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Abstract

Designing flexible probabilistic models over tree topologies is important for devel-1

oping efficient phylogenetic inference methods. To do that, previous works often2

leverage the similarity of tree topologies via hand-engineered heuristic features3

which would require domain expertise and may suffer from limited approximation4

capability. In this paper, we propose a deep autoregressive model for phylogenetic5

inference based on graph neural networks (GNNs), called ARTree. By decompos-6

ing a tree topology into a sequence of leaf node addition operations and modeling7

the involved conditional distributions based on learnable topological features via8

GNNs, ARTree can provide a rich family of distributions over tree topologies that9

have simple sampling algorithms, without using heuristic features. We demonstrate10

the effectiveness and efficiency of our method on a benchmark of challenging11

real data tree topology density estimation and variational Bayesian phylogenetic12

inference problems.13

1 Introduction14

Reconstructing the evolutionary relationships among species has been one of the central problems15

in computational biology, with a wide range of applications such as genomic epidemiology (Dudas16

et al., 2017; du Plessis et al., 2021; Attwood et al., 2022) and conservation genetics (DeSalle &17

Amato, 2004). Based on molecular sequence data (e.g. DNA, RNA, or protein sequences) of the18

observed species and a model of evolution, this has been formulated as a statistical inference problem19

on the hypotheses of shared history, i.e., phylogenetic trees, where maximum likelihood and Bayesian20

approaches are the most popular methods (Felsenstein, 1981; Yang & Rannala, 1997; Mau et al.,21

1999; Larget & Simon, 1999; Huelsenbeck et al., 2001). However, phylogenetic inference can be22

challenging due to the composite structure of tree space which contains both continuous and discrete23

components (e.g., the branch lengths and the tree topologies) and the large search space of tree24

topologies that explodes combinatorially as the number of species increases (Whidden & Matsen IV,25

2015; Dinh et al., 2017).26

Recently, several efforts have been made to improve the efficiency of phylogenetic inference algo-27

rithms by designing flexible probabilistic models over the tree topology space (Höhna & Drummond,28

2012; Larget, 2013; Zhang & Matsen IV, 2018). One typical example is subsplit Bayesian networks29

(SBNs) (Zhang & Matsen IV, 2018), which is a powerful probabilistic graphical model that provides30

a flexible family of distributions over tree topologies. Given a sample of tree topologies (e.g., sampled31

tree topologies from an MCMC run), SBNs have proved effective for accurate tree topology density32

estimation that generalizes beyond observed samples by leveraging the similarity of hand-engineered33

subsplit structures among tree topologies. Moreover, SBNs also allow fast ancestral sampling and34

hence were later on integrated into a variational Bayesian phylogenetic inference (VBPI) framework35

to provide variational posteriors over tree topologies (Zhang & Matsen IV, 2019). However, due to36
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the limited parent-child subsplit patterns in the observed samples, SBNs can not provide distributions37

whose support spans the entire tree topology space (Zhang & Matsen IV, 2022). Furthermore, when38

used as variational distributions over tree topologies in VBPI, SBNs often rely on subsplit support39

estimation for variational parameterization, which requires domain expertise and would become40

challenging when the posterior is diffuse.41

While SBNs suffer from the aforementioned limitations due to their hand-engineered design, a42

number of deep learning methods have been proposed for probabilistic modeling of graphs (Jin et al.,43

2018; You et al., 2018a; Cao & Kipf, 2018; Simonovsky & Komodakis, 2018). Instead of using44

hand-engineered features, these approaches use neural networks to define probabilistic models for the45

connections between graph nodes which allow for learnable distributions over graphs. Due to the46

flexibility of neural networks, the resulting models are capable of learning complex graph patterns47

automatically. Among these deep graph models, graph autoregressive models (You et al., 2018b;48

Li et al., 2018; Liao et al., 2019; Dai et al., 2020; Shi et al., 2020) are designed to learn flexible49

graph distributions that also allow easy sampling procedures by sequentially adding nodes and edges.50

Therefore, they serve as an ideal substitution of SBNs for phylogenetic inference that can provide51

more expressive distributions over tree topologies while not requiring domain expertise.52

In this paper, we propose a novel deep autoregressive model for phylogenetic inference, called ARTree,53

which allows for more flexible distributions over tree topologies without using heuristic features than54

SBNs. With a pre-selected order of leaf nodes (i.e., species or taxa), ARTree generates a tree topology55

by recursively adding new leaf nodes to the edges of current tree topology, starting from a star-shaped56

tree topology with the first three leaf nodes (Figure 1). The edge to which a new leaf node connects is57

determined according to a conditional distribution based on learnable topological features of current58

tree topology via GNNs (Zhang, 2023). This way, probability distributions provided by ARTree all59

have full support that spans the entire tree topology space. Unlike SBNs, ARTree can be readily60

used in VBPI without requiring subsplit support estimation for parameterization. In experiments, we61

show that ARTree outperforms SBNs on a benchmark of challenging real data tree topology density62

estimation and variational Bayesian phylogenetic inference problems.63

2 Background64

Phylogenetic likelihoods A phylogenetic tree is commonly described by a bifurcating tree topology65

τ and the associated non-negative branch lengths q. The tree topology τ represents the evolutionary66

relationship of the species and the branch lengths q quantify the evolutionary intensity along the edges67

of τ . The leaf nodes of τ correspond to the observed species and the internal nodes of τ represent68

the unobserved ancestor species. A continuous time Markov model is often used to describe the69

transition probabilities of the characters along the edges of the tree (Felsenstein, 2004). Concretely,70

let Y = {Y1, . . . , YM} ∈ ΩN×M be the observed sequences (with characters in Ω) of length M71

over N species. Under the assumption that different sites evolve independently and identically, the72

likelihood of Y given τ, q takes the form73

p(Y |τ, q) =
M∏
i=1

p(Yi|τ, q) =
M∏
i=1

∑
ai

η(air)
∏

(u,v)∈E(τ)

