-vanishing fixed points for the639

weight error covarianceM = 〈(w −wTD)(w −wTD)〉. We note that 〈w〉 ∼ wTD asymptotically.640

Again, letting A = Σ̄ − γΣ̄+, we obtain the following fixed point condition for M under these641

assumptions642

AM+MA> − ηAMA> =
η

BT 2

∑
tt′

Q(t, t′)Σ(t, t′)

Q(t, t′) = TrMΣ(t, t′)− γTrM [Σ(t, t′ + 1) + Σ(t+ 1, t′)] + γ2TrMΣ(t+ 1, t′ + 1)

+ γ2w>TDΣ̄
−1Σ̄+Σ(t, t′)Σ̄+Σ̄

−1wTD + γ2w>TDΣ(t+ 1, t′ + 1)wTD

+ γ2wTDΣ̄
−1Σ̄+ [Σ(t, t′ + 1) + Σ(t+ 1, t′)]wTD. (B.23)

Where we used the formula for Qn(t, t′) from Appendix B.5, evaluated at 〈w〉 = wTD and used the643

fact that wR = wTD − γΣ̄−1Σ̄+wTD. The solution M = 0 is a valid fixed point for M in the644

η → 0 and B → ∞ limits because the constant terms on the right-hand side vanish. Similarly, if645

γ = 0 (which corresponds to the standard supervised learning case), the right hand side is linear in646

M , allowingM = 0 to be a valid fixed point.647

However, for finite B and non-zero η and γ, there exists a solution to the above fixed point equation.648

For small ηγ
2

B , we can easily deduce thatM must satisfy a self-consistent asymptotic scaling of the649

form650

M = O
(
ηγ2

B

)
(B.24)

impliying an asymptotic value error scaling ofL ∼ TrMΣ̄ ∼ O
(
ηγ2

B

)
. These scalings are examined651

in Figure 3 where experiments obey the expected behavior.652

C Reward Shaping653

In this section, we consider the role of reward shaping on the dynamics of TD learning. As discussed654

in the main text, we consider potential based shaping with potential function decomposable in the655

features φ(s) = wφ ·ψ(s). We first describe the change to the average weight evolution 〈wn〉 and656
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then describe the dynamics of the correlations. In potential based shaping, the TD errors take the657

form658

∆(t) = R(s(t)) + φ(s(t))− γφ(s(t+ 1)) + γV̂ (s(t+ 1))− V̂ (s(t)) (C.1)

Computing from the DMFT equations the evolution of 〈wn〉 we have659

〈wn+1〉 = 〈wn〉+ ηΣ̄(wR +wφ − 〈wn〉) + γηΣ̄+(〈wn〉 −wφ)

= 〈wn〉 − ηA [wTD +wφ − 〈wn〉] . (C.2)

We see that including the reward shaping function φ offsets the fixed point of the algorithm to be660

wTD +wφ. This occurs precisely because the potential-based reward shaping generates an additive661

correction to the target value function by φ(s) [61]. When we predict value at evaluation, we use the662

reshifted value V̂ (s)− φ(s). The natural quantity to track at the level of the mean field equations is663

the adapted version ofMn664

Mn =
〈

(wn −wTD −wφ) (wn −wTD −wφ)
>
〉
. (C.3)

This correlation matrix has dynamics665

Mn+1 = (I − ηA)Mn (I − ηA)
>

+
η2

BT 2

∑
tt′

Qn(t, t′)Σ(t, t′) (C.4)

and the TD-error correlations Qn(t, t′) have the form666

Qn(t, t′) =
〈
(wR +wφ −wn)>Σ(t, t′)(wR +wφ −wn)

〉
+ γ

〈
(w −wφ)> [Σ(t, t′) + Σ(t′, t)] (wR +wφ −wn)

〉
+ γ2

〈
(wn −wφ)>Σ(t+ 1, t′ + 1)(wn −wφ)

〉
(C.5)

The value estimation error is again Ln = TrMnΣ̄. We see that the two primary ways that reward667

shaping alters the loss dynamics is668

• A change in the initial condition forMn to beM0 = (wTD +wφ)(wTD +wφ)>669

• A change in the TD error covariance term Qn(t, t′)670

Both effects can generate significant changes in the dynamics and plateaus of the model.671

D Numerical methods and additional details672

The code to generate the Figures is provided in the Supplementary Material as a Jupyter Notebook.673

Here, we briefly highlight some of the parameter choices.674

For Figures 3 and 4 we use diagonally decoupled, but temporally correlated power law features675

with Σk`(t, t
′) = δk` k

−1.2 exp (−|t− t′|/τk) with τk = 10
k+1 and wRk = k−1.1 for k ∈ [N ] with676

N = 300. This type of feature structure is especially easy to evaluate the theoretical learning curves677

for. Unless otherwise stated, these figures used γ = 0.9 and batch size B = 10.678

For the 2D MDP grid world, we defined a discrete set of states on a 17× 17 grid. The agent starts in679

the middle position and follows a random diffusion policy where each possible movement (up, down,680

left, right) is taken with equal probability. The features were generated as bell-shaped place cells681

(shown). We computed Σ(t, t′) for the theory by sampling 5000 random draws of length T = 50.682

The Gaussian learning curve is obtained with TD learning with ψG ∼ N (0,Σ).683

Numerical experiments were performed on a NVIDIA SMX4-A100-80GB GPU. Together numerical684

experiments (both preliminary experiments and those presented in the paper) took less than 1 hour of685

compute time.686
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