
Appendix536

A General Convergence Considerations for MDPs in Finite State Space537

In this section, we will discuss the infinite batch limit and compare the value function obtained with538

TD to the ground truth value function. We will, for simplicity, consider in this section a Markov539

reward process with transition matrix p(st+1 = s′|st = s) = Π(s, s′). The general theory described540

in the main text does not only apply to MDPs, but the convergence analysis for MDPs is much more541

straightforward so we describe it here. In this case, the ground truth value function satisfies542

V (s) = R(s) + γ
∑
s′

Π(s, s′)V (s′) (A.1)

which gives the vector equation V = (I − γΠ)
−1
R for V ,R ∈ R|S|. Suppose the limiting543

distribution over states is p ∈ R|S| which has entries p(s) = 1
T

∑T
t=1 p(st = s). The fixed point of544

TD dynamics is545

Ψdiag(p)Ψ>wTD = Ψdiag(p)R+ γΨdiag(p)ΠΨ>wTD. (A.2)

We now consider the two possible cases for this fixed point condition.546

Case 1: Underparameterized Regime First, if the feature dimension N is smaller than the size547

of the state space |S| and the features are maximal rank, then the TD learning fixed point is548

wTD =
(
Ψdiag(p)Ψ> − γΨdiag(p)ΠΨ>

)−1
Ψdiag(p)R (A.3)

In this case, the value function is not learned perfectly, as can be seen by computing V̂ = Ψ>wTD549

and comparing to the ground truth V = (I − γΠ)
−1
R. In this case, we would say that TD learning550

has an irreducible value error due to capturing only a N dimensional projection of the value function.551

Case 2: Overparameterized Regime Alternatively, if the feature dimension exceeds the total552

number of states, then the fixed point equation for TD is underspecified. However, throughout TD553

learningwTD ∈ span{ψ(s)}s∈S so we can instead consider the decompostionwV =
∑
s α(s)ψ(s),554

where α ∈ R|S| satisfies555

diag(p)(I − γΠ)Kα = diag(p)R (A.4)

whereK ∈ R|S|×|S| is the kernel computed with featuresK(s, s′) = ψ(s)·ψ(s′). The solution to the556

above equation is unique and the learned value function V̂ = Ψ>wTD = KK−1 (I − γΠ)
−1
R =557

(I − γΠ)
−1
R = V . Therefore, in the over-parameterized limit, the irreducible value error for TD558

learning is zero. This limit was considered dynamically in the infinite batch (vanishing SGD noise)559

setting by [41].560

B Derivation of Learning Curves561

In this section, we now consider the dynamics of TD learning when B random episodes are sampled562

at a time. In this calculation, the finite batch of episodes leads to non-negligible SGD effects which563

can cause undesirable plateaus in TD dynamics.564

B.1 Field Theory Derivation565

In this section we use a Gaussian field theory formalism to compute the learning curve in the high566

dimensional asymptotic limit N,B → ∞ with B/N = α. The episode length T is treated as567

O(1). While this paper focuses on the online setting, where fresh trajectories {τµn } are sampled at568

each iteration n, this model can be straightforwardly extended to the case where a fixed number of569

experience trajectories {τµ} are replayed repeatedly during TD learning. We leave the experience570
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replay dynamic mean field theory calculation for future work. The starting point of our analysis is571

tracking the moment generating function for the iterate dynamics572

Z[{jn}] = E{wn},{sµn(t)} exp

(
i

∞∑
n=0

jn ·wn

)
. (B.1)

To compute this object over random draws of training trajectories, we express the joint average over573

wn, {sµn(t)} into conditional averages over wn, {∆µ
n(t)}|{ψµn(t)}. To simplify the computation, in574

this section, we will compute the learning curve for mean zero features µ(s) = 0 and575

Z =E{ψµn(t)}

∫ ∏
n

dwnδ

(
wn+1 −wn −

η√
BT

∑
µt

∆µ
n(t)ψµn(t)

)
exp

(
i

∞∑
n=0

jn ·wn

)

×
∫ ∏

tµn

d∆µ
n(t) δ

(
∆µ
n(t)− 1√

N
(wR −wn) ·ψµn(t)− γ√

N
wn ·ψµn(t+ 1)

)
(B.2)

Expressing the Dirac-delta function as a Fourier integral δ(z) =
∫
dẑ
2π exp (iẑz) for each of our576

constraints. Under the Gaussian equivalence ansatz, we can easily average over Gaussian ψ to obtain577