Pai
ua

i
v
(quv), (1)

where ai ranges over all extensions of Yi to the internal nodes with aiu being the character assignment74

of node u (r represents the root node), E(τ) is the set of edges of τ , quv is the branch length of the75

edge (u, v) ∈ E(τ), Pjk(q) is the transition probability from character j to k through a branch of76

length q, and η is the stationary distribution of the Markov model.77

Subsplit Bayesian networks Let X be the set of leaf labels representing the existing species. A78

non-empty subset of X is called a clade and the set of all clades C(X ) is equipped with a total order79

≻ (e.g., lexicographical order). An ordered clade pair (W,Z) satisfying W ∩ Z = ∅ and W ≻ Z is80

called a subsplit. A subsplit Bayesian network (SBN) is then defined as a Bayesian network whose81

nodes take subsplit values or singleton clade values that describe the local topological structures of82

tree topologies. For a rooted tree topology, one can find the corresponding node assignment of SBNs83

by following its splitting processes (Figure 4 in Appendix A). The SBN based probability of a rooted84

tree topology τ then takes the following form85

psbn(T = τ) = p(S1 = s1)
∏
i>1

p(Si = si|Sπi = sπi), (2)
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where Si denotes the subsplit- or singleton-clade-valued random varaibles at node i (node 1 is the root86

node), πi is the index set of the parents of node i and {si}i≥1 is the corresponding node assignment.87

For unrooted tree topologies, we can also define their SBN based probabilities by viewing them as88

rooted tree topologies with unobserved roots and integrating out the positions of the root node as89

follows: psbn(T u = τ) =
∑

e∈E(τ) psbn(τ
e), where τe is the resulting rooted tree topology when90

the rooting position is on edge e. In practice, the conditional probability tables (CPTs) of SBNs91

are often parameterized based on a sample of tree topologies (e.g., the observed data for density92

estimation (Zhang & Matsen IV, 2018) or fast bootstrap/MCMC samples (Minh et al., 2013; Zhang,93

2020) for VBPI). As a result, the supports of SBN-induced distributions are often limited by the94

splitting patterns in the observed samples and could not span the entire tree topology space (Zhang &95

Matsen IV, 2022). More details on SBNs can be found in Appendix A.96

Variational Bayesian phylogenetic inference Given a prior distribution p(τ, q), the phylogenetic97

posterior distribution takes the form98

p(τ, q|Y ) =
p(Y |τ, q)p(τ, q)

p(Y )
∝ p(Y |τ, q)p(τ, q). (3)

Let Qϕ(τ) and Qψ(q|τ) be variational families over the spaces of tree topologies and branch lengths99

respectively. The VBPI approach uses Qϕ,ψ(τ, q) = Qϕ(τ)Qψ(q|τ) to approximate the posterior100

p(τ, q|Y ) by maximizing the following multi-sample lower bound101

LK(ϕ,ψ) = E
{(τ i,qi)}K

i=1

i.i.d.∼ Qϕ,ψ
log

(
1

K

K∑
i=1

p(Y |τ i, qi)p(τ i, qi)
Qϕ(τ i)Qψ(qi|τ i)

)
. (4)

The tree topology distribution Qϕ(τ) is often SBNs which in this case rely on subsplit support102

estimation for parameterization that requires domain expertise and would become challenging for103

diffuse posteriors (Zhang & Matsen IV, 2022). The branch lengths distribution Qψ(q|τ) can be104

diagonal lognormal distribution parametrized via heuristic features or learnable topological features105

of τ (Zhang & Matsen IV, 2019; Zhang, 2020, 2023). See more details on VBPI in Appendix B.106

Graph autoregressive models By decomposing a graph as a sequence of components (nodes,107

edges, motifs, etc), graph autoregressive models generate the full graph by adding one component at108

a time, until some stopping criteria are satisfied (You et al., 2018b; Jin et al., 2018; Liao et al., 2019).109

In previous works, recurrent neural networks (RNNs) for graphs are usually utilized to predict new110

graph components conditioned on the sub-graphs generated so far. The key of graph autoregressive111

models is to find a way to efficiently sequentialize graph structures, which is often domain-specific.112

3 Proposed method113

In this section, we propose ARTree, a deep autoregressive model for phylogenetic inference that114

can provide flexible distributions whose support spans the entire tree topology space and can be115

naturally parameterized without using heuristic approaches such as subsplit support estimation. We116

first describe a particular autoregressive generating process of phylogenetic tree topologies. We then117

develop powerful GNNs to parameterize learnable conditional distributions of this generating process.118

We consider unrooted tree topologies in this section, but the method developed here can be easily119

adapted to rooted tree topologies.120

3.1 A sequential generating process of tree topologies121

To better illustrate our approach, we begin with some notations. Let τn = (Vn, En) be a tree topology122

with n leaf nodes and Vn, En are the sets of nodes and edges respectively. Note that |Vn| = 2n− 2123

and |En| = 2n − 3 due to the unrooted and bifurcating structure of τn. The leaf nodes in Vn are124

treated as labeled nodes and the interior nodes in Vn are treated as unlabeled nodes. Let us assume a125

pre-selected order for the leaf nodes X = {x1, . . . , xN}, which is called taxa order for short by us.126

Now, consider a sequential generating process for all possible tree topologies that have leaf nodes X .127

We start with a definition below.128

Definition 1 (Ordinal Tree Topology). Let X = {x1, . . . , xN} be a set of N(N ≥ 3) leaf nodes.129

Let τn = (Vn, En) be a tree topology with n(n ≤ N) leaf nodes in X . We say τn is an ordinal tree130

topology of rank n, if its leaf nodes are the first n elements of X , i.e., Vn ∩ X = {x1, . . . , xn}.131
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Figure 1: An overview of ARTree for autoregressive tree topology generation. The left plot is the
starting ordinal tree topology of rank 3. This tree topology is then fed into GNNs which output a
probability vector over edges. We then sample from the corresponding edge decision distribution and
attach the next leaf node to the sampled edge. This process continues until an ordinal tree topology
of rank N is reached.

We now describe a procedure that constructs ordinal tree topologies of rank N recursively by adding132

one leaf node at a time as follows. We first start from τ3, the ordinal tree topology of rank 3, which is133

the smallest ordinal tree topology and is unique due to its unrooted and bifurcating structure. Suppose134

now we have an ordinal tree topology τn = (Vn, En) of rank n. To add the leaf node xn+1 to τn,135

we i) select an edge en = (u, v) ∈ En and remove it from En; ii) add a new node w and two new136

edges (u,w), (w, v) to the tree topology; iii) add the leaf node xn+1 and an edge (w, xn+1) to the137

tree topology. This way, we obtain an ordinal tree topology τn+1 of rank n+ 1. Intuitively, the leaf138

node xn+1 is added to the tree topology τn by attaching it to an existing edge en ∈ En. The position139

of the selected edge represents the evolutionary relationship between this new species and others.140

After performing this procedure for n = 3, . . . , N − 1, we finally obtain an ordinal tree topology141

τ = τN of rank N . See Figure 1 for an illustration.142

During the generating process described above, the selected edges at each time step form a sequence143

D = (e3, . . . , eN−1). This sequence D of length N − 3 records all the decisions we have made for144

autoregressively generating a tree topology τ and thus we call D a decision sequence. In fact, there is145

a one-to-one mapping between decision sequences and ordinal tree topologies of rank N , which is146

formalized in Theorem 1. Note that a similar process is also used in online phylogenetic sequential147

Monte Carlo (OPSMC) (Dinh et al., 2016), where the leaf node addition operation is incorporated148

into the design of the proposal distributions.149

Theorem 1. Let D = {D|D = (e3, . . . , eN−1), en ∈ En,∀ 3 ≤ n ≤ N − 1} be the set of all150

decision sequences of length N − 3 and T be the set of all ordinal tree topologies of rank N . Let the151

map152

g : D → T
D 7→ τ

be the generating process described above. Then g is a bijection between D and T .153

According to Theorem 1, for each tree topology τ ∈ T , there is a unique decision sequence given by154

g−1(τ). We call this process of finding the decision sequences of tree topologies the decomposition155

process. See more details on the decomposition process in Appendix C. The following lemma shows156

that one can find g−1(τ) in linear time.157

Lemma 1. The time complexity of the decomposition process induced by g−1(·) is O(N).158

The proofs of Theorem 1 and Lemma 1 can be found in Appendix D. Based on the bijection g defined159

in Theorem 1, we can model the distribution Q(D) over the space of decision sequences D instead of160

modeling the distribution Q(τ) over T . Due to the sequential nature of D, we can decompose Q(D)161

as the product of conditional distributions over the elements:162

Q(D) =

N−1∏
n=3

Q(en|e3, . . . , en−1). (5)

In what follows, we simplify Q(en|e3, . . . , en−1) as Q(en|e<n) and let e<3 be the empty set.163
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Algorithm 1: ARTree: An autoregressive model for phylogenetic tree topologies
Input: a set X = {x1, . . . , xN} of leaf nodes.
Output: an ordinal tree topology τ of rank N ; the ARTree probability Q(τ) of τ .
τ3 = (V3, E3)← the unique ordinal tree topology of rank 3;
for n = 3, . . . , N − 1 do

Calculate the probability vector qn ∈ R|En| using the current GNN model;
Sample an edge decision en from Discrete (qn) and assume en = (u, v);
Create a new node w;
En+1 ← (En\{en}) ∪ {(u,w), (w, v), (w, xn+1)};
Vn+1 ← Vn ∪ {w, xn+1};
τn+1 ← (Vn+1, En+1);

end
τ ← τN ;
Q(τ)← q3(e3)q4(e4) · · · qN−1(eN−1).

3.2 Graph neural networks for edge decision distribution164

By Theorem 1, the sequence e<n corresponds to a sequence of ordinal tree topologies of increasing165

ranks (τ3, . . . , τn) (the empty set e<3 corresponds to the unique ordinal tree topology τ3 of rank166

3). Therefore, the discrete distribution Q(en|e<n) in equation (5) defines the probability of adding167

the leaf node xn+1 to the edge en of τn, conditioned on all the ordinal tree topologies (τ3, . . . , τn)168

generated so far. In what follows, we will show step by step how to use graph neural networks169

(GNNs) to parameterize such a conditional distribution given tree topologies.170

Topological node embeddings At the n-th time step of the generating process, we first find the171

node embeddings of the current tree topology τn = (Vn, En), which is a set {fn(u) ∈ RN : u ∈ Vn}172

that assigns each node with an encoding vector in RN . Following Zhang (2023), we first assign one173

hot encoding to the leaf nodes, i.e.174

[fn(xi)]j = δij , 1 ≤ i ≤ n, 1 ≤ j ≤ N, (6)

where δ is Kronecker delta function; we then get the embeddings for the interior nodes by minimizing175

the Dirichlet energy ℓ(fn, τn) :=
∑

(u,v)∈En
||fn(u)−fn(v)||2 using the efficient two-pass algorithm176

described in Zhang (2023). One should note that the embeddings for interior nodes may change as177

new leaf nodes are added to the ordinal tree topologies, which is a main difference between our model178

and other graph autoregressive models.179

Message passing networks Using these topological node embeddings as the initial node features,180

GNNs apply message passing steps to compute the representation vector of nodes that encode181

topological information of τn, where the node features are updated with the information from their182

neighborhoods in a convolutional manner (Gilmer et al., 2017). More concretely, the l-th round of183

message passing is implemented by184

ml
n(u, v) = Ml(f

l
n(u), f

l
n(v)), (7a)

f l+1
n (v) = Ul

(
{ml

n(u, v);u ∈ N (v)}
)
, (7b)

where Ml and Ul are the message function and updating function in the l-th round, and N (v) is the185

neighborhood of the node v. In our implementations, the message function takes the form186