Z =

∫
D∆D∆̂DwDŵ exp

(
− η2

2BT 2

∑
nµ

∑
tt′

∆µ
n(t)∆µ

n(t′)ŵ>nΣ(t, t′)ŵn

)

exp

(
i
∑
n

ŵn · (wn+1 −wn)

)

exp

− 1

2N

∑
nµtt′

[
(wR −wn)∆̂µ

n(t)
]
Σ(t, t′)

[
(wR −wn)∆̂µ

n(t′)
]

exp

− γ2

2N

∑
nµtt′

∆̂µ
n(t− 1)∆̂µ

n(t′ − 1)w>nΣ(t, t′)wn


exp

− γ

N

∑
nµtt′

∆̂µ
n(t− 1)∆̂µ

n(t′)w>nΣ(t, t′)(wR −wn)


exp

− η√
NBT

∑
nµtt′

[
∆̂µ
n(t)(wR −wn) + γ∆̂µ

n(t− 1)wn

]>
Σ(t, t′)ŵn∆µ

n(t′)


exp

(
i
∑
nµt

∆̂µ
n(t)∆µ

n(t) + i
∑
n

jn ·wn

)
(B.3)

where we adopted the shorthand D∆ =
∏
µ,n,t d∆µ

n(t) for the measure for the collection of variables578

{∆µ
n(t)}. Likewise one should interpret Dw =

∏
n dwn. To analyze the high dimensional limit of579

the above moment generating function, we introduce order parameters for the theory580

Qn(t, t′) =
1

B

B∑
µ=1

∆µ
n(t)∆µ

n(t′) , Cn(t, t′) =
1

N
w>nΣ(t, t′)wn

CRn (t, t′) =
1

N
wRΣ(t, t′)wn , Dn(t, t′) = − i

N
ŵ>nΣ(t, t′)wn , D

R
n (t, t′) = − i

N
ŵ>nΣ(t, t′)wR

(B.4)

S2



For each of these order parameters, we enforce the definition of the order parameter using the Fourier581

representation of a Dirac-delta function582

1 = B

∫
dQn(t, t′)δ

(
BQn(t, t′)−

∑
µ

∆µ
n(t)∆µ

n(t′)

)

= B

∫
dQn(t, t′)dQ̂n(t, t′)

4πi
exp

(
B

2
Q̂n(t, t′)Qn(t, t′)− 1

2

∑
µ

∆µ
n(t)∆µ

n(t′)Q̂n(t, t′)

)
.

(B.5)

Repeating this procedure for all order parameters q = {Q, Q̂, C, Ĉ, CR, ĈR, D, D̂,DR, D̂R} and583

disregarding irrelevant prefactors, we have the following formula for the moment generating function584

Z ∝
∫
Dq exp

(
N

2
S[q]

)
(B.6)

where the action S has the form585

S =
∑
n

∑
tt′

[
αQn(t, t′)Q̂n(t, t′) + Cn(t, t′)Ĉn(t, t′) + CRn (t, t′)ĈRn (t, t′)

]
−2
∑
n

∑
tt′

[
Dn(t, t′)D̂n(t, t′) +DR

n (t, t′)D̂R
n (t, t′)

]
+

2

N
lnZw + 2α lnZ∆

Zw =

∫
DwDŵ exp

(
− η2

2T 2

∑
ntt′

Qn(t, t′)ŵ>nΣ(t, t′)ŵn + i
∑
n

ŵn · (wn+1 −wn)

)

exp

(
−1

2

∑
ntt′

Ĉn(t, t′)w>nΣ(t, t′)wn −
1

2
ĈRn (t, t′)w>RΣ(t, t′)wn

)

exp

(
−i
∑
ntt′

D̂n(t, t′)ŵ>nΣ(t, t′)wn − i
∑
ntt′

D̂R
n (t, t′)ŵ>nΣ(t, t′)wR

)

Z∆ =

∫
D∆D∆̂ exp

(
−1

2

∑
ntt′

Q̂n(t, t′)∆n(t)∆n(t′) + i
∑
nt

∆̂n(t)∆n(t)

)

exp

(
−1

2

∑
ntt′

∆̂n(t)∆̂n(t′)

[
1

N
w>RΣ(t, t′)wR + C(t, t′)

])

exp

(
1

2

∑
ntt′

∆̂n(t)∆̂n(t′)
[
CR(t, t′) + CR(t′, t)

])

exp

−γ∑
t,t′

∆̂n(t)∆̂n(t′ − 1)CRn (t, t′)


exp

−γ2

2

∑
t,t′

∆̂n(t− 1)∆̂n(t′ − 1)Cn(t, t′)


exp

− ηi√
αT

∑
nt,t′

∆̂n(t)
[
DR
n (t′, t)−Dn(t′, t) + γDn(t′, t+ 1)

]
∆n(t′)


(B.7)

The functionZ has the interpretation of an effective partition function conditional on order parameters586

q. To study the N → ∞ limit, we use the steepest descent method and analyze the saddle point587
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∂S
∂q = 0. These saddle point equations give588

∂S

∂Q̂n(t, t′)
= αQn(t, t′)− α 〈∆n(t)∆n(t′)〉 = 0

∂S

∂Qn(t, t′)
= αQ̂n(t, t′)− η2

T 2N

〈
ŵ>nΣ(t, t′)ŵn

〉
= 0

∂S

∂Ĉn(t, t′)
= Cn(t, t′)− 1

N

〈
w>nΣ(t, t′)wn

〉
= 0

∂S

∂Cn(t, t′)
= Ĉn(t, t′)− α

〈
∆̂n(t)∆̂n(t′) + γ2∆̂n(t− 1)∆̂n(t′ − 1)

〉
= 0

∂S

∂ĈRn (t, t′)
= CRn (t, t′)− 1

N

〈
w>RΣ(t, t′)wn

〉
= 0

∂S

∂Cn(t, t′)
= Ĉn(t, t′)− α

〈
∆̂n(t)∆̂n(t′) + γ∆̂n(t)∆̂n(t′ − 1)

〉
= 0

∂S

∂D̂n(t, t′)
= −2Dn(t, t′)− 2i

N

〈
ŵ>nΣ(t, t′)wn

〉
= 0

∂S

∂D̂R
n (t, t′)

= −2DR
n (t, t′)− 2i

N

〈
ŵ>nΣ(t, t′)wn

〉
= 0

∂S

∂Dn(t, t′)
= −2D̂n(t, t′)− 2αηi√

αT

〈
γ∆̂n(t− 1)∆n(t′)− ∆̂n(t)∆n(t′)

〉
= 0

∂S

∂DR
n (t, t′)

= −2D̂R
n (t, t′)− 2αηi√

αT

〈
∆̂n(t)∆n(t′)

〉
= 0 (B.8)

The brackets 〈〉 denote averaging over the stochastic processes defined by moment generating589

functions Z∆,Zw. After these saddle point equations are solved the order parameters q are treated as590

non-random and a Hubbard-Stratonovich transformation is employed. For example,591

exp

(
−1

2
ŵn

[
η2

T 2

∑
tt′

Qn(t, t′)Σ(t, t′)

]
ŵn

)
= Euwn exp

(
i
∑
n

uwn · ŵn

)
(B.9)

where the average is over uwn ∼ N
(
0, η2T−2

∑
tt′ Qn(t, t′)Σ(t, t′)

)
. After introducing these592

Hubbard fields uwn and u∆
n (t), we can perform the integrals over ŵn and ∆̂n(t) which collapse to593

Dirac-Delta functions. The resulting identities of the delta functions define the following stochastic594

processes on wn and u∆
n595

wn+1 = wn + uwn +
∑
tt′

D̂R
n (t, t′)Σ(t, t′)wR +

∑
t,t′

D̂n(t, t′)Σ(t, t′)wn

∆n(t) = u∆
n (t) +

η√
αT

∑
tt′

[DR
n (t, t′)−Dn(t, t′)− γDn(t′, t+ 1)]∆n(t′). (B.10)

Using a similar trick, we can show that for any observable depending on wn or {∆n(t)} that596

− i 〈ŵnO(wn)〉 =

〈
∂

∂un
O(wn)

〉
− i
〈

∆̂n(t)O({∆n(t′)})
〉

=

〈
∂

∂u∆
n (t)

O({∆n(t′)})
〉

(B.11)

Since wn is independent. This can be used to conclude597

Dn(t, t′) = 0 , DR
n (t, t′) = 0 (B.12)

which implies that ∆n(t) = u∆
n (t). Consequently the response functions have trivial structure598