Ml(x, y) = M̃l (c(y, x− y)) , (8)

where c(·, ·) is the concatenation operator and M̃l is a single-layer perceptron; the updating function187

Ul is the elementwise maximum operator. Our choices of Ml and Ul follow the edge convolution188

operator (Wang et al., 2018), while other variants of GNNs can also be applied. The final node189

features of τn are given by {fL
n (v) : v ∈ Vn} after L rounds of message passing.190

Node hidden states The conditional distribution Q(·|e<n) is highly complicated as it has to capture191

how xn+1 can be added to τn based on how previous leaf nodes are added to form the tree topologies.192
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A common approach is to use RNNs to model this complex distribution that strikes a good balance193

between expressiveness and scalability (You et al., 2018b; Liao et al., 2019). In our model, after194

obtaining the final node features of τn, a gated recurrent unit (GRU) (Cho et al., 2014) follows, i.e.195

hn(v) = GRU(hn−1(v), f
L
n (v)), (9)

where hn(v) is the hidden state of v at the n-th generation step and is initialized to zero for the newly196

added nodes including those in τ3. The node hidden states {hn(v); v ∈ Vn}, therefore, contain the197

information of all the tree topologies generated so far which can be used for conditional distribution198

modeling.199

Time guided readout We now construct the distribution Q(·|e<n) over edge decisions based on200

the node hidden states. As mentioned before, a main difference between our model and other graph201

autoregressive models is that the node embedding f0
n(v) of a node v may vary with the time step n.202

We, therefore, incorporate time embeddings into the readout step which first forms the edge features203

on(e) ∈ R of e = (u, v) using204

pn(e) = P (hn(u) + bn, hn(v) + bn) , (10a)
on(e) = R (pn(e) + bn) , (10b)

where bn = MLPb(emb(n)), emb(n) is the sinusoidal positional embedding of time step n that is205

widely used in Transformers (Vaswani et al., 2017), MLPb is 2-layer multi-layer perceptrons (MLPs),206

P is the pooling layer implemented as 2-layer MLPs followed by an elementwise maximum operator,207

and R is the readout function implemented as 2-layer MLPs with a scalar output. Then the conditional208

distribution for edge decision is209

Q(·|e<n) ∼ Discrete (qn) , qn = softmax ({on(e)}e∈En) , (11)

where probability vector qn ∈ R|En| for parametrizing Q(·|e<n) is obtained by applying a softmax210

function to all the time guided edge features in equation (10b).211

As the last step, we sample an edge en ∈ En from the discrete distribution in equation (11) and add212

the leaf node xn+1 to en as described in Section 3.1. This way, we update the ordinal tree topology213

from τn of rank n to τn+1 of rank n+ 1. We can repeat this procedure until an ordinal tree topology214

τ = τN of rank N is reached. The probability of τ then takes the form215

Qϕ(τ) = Qϕ(D) =

N−1∏
n=3

Qϕ(en|e<n), (12)

where D is the decision sequence and ϕ are the learnable parameters in the model. We call this216

autoregressive model for tree topologies ARTree and summarize it in Algorithm 1. Note that217

equation (12) can also be used for tree topology density estimation tasks where the decision sequence218

D = g−1(τ) is obtained from the decomposition process that enjoys a linear time complexity (Lemma219

1). Compared to SBNs, ARTree does not rely on heuristic features for parameterization and can220

provide distributions whose support spans the entire tree topology space. Although different taxa221

orders may affect the performance of ARTree, we find this effect is negligible in our experiments.222

4 Experiments223

In this section, we test the effectiveness and efficiency of ARTree for phylogenetic inference on two224

benchmark tasks: tree topology density estimation (TDE) and variational Bayesian phylogenetic225

inference (VBPI). In all experiments, we report the inclusive KL divergence from posterior estimates226

to the ground truth to measure the approximation error of different methods. We will use “KL227

divergence” for inclusive KL divergence throughout this section unless otherwise specified.228

Experimental setup We perform experiments on eight data sets which we will call DS1-8. These229

data sets, consisting of sequences from 27 to 64 eukaryote species with 378 to 2520 site observations,230

are commonly used to benchmark phylogenetic MCMC methods (Hedges et al., 1990; Garey et al.,231

1996; Yang & Yoder, 2003; Henk et al., 2003; Lakner et al., 2008; Zhang & Blackwell, 2001; Yoder &232

Yang, 2004; Rossman et al., 2001; Höhna & Drummond, 2012; Larget, 2013; Whidden & Matsen IV,233
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Figure 2: Performances of different methods for TDE on DS1. Left/Middle: Comparison of the
ground truth and the estimated probabilities using SBN-EM and ARTree. A tree topology is marked
as an outlier if it satisfies | log(estimated probability) − log(ground truth)| > 2. Right: The KL
divergence as a function of the sample size. The results are averaged over 10 replicates with one
standard deviation as the error bar.

2015). For the Bayesian setting, we focus on the joint posterior distribution of the tree topologies234

and the branch lengths and assume a uniform prior on the tree topologies, an i.i.d. exponential prior235

Exp(10) on branch lengths, and the simple JC substitution model (Jukes et al., 1969). For each of236

these data sets, we run 10 single-chain MrBayes (Ronquist et al., 2012) for one billion iterations,237

collect samples every 1000 iterations, and discard the first 25% samples as burn-in. These samples238

form the ground truth of the marginal distribution of tree topologies to which we will compare the239

posterior estimates obtained by different methods. All GNNs have L = 2 rounds in the message240

passing step. All the activation functions in MLPs are exponential linear units (ELUs) (Clevert et al.,241

2015). To stabilize outputs and accelerate training, we add a layer normalization block after each242

linear transformation in M̃l, P , and R. The taxa order is set to the lexicographical order of the243

corresponding species names in all experiments except the ablation studies. All the experiments are244

run on an Intel Xeon Platinum 9242 processor. All models are implemented in PyTorch (Paszke et al.,245

2019) and trained with the Adam (Kingma & Ba, 2015) optimizer. The learning rate is 0.001 for246

SBNs, 0.0001 for ARTree, and 0.001 for the branch length model.247

4.1 Tree topology density estimation248

We first investigate the performance of ARTree for tree topology density estimation given the MCMC249

posterior samples on DS1-8. Following Zhang & Matsen IV (2018), we run MrBayes on each data250

set with 10 replicates of 4 chains and 8 runs until the runs have ASDSF (the standard convergence251

criteria used in MrBayes) less than 0.01 or a maximum of 100 million iterations. The training data252

sets are formed by collecting samples every 100 iterations and discarding the first 25%. Now, given253

a training data set M = {τm}Mm=1, we train ARTree via maximum likelihood estimation using254

stochastic gradient ascent. In each iteration, the stochastic gradient is obtained as follows255

∇ϕL(ϕ;M) =
1

B

B∑
b=1

∇ϕ logQϕ(τmb
), (13)

where a minibatch {τmb
}Bb=1 is randomly sampled fromM. We compare ARTree to SBN baselines256

including SBN-EM, SBN-EM-α, and SBN-SGA. For SBN-EM and SBN-EM-α, we use the same257

setting as previously done in Zhang & Matsen IV (2018) (see Appendix A for more details). In258

addition to these EM variants, a gradient based method for SBNs called SBN-SGA is considered,259

where SBNs are reparametrized with the latent parameters initialized as zero (see equation (19) in260

Appendix B) and optimized via stochastic gradient ascent, similarly to ARTree. For both ARTree and261

SBN-SGA, the results are collected after 200000 parameter updates with batch size B = 10.262

The left and middle plots of Figure 2 show a comparison between ARTree and SBN-EM on DS1,263

which has a peaky posterior distribution. Compared to SBN-EM, ARTree provides more accurate264

probability estimates for tree topologies on the peaks and significantly reduces the large biases in265

the low probability region (the crimson dots). The right plot of Figure 2 shows the KL divergence266

of different methods as a function of the sample size of the training data. We see that ARTree267

7



Table 1: KL divergences to the ground truth of different methods across 8 benchmark data sets.
Sampled trees column shows the numbers of unique tree topologies in the training sets formed by
MrBayes runs. The results are averaged over 10 replicates. The results of SBN-EM, SBN-EM-α are
from Zhang & Matsen IV (2018).

Data set #Taxa #Sites Sampled trees KL divergence to ground truth

SBN-EM SBN-EM-α SBN-SGA ARTree

DS1 27 1949 1228 0.0136 0.0130 0.0504 0.0045
DS2 29 2520 7 0.0199 0.0128 0.0118 0.0097
DS3 36 1812 43 0.1243 0.0882 0.0922 0.0548
DS4 41 1137 828 0.0763 0.0637 0.0739 0.0299
DS5 50 378 33752 0.8599 0.8218 0.8044 0.6266
DS6 50 1133 35407 0.3016 0.2786 0.2674 0.2360
DS7 59 1824 1125 0.0483 0.0399 0.0301 0.0191
DS8 64 1008 3067 0.1415 0.1236 0.1177 0.0741

consistently outperforms SBN based methods for all Ms. Moreover, as the sample size M increases,268

ARTree keeps providing better approximation while SBNs start to level off when M is large. This269

indicates the superior flexibility of ARTree over SBNs for tree topology density estimation.270

Table 1 shows the KL divergences of different methods on DS1-8. We see that ARTree outperforms271

SBN based methods on all data sets. The gradient based method SBN-SGA is better than SBN-EM272

on most of the data sets because SBN-EM is well initialized (Zhang & Matsen IV, 2018) and more273

likely to get trapped in local modes. From this point of view, the comparison between ARTree and274

SBN-SGA is fair because they both use a uniform initialization that facilitates exploration.275

4.2 Variational Bayesian phylogenetic inference276

Our second experiment is on VBPI, where we compare ARTree to SBNs for tree topology variational277

approximations. Both methods are evaluated on the aforementioned benchmark data sets DS1-8.278

Following Zhang & Matsen IV (2019), we use the simplest SBN and gather the subsplit support from279

10 replicates of 10000 ultrafast maximum likelihood bootstrap trees (Minh et al., 2013). For both280

ARTree and SBNs, the collaborative branch lengths are parametrized using the learnable topological281

features with the edge convolution operator (EDGE) for GNNs (Zhang, 2023). We set K = 10 for282

the multi-sample lower bound (4) and use the following annealed unnormalized posterior at the i-th283

iteration284

p(Y , τ, q;βi) = p(Y |τ, q)βip(τ, q) (14)

where βi = min{1.0, 0.001 + i/H} is the inverse temperature that goes from 0.001 to 1 after H285

iterations. For ARTree, a long annealing period H = 200000 is used for DS6 and DS7 due to the286

highly multimodal posterior distributions on these two data sets (Whidden & Matsen IV, 2015) and287

H = 100000 is used for the other data sets. For SBNs, we set H = 100000 for all data sets. The288

Monte Carlo gradient estimates for the tree topology parameters and the branch lengths parameters are289

obtained via VIMCO (Mnih & Rezende, 2016) and the reparametrization trick (Zhang & Matsen IV,290

2019) respectively. The results are collected after 400000 parameter updates.291

The left plot in Figure 3 shows the evidence lower bound (ELBO) as a function of the number of292

iterations on DS1. Although the larger support of ARTree adds to the complexity of training for293

tree topology variational approximation, we see that by the time SBN based methods converge,294

ARTree based methods achieve comparable (if not better) lower bounds and finally surpass the SBN295

baselines in the end. We also find that using fewer particles (K = 5) in the training objective tends296

to provide larger ELBO. Moreover, time guidance turns out to be crucial for ARTree, as evidenced by297

the significant performance drop when it is turned off. As shown in the middle plot, compared to298