D̂n(t) = −η
√
α

T
[δ(t− t′)− γδ(t− 1− t′)] , D̂R

n (t, t′) =

√
αη

T
δ(t− t′). (B.13)
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We therefore obtain a stochastic process of the form599

wn+1 = wn + uwn +
η
√
α

T

∑
t

Σ(t, t)wR −
η
√
α

T

∑
t

[Σ(t, t)− γΣ(t, t+ 1)]wn

un ∼ N

(
0,
η2

T 2

∑
tt′

Qn(t, t′)Σ(t, t′)

)
, {∆n(t)} ∼ N (0,Qn)

Qn(t, t′) = 〈∆n(t)∆n(t′)〉 =
1

N
wRΣ(t, t′)wR − CR(t, t′)− CR(t′, t) + C(t, t′)

Cn(t, t′) =
1

N

〈
w>nΣ(t, t′)wn

〉
, CRn (t, t′) =

1

N

〈
w>RΣ(t, t′)wn

〉

These are the final equations defining the stochastic evolution of wn and ∆n(t).600

B.2 Simplifying the Saddle Point Equations601

Using the above saddle point equations, we see that the variables {∆n(t)} and {wn} will be Gaussian602

random variables. It thus suffices to track their mean and covariance. The {∆n(t)} variables have603

zero mean and covariance given by the Qn(t, t′) function. The {wn} variables have the following604

mean evolution605

〈wn+1〉 = 〈wn〉+ η
√
α
[
Σ̄wR −

[
Σ̄− γΣ̄+

]
〈wn〉

]
= 〈wn〉+ η

√
α
[
Σ̄− γΣ̄+

]
[wTD − 〈wn〉] (B.14)

where wTD =
[
Σ̄− γΣ̄+

]−1
Σ̄wR is the fixed point of the TD dynamics. We next compute606

Mn =
〈

(wn −wTD) (wn −wTD)
>
〉

which admits the recursion607

Mn+1 =
(
I − η

√
α
[
Σ̄− γΣ̄+

])
Mn

(
I − η

√
α
[
Σ̄− γΣ̄+

])
+
η2

T 2

∑
tt′

Qn(t, t′)Σ(t, t′)

(B.15)

To obtain our formulas which hold for finite batch size, we rescale the learning rate by η → η/
√
α608

giving the following evolution609

〈wn+1〉 = 〈wn〉+ η
[
Σ̄− γΣ̄+

]
[wTD − 〈wn〉]

Mn+1 =
(
I − η

[
Σ̄− γΣ̄+

])
Mn

(
I − η

[
Σ̄− γΣ̄+

])>
+

η2

T 2α2

∑
tt′

Qn(t, t′)Σ(t, t′) (B.16)

After this rescaling, we see that the mean evolution for wn is independent of α but that the variance610

picks up an additive term on each step on the order of O(η2α−2) which vanishes in the infinite batch611

limit B/N → ∞. The error for value learning can be obtained from Mn with Ln = 1
N TrMnΣ̄.612

Lastly, we note that we can express the formula for Qn(t, t′) entirely in terms ofMn and 〈wn〉. This613
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gives the lengthy expression614

Qn(t, t′) =
1

N

〈
(wR −wn)>Σ(t, t′)(wR −wn)

〉
+
γ

N

〈
(wR −wn)>Σ(t, t′ + 1)wn

〉
+
γ

N

〈
w>nΣ(t+ 1, t′)(wR −wn)

〉
+
γ2

N

〈
w>nΣ(t+ 1, t′ + 1)wn

〉
=

1

N
TrMnΣ(t, t′) +

1

N
(wTD − 〈wn〉) [Σ(t, t′) + Σ(t′, t)] (wR −wTD)

+
1

N
(wR −wTD)

>
Σ(t, t′) (wR −wTD)

− γ

N
TrMn [Σ(t, t′ + 1) + Σ(t+ 1, t′)]

+
γ

N
(wTD − 〈wn〉) [Σ(t, t′ + 1) + Σ(t+ 1, t′)]wTD

+
γ

N
(wR −wTD)> [Σ(t, t′ + 1) + Σ(t+ 1, t′)] 〈wn〉

+
γ2

N
TrMnΣ(t+ 1, t′ + 1) +

2γ2

N
(〈wn〉 −wTD)Σ(t+ 1, t′ + 1)wTD

+
γ2

N
w>TDΣ(t+ 1, t′ + 1)wTD (B.17)

B.3 Final Result615

Below we state in compact form the full final result for our TD learning curves. The below equations616

give the evolution of the first and second moments ofwn obtained from the mean-field density of the617

previous section. Concretely, these moments obey dynamics618

〈wn+1〉 = 〈wn〉+ η
[
Σ̄− γΣ̄+

]
[wV − 〈wn〉]