SBNs, ARTree can provide a more accurate variational approximation of the tree topology posterior.299

To investigate the effect of taxa orders on ARTree, we randomly sample 50 taxa orders and report300

the KL divergence for each order in the right plot of Figure 3. We find that ARTree exhibits weak301

randomness as the taxa order varies and consistently outperforms SBNs by a large margin.302

Table 2 shows the KL divergences to the ground truth, evidence lower bound (ELBO), 10-sample303

lower bound (LB-10), and marginal likelihood (ML) estimates obtained by different methods on304
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Figure 3: Performances of ARTree and SBN as tree topology variational approximations for VBPI on
DS1. Left: the evidence lower bound (ELBO) as a function of iterations. The number of particles
used in the training objective are in the brackets. The ARTree∗ method refers to ARTree without time
guidance, i.e. bn = 0 for all n in the readout step. Middle: variational approximations vs ground
truth posterior probabilities of the tree topologies. Right: KL divergences across 50 random taxa
orders. The KL divergence of SBNs is averaged over 10 independent trainings.

Table 2: KL divergences to the ground truth, evidence lower bound (ELBO), 10-sample lower bound
(LB-10), and marginal likelihood (ML) estimates of different methods across 8 benchmark data
sets. GT trees row shows the number of unique tree topologies in the ground truth. The marginal
likelihood estimates are obtained via importance sampling using 1000 samples. The KL results are
averaged over 10 independent trainings. For ELBO, LB-10, and ML, the results are averaged over
100, 100, and 1000 independent runs respectively with standard deviation in the brackets. For ELBO
and LB-10, a larger mean is better; for ML, a smaller standard deviation is better.

Data set DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8
# Taxa 27 29 36 41 50 50 59 64
# Sites 1949 2520 1812 1137 378 1133 1824 1008

GT trees 2784 42 351 11505 1516877 809765 11525 82162

SBN 0.0707 0.0144 0.0554 0.0739 1.2472 0.3795 0.1531 0.3173

K
L

ARTree 0.0097 0.0004 0.0064 0.0219 0.8979 0.2216 0.0123 0.1231

SBN -7110.24(0.03) -26368.88(0.03) -33736.22(0.02) -13331.83(0.03) -8217.80(0.04) -6728.65(0.06) -37334.85(0.04) -8655.05(0.05)
ARTree -7110.09(0.04) -26368.78(0.07) -33736.17(0.08) -13331.82(0.05) -8217.68(0.04) -6728.65(0.06) -37334.84(0.13) -8655.03(0.05)E

L
B

O

SBN -7108.69(0.02) -26367.87(0.02) -33735.26(0.02) -13330.29(0.02) -8215.42(0.04) -6725.33(0.04) -37332.58(0.03) -8651.78(0.04)
ARTree -7108.68(0.02) -26367.86(0.02) -33735.25(0.02) -13330.27(0.03) -8215.34(0.03) -6725.33(0.04) -37332.54(0.03) -8651.73(0.04)L

B
-1

0

SBN -7108.41(0.15) -26367.71(0.08) -33735.09(0.09) -13329.94(0.20) -8214.62(0.40) -6724.37(0.43) -37331.97(0.28) -8650.64(0.50)

M
L

ARTree -7108.41(0.19) -26367.71(0.07) -33735.09(0.09) -13329.94(0.17) -8214.59(0.34) -6724.37(0.46) -37331.95(0.27) -8650.61(0.48)

DS1-8. We find that ARTree achieves smaller KL divergences than SBNs across all data sets and305

performs on par or better than SBNs for lower bound and marginal likelihood estimation. Compared306

to SBNs, the ELBOs provided by ARTree tend to have larger variances, especially on DS2, DS3, and307

DS7, which is partly due to the larger support of ARTree that spans the entire tree topology space308

(see more discussions in Appendix E).309

5 Conclusion310

In this paper, we introduced ARTree, a deep autoregressive model over tree topologies for phylogenetic311

inference. Unlike SBNs that rely on hand-engineered features for parameterization, ARTree is built312

on top of learnable topological features (Zhang, 2023) via GNNs which allows for a rich family of313

distributions over phylogenetic tree topologies without requiring domain expertise. Therefore, ARTree314

does not have to rely on hand-engineered design and can provide more flexible distributions whose315

support spans the entire tree topology space. Moreover, as an autoregressive model, ARTree also316

allows simple forward sampling procedures, which makes it readily usable for variational Bayesian317

phylogenetic inference. In experiments, we showed that ARTree outperforms SBNs on a benchmark318

of challenging real data tree topology density estimation and variational Bayesian phylogenetic319

inference problems, especially in terms of tree topology posterior approximation accuracy.320
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Figure 4: Subsplit Bayesian networks and a simple example for a leaf set of 4 taxa (denoted by A,B,C,D
respectively). Left: General subsplit Bayesian networks. The solid full and complete binary tree network is B∗

X .
The dashed arrows represent the additional dependence for more expressiveness. Middle Left: Examples of
(rooted) phylogenetic trees that are hypothesized to model the evolutionary history of the taxa. Middle Right:
The corresponding subsplit assignments for the trees. For ease of illustration, subsplit (Y,Z) is represented as
Y
Z

in the graph. Right: The SBN for this example, which is B∗
X in this case.

A Details of subsplit Bayesian networks462

One recent and expressive graphical model that provides a flexible family of distributions over tree463

topologies is the subsplit Bayesian network, as proposed by Zhang & Matsen IV (2018). Let X be the464

set of N labeled leaf nodes. A non-empty set C of X is referred to as a clade and the set of all clades465

of X , denoted by C(X ), is a totally ordered set with a partial order ≻ (e.g., lexicographical order)466

defined on it. An ordered pair of clades (W,Z) is called a subsplit of a clade C if it is a bipartition of467

C, i.e., W ≻ Z, W ∩ Z = ∅, and W ∪ Z = C.468

Definition 2 (Subsplit Bayesian Network). A subsplit Bayesian network (SBN) BX on a leaf node469

set X of size N is defined as a Bayesian network whose nodes take on subsplit or singleton clade470

values of X and has the following properties: (a) The root node of BX takes on subsplits of the471

entire labeled leaf node set X ; (b) BX contains a full and complete binary tree network B∗
X as a472

subnetwork; (c) The depth of BX is N − 1, with the root counted as depth 1.473

Due to the binary structure of B∗
X , the nodes in SBNs can be indexed by denoting the root node with474

S1 and two children of Si with S2i and S2i+1 recursively where Si is an internal node (see the left475

plot in Figure 4). For any rooted tree topology, by assigning the corresponding subsplits or singleton476

clades values {Si = si}i≥1 to its nodes, one can uniquely map it into an SBN node assignment (see477

the middle and right plots in Figure 4).478

As Bayesian networks, the SBN based probability of a rooted tree topology τ takes the following479

form480

psbn(T = τ) = p(S1 = s1)
∏
i>1

p(Si = si|Sπi
= sπi

), (15)

where πi is the index set of the parents of node i. For unrooted tree topologies, we can also define481

their SBN based probabilities by viewing them as rooted tree topologies with unobserved roots and482

integrating out the positions of the root node as follows:483

psbn(T
u = τ) =

∑
e∈E(τ)

psbn(τ
e) (16)

where τe is the resulting rooted tree topology when the rooting position is on edge e.484

In practice, SBNs are parameterized according to the conditional probability sharing principle485

where the conditional probability for parent-child subsplit pairs are shared across the SBN network,486

regardless of their locations. The set of all conditional probabilities are called conditional probability487

tables (CPTs). Parameterizing SBNs, therefore, often requires finding an appropriate support of CPTs.488

For tree topology density estimation, this can be done using the sample of tree topologies that is given489

as the data set. For variational Bayesian phylogenetic inference, as no sample of tree topologies is490

available, one often resorts to fast bootstrap or MCMC methods (Minh et al., 2013; Zhang, 2020).491

Let Sr denotes the root subsplits and Sch|pa denotes the child-parent subsplit pairs in the support. The492

parameters of SBNs are then p = {ps1 ; s1 ∈ Sr} ∪ {ps|t; s|t ∈ Sch|pa} where493

ps1 = p(S1 = s1), ps|t = p(Si = s|Sπi
= t), ∀i > 1. (17)
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As a result, the supports of SBN-induced distributions are often limited by the splitting patterns in the494

observed samples and could not span the entire tree topology space (Zhang & Matsen IV, 2022).495

The SBN-EM Algorithm For unrooted tree topologies, the SBN based probability (16) can be496

viewed as a hidden variable model where the root subsplit is the hidden variable. In this case,497

SBNs can be trained using the expectation-maximization (EM) algorithm, as proposed by Zhang498

& Matsen IV (2018). Given a training set {τk}Mk=1, we first initialize the parameter estimates as499

p̂EM,(0) (i.e., the simple average estimates as in Zhang & Matsen IV (2018)). In the i-th step, we run500

the E-step and M-step as follows501

• E-step: ∀1 ≤ k ≤ M , compute q
(i)
k (s1) =

p(τk,s1|p̂EM,(i))∑
s1∼τk

p(τk,s1|p̂EM,(i))
where s1 ∼ τk means502

the subsplit s1 can be achieved by placing a “virtual root” on an edge of τ .503

• M-step: update the parameter estimates by504

p̂EM,(i+1)
s1 =

m̄
(i)
s1 + αm̃s1

K + α
∑

s1∈Sr m̃s1

, m̄(i)
s1 =

M∑
k=1

∑
e∈E(τk)

q
(i)
k (s1) I

(
se1,k = s1

)
p̂
EM,(i+1)

s|t =
m̄

(i)
s,t + αm̃s,t∑

s

(
m̄

(i)
s,t + αm̃s,t

) , m̄
(i)
s,t =

M∑
k=1

∑
e∈E(τk)

q
(i)
k

(
se1,k

)∑
j>1

I
(
sej,k = s, seπj ,k = t

)
where I is the indicator function, sej,k is the node value of Sj in τek , m̃s and m̃s,t are505

equivalent counts and α is the regularization coefficient that encourages generalization.506

When α > 0, this algorithm is called SBN-EM-α.507

B Details of variational Bayesian phylogenetic inference508

With two variational families Qϕ(τ) and Qψ(q|τ) over the space of tree topologies and branch509

lengths, the variational Bayesian phylogenetic inference (VBPI) approach forces Qϕ,ψ(τ, q) =510

Qϕ(τ)Qψ(q|τ) to approximate the posterior p(τ, q|Y ) by maximizing the following multi-sample511

lower bound512

LK(ϕ,ψ) = E
{(τ i,qi)}K

i=1

i.i.d.∼ Qϕ,ψ
log

(
1

K

K∑
i=1

p(Y |τ i, qi)p(τ i, qi)
Qϕ(τ i)Qψ(qi|τ i)

)
. (18)

Gradients of the objective (18) w.r.t. ϕ and ψ can be estimated by the VIMCO estimator (Mnih &513

Rezende, 2016) and the reparameterization trick respectively. In the following, we introduce some514

common choices of Qϕ(τ) and Qψ(q|τ).515

Choice of Qϕ(τ) Before the proposed ARTree framework in this article, SBNs is the common516

choice of Qϕ(τ). As introduced in Appendix A, SBNs provide a probability distribution over unrooted517

tree topologies in equation (16). Given a subsplit support of CPTs, SBNs can be parameterized as518

follows519

ps1 =
exp(ϕs1)∑

s′∈Sr exp(ϕs′)
, s1 ∈ Sr; ps|t =

exp(ϕs|t)∑
s′:s′|t∈Sch|pa

exp(ϕs′|t)
, s|t ∈ Sch|pa. (19)

The parameters ϕ = {ϕs1 ; s1 ∈ Sr} ∪ {ϕs|t; s|t ∈ Sch|pa} are called latent parameters of SBNs.520