Mn+1 =
[
I − ηΣ̄ + ηγΣ̄+

]
Mn

[
I − ηΣ̄ + ηγΣ̄+

]>
+

η2

α2T 2

∑
tt′

Qn(t, t′)Σ(t, t′)

Qn(t, t′) =
1

N

〈
(wR −wn)>Σ(t, t′)(wR −wn)

〉
+
γ

N

〈
(wR −wn)>Σ(t, t′ + 1)wn

〉
+
γ

N

〈
w>nΣ(t+ 1, t′)(wR −wn)

〉
+
γ2

N

〈
w>nΣ(t+ 1, t′ + 1)wn

〉
. (B.18)

These equations can be solved iteratively for w̄n,Mn, Qn. Finite dimensional versions of this result619

can be obtained by replacing α with B/N as written in the main text. The value estimation error is620

Ln =
1

N
TrMnΣ̄. (B.19)

B.4 Non-Zero Mean Feature621

We can also simply modify the DMFT equations if the mean feature is nonvanishing µ(s) 6= 0. In this622

case, when averaging over all possible trajectories through state space, there is a mean feature vector623

at each episodic time µ(t). The above equations are exact for non-zero mean features if Σ(t, t′) is624

regarded as the (non-centered) correlation matrix 〈ψ(t)ψ(t′)〉.625

B.5 Tracking Iterate Moments with Direct Recurrence Relation626

In this section we give a direct calculation of the first two moments of w over the collection of627

randomly sampled features {ψµn(t)} and show which terms can be disregarded.628

LettingA = Σ̄− γΣ̄+, we note that the average evolution of w has the form629

〈wn+1〉 = (Σ− γΣ+) (wTD − 〈wn〉) (B.20)

Thus, if we disregarded fluctuations in wn due to SGD, the model will converge to the correct fixed630

point. Next, we look at Mn = 〈(wn −wTD) (wn −wTD)〉. Under the Gaussian equivalence631
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ansatz, we have632

Mn+1 = Mn − ηAMn − ηMnA
> +

η2

T 2B2

∑
µνtt′

〈∆µ
n(t)∆ν

n(t′)ψµn(t)ψνn(t′)〉

= (I − ηA)Mn(I − ηA)> − η2

B
AMnA

> +
η2

T 2B

∑
tt′

〈
∆n(t)∆n(t′)ψ(t)ψ(t′)>

〉
= (I − ηA)Mn(I − ηA)> +

η2

T 2B

∑
tt′

Qn(t, t′)Σ(t, t′)

+
η2

T 2B

∑
tt′

〈∆n(t′)ψ(t)〉
〈
∆n(t)ψ(t′)>

〉
(B.21)

The mean field theory derived from saddle point integration consists of the first two terms in the633

final expression. Therefore mean field theory disregards the last term which computes cross time634

correlations of RPEs with features, effectively making the approximation635

η2

T 2B

∑
tt′

〈∆n(t′)ψ(t)〉
〈
∆n(t)ψ(t′)>

〉
≈ 0. (B.22)

After making this approximation, we recover the learning curve obtained in the previous Section B.3.636

We show in our experiments that dropping this term does not significantly alter the learning curves.637

B.6 Scaling of Asymptotic Fixed Points638

To identify fixed points in the value error dynamics, we can seek non-vanishing fixed points for the639

weight error covarianceM = 〈(w −wTD)(w −wTD)〉. We note that 〈w〉 ∼ wTD asymptotically.640

Again, letting A = Σ̄ − γΣ̄+, we obtain the following fixed point condition for M under these641

assumptions642

AM+MA> − ηAMA> =
η

BT 2

∑
tt′

Q(t, t′)Σ(t, t′)

Q(t, t′) = TrMΣ(t, t′)− γTrM [Σ(t, t′ + 1) + Σ(t+ 1, t′)] + γ2TrMΣ(t+ 1, t′ + 1)

+ γ2w>TDΣ̄
−1Σ̄+Σ(t, t′)Σ̄+Σ̄

−1wTD + γ2w>TDΣ(t+ 1, t′ + 1)wTD

+ γ2wTDΣ̄
−1Σ̄+ [Σ(t, t′ + 1) + Σ(t+ 1, t′)]wTD. (B.23)