Choice of Qψ(q|τ) The distribution Qψ(q|τ) is often taken to be a diagonal lognormal distribution,521

which can be parametrized using some heuristic features (Zhang & Matsen IV, 2019) or the recently522

proposed learnable topological features (Zhang, 2023) of τ as follows. For each edge e = (u, v) in523

τ , one can first obtain the edge features using he = f(hu, hv) where hu is the GNN output at node524

u and f is a permutation invariant function. Then the mean and standard deviation parameters are525

given by526

µ(e, τ) = MLPµ(he), σ(e, τ) = MLPσ(he)

where MLPµ and MLPσ are two multi-layer perceptrons (MLPs).527

14



Algorithm 2: Tree topology decomposition process
Input: a tree topology τ with all of the N leaf nodes.
Output: a decision sequence D.
τN = (VN , EN )← the tree topology τ ;
for n = N − 1, . . . , 3 do

Determine the unique neighbor w of the leaf node xn+1;
Determine the two neighbors u and v (except xn+1) of w;
Vn ← Vn+1\{w, xn+1};
En ← (En+1 ∪ {(u, v)})\{(w, xn+1), (w, u), (w, v)};
τn ← (Vn, En);
en ← (u, v);

end
D ← (e3, . . . , eN−1).

C Details of tree topology decomposition process528

The tree topology decomposition process, which maps a tree topology to a corresponding decision529

sequence, is indeed the inverse operation of Algorithm 1. Also, the decomposition process is530

implemented in a recursive way starting from the tree topology τN of rank N . Intuitively, given an531

ordinal tree topology τn+1 of rank n + 1, one can detach the leaf node xn+1 as well as its unique532

neighbor w and reconnect the two neighbors of w. The remaining graph, denoted by τn, is an ordinal533

tree topology of rank n; the edge decision en is exactly the reconnected edge. This process continues534

until the unique ordinal tree topology τ3 of rank 3 is reached. We summarize the sketch of tree535

topology decomposition process in Algorithm 2.536

Given a tree topology τ with all of the N leaf nodes, we can evaluate its ARTree based probability537

by first mapping it to a decision sequence D = (e3, . . . , eN−1) following Algorithm 2 and then538

calculate the probability as the product of conditionals539

Q(τ) = Q(D) =

N−1∏
n=3

Q(en|e<n).

D The proofs of Theorem 1 and Lemma 1540

Theorem 1. Let D = {D|D = (e3, . . . , eN−1), en ∈ En,∀ 3 ≤ n ≤ N − 1} be the set of all541

decision sequences of length N − 3 and T be the set of all ordinal tree topologies of rank N . Let the542

map543

g : D → T
D 7→ τ

be the generating process used in ARTree. Then g is a bijection between D and T .544

Proof of Theorem 1 It is obvious that g is a well-defined map from D to T . To prove it is a545

bijection, it suffices to show g is injective and surjective.546

We first show that g is injective. Assume there are two decision sequences D(1), D(2) ∈ D and547

D(1) ̸= D(2). Let k be the first position where D(1) and D(2) begin to differ, i.e. e(1)i = e
(2)
i for548

all i < k and e
(1)
k ̸= e

(2)
k . If g(D(1)) = g(D(2)) =: τ , one can take the subtree topology of rank k549

and k + 1 of τ , τk and τk+1. Noting that ek refers to the edge in τ where to add the new node xn+1,550

the equation e
(1)
k ̸= e

(2)
k implies they will induce different τk+1s. This contradicts the uniqueness of551

τk+1. Therefore, we conclude that g is injective.552

Next, we prove that g is surjective. For a tree topology τ with rank N , we denote its subtree topology553

of rank k by τk, where k = 3, . . . , n. In fact, for each k, the tree topology τk+1 corresponds to554

adding the leaf node xk+1 to an edge in τk, and we denote this edge by ek. It is easy to verify that the555

constructed D = (e3, . . . , eN−1) is a preimage of τ .556
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Lemma 1. The time complexity of the decomposition process induced by g−1(·) is O(N).557

Proof of Lemma 1 Assume the tree topology τ is stored as a binary tree data structure, where each558

node other than the root node also has a parent node pointer. Before decomposing τ , we first build559

a dictionary of the (n, xn) mappings by a traversal across τ that maps n to the leaf node xn in τ ,560

∀n ≤ N . The time complexity of building this dictionary is O(N). In the decomposition process,561

given an ordinal tree topology of rank n + 1, it costs O(1) time to locate xn+1 and determine the562

unique parent node w of xn+1 and the neighbors of w. It is obvious that the time complexity of563

detaching and reconnecting operations is O(1). One can repeat this procedure for n = N − 1, . . . , 3,564

resulting in a time complexity of O(N). Therefore, the time complexity of the decomposition process565

induced by g−1(·) is O(N).566

E Limitations567

As an autoregressive model for phylogenetic tree topology, ARTree provides reliable approximations568

for target distributions over tree topologies, as evidenced by our real data experiments. However,569

when incorporated with the branch length model for VBPI, the ELBOs provided by ARTree tend570

to have larger variances, which we find is caused by the occasional occurrence of “outliers” among571

samples. In fact, as the support of ARTree spans over the entire tree topology space, it adds to572

the difficulty of fitting the conditional distribution Qψ(q|τ), compared to SBNs. When combined573

with ARTree, the approximation accuracy of Qψ(q|τ) might be related to the cluster structure of574

peaks in the tree topology posterior. See Figure 3 in Whidden & Matsen IV (2015) for cluster575

subtree-prune-and-regraft (SPR) graphs of DS1-8. We also examine the approximation accuracies576

of Qψ(q|τ) trained along with ARTree for those τ in the support of SBNs and find a significant577

enhancement in ELBO and reduction of variances.578

This phenomenon raises an important topic: proper design and optimization of branch length model579

when the support of tree topology model spans the entire space. We leave this for future work.580
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