Where we used the formula for Qn(t, t′) from Appendix B.5, evaluated at 〈w〉 = wTD and used the643

fact that wR = wTD − γΣ̄−1Σ̄+wTD. The solution M = 0 is a valid fixed point for M in the644

η → 0 and B → ∞ limits because the constant terms on the right-hand side vanish. Similarly, if645

γ = 0 (which corresponds to the standard supervised learning case), the right hand side is linear in646

M , allowingM = 0 to be a valid fixed point.647

However, for finite B and non-zero η and γ, there exists a solution to the above fixed point equation.648

For small ηγ
2

B , we can easily deduce thatM must satisfy a self-consistent asymptotic scaling of the649

form650

M = O
(
ηγ2

B

)
(B.24)

impliying an asymptotic value error scaling ofL ∼ TrMΣ̄ ∼ O
(
ηγ2

B

)
. These scalings are examined651

in Figure 3 where experiments obey the expected behavior.652

C Reward Shaping653

In this section, we consider the role of reward shaping on the dynamics of TD learning. As discussed654

in the main text, we consider potential based shaping with potential function decomposable in the655

features φ(s) = wφ ·ψ(s). We first describe the change to the average weight evolution 〈wn〉 and656
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then describe the dynamics of the correlations. In potential based shaping, the TD errors take the657

form658

∆(t) = R(s(t)) + φ(s(t))− γφ(s(t+ 1)) + γV̂ (s(t+ 1))− V̂ (s(t)) (C.1)

Computing from the DMFT equations the evolution of 〈wn〉 we have659

〈wn+1〉 = 〈wn〉+ ηΣ̄(wR +wφ − 〈wn〉) + γηΣ̄+(〈wn〉 −wφ)

= 〈wn〉 − ηA [wTD +wφ − 〈wn〉] . (C.2)

We see that including the reward shaping function φ offsets the fixed point of the algorithm to be660

wTD +wφ. This occurs precisely because the potential-based reward shaping generates an additive661

correction to the target value function by φ(s) [61]. When we predict value at evaluation, we use the662

reshifted value V̂ (s)− φ(s). The natural quantity to track at the level of the mean field equations is663

the adapted version ofMn664

Mn =
〈

(wn −wTD −wφ) (wn −wTD −wφ)
>
〉
. (C.3)

This correlation matrix has dynamics665

Mn+1 = (I − ηA)Mn (I − ηA)
>

+
η2

BT 2

∑
tt′

Qn(t, t′)Σ(t, t′) (C.4)

and the TD-error correlations Qn(t, t′) have the form666

Qn(t, t′) =
〈
(wR +wφ −wn)>Σ(t, t′)(wR +wφ −wn)

〉
+ γ

〈
(w −wφ)> [Σ(t, t′) + Σ(t′, t)] (wR +wφ −wn)

〉
+ γ2

〈
(wn −wφ)>Σ(t+ 1, t′ + 1)(wn −wφ)

〉
(C.5)

The value estimation error is again Ln = TrMnΣ̄. We see that the two primary ways that reward667

shaping alters the loss dynamics is668

• A change in the initial condition forMn to beM0 = (wTD +wφ)(wTD +wφ)>669

• A change in the TD error covariance term Qn(t, t′)670

Both effects can generate significant changes in the dynamics and plateaus of the model.671

D Numerical methods and additional details672

The code to generate the Figures is provided in the Supplementary Material as a Jupyter Notebook.673

Here, we briefly highlight some of the parameter choices.674

For Figures 3 and 4 we use diagonally decoupled, but temporally correlated power law features675

with Σk`(t, t
′) = δk` k

−1.2 exp (−|t− t′|/τk) with τk = 10
k+1 and wRk = k−1.1 for k ∈ [N ] with676

N = 300. This type of feature structure is especially easy to evaluate the theoretical learning curves677

for. Unless otherwise stated, these figures used γ = 0.9 and batch size B = 10.678

For the 2D MDP grid world, we defined a discrete set of states on a 17× 17 grid. The agent starts in679

the middle position and follows a random diffusion policy where each possible movement (up, down,680

left, right) is taken with equal probability. The features were generated as bell-shaped place cells681

(shown). We computed Σ(t, t′) for the theory by sampling 5000 random draws of length T = 50.682

The Gaussian learning curve is obtained with TD learning with ψG ∼ N (0,Σ).683

Numerical experiments were performed on a NVIDIA SMX4-A100-80GB GPU. Together numerical684

experiments (both preliminary experiments and those presented in the paper) took less than 1 hour of685

compute time.686
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