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1 Additional experiment results and details1

1.1 Initialization of quadratic neurons2

One layer in our network is represented by:3

z(x) = σ
[
l1(x) · l2(x) + l3(x

2)
]
, (1)

where · denotes the elementwise product. σ is the activation function, where we use the sinusoidal4

function as in SIREN[1]. li represents the ith linear layer, which could be implemented by a standard5

linear layer module in PyTorch. There are two initializations proposed in DiGS[2] for shape INRs6

with linear neuron and sinusoidal activation, geometric initialization and multi-frequency geometric7

initialization (MFGI). In order to utilize the initializations designed for linear neurons, we initialize a8

quadratic neuron to approximately a linear neuron by setting w1, w3, b3 to a very small value and b19

to 1. Then we apply the above-mentioned initializations to the l2 layer. In this way, the initialization10

of a quadratic neuron is approximate to the initialization of a single linear neuron.11

1.2 Testing process12

We use the marching cube algorithm[3] to extract the zero level set of the shape INR. The resolution13

is 512 and we use the same mesh generation procedure as in IGR[4].14

1.3 Surface Reconstruction Benchmark(SRB)15

1.3.1 Training details16

We use the preprocessing and evaluation method from DiGS[2] for the daraset. First, the input clouds17

are centered to zero and normalized the largest norm to 1. The bounding box is 1.1 times the size of18

the shape. In each iteration, we sample 15,000 points from the original point cloud and sample 15,00019

points uniformly randomly in a bounding box. We train for 10k iterations with a learning rate of20

1e-4. The weights for loss terms are [50, 2000, 100, 100] for [αe, αm, αn, αl]. We use the annealing21

strategy for the weight of second-order regularization so that it will drop linearly to zero from the22

2kth to the 4kth iteration. The network has 5 hidden layers and 128 channels. The initialization for23

the l2 neuron is MFGI. The experiment is done on a single Tesla V100 16G GPU.24

1.3.2 Additional quantitative results25

In Table 1 we provide a quantitative result of our method for each shape in the SRB dataset and26

compare it against other SoTA methods. we report the result for SAL from [5], IGR+FF and27

PHASE+FF from [6], IGR wo n/SIREN wo n/ DiGS from [2]. It shows that we achieve overall28

improved performance that other methods.29
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Ground Truth Scans
Model Method dC dH dC dH

Overall

IGR wo n 1.38 16.33 0.25 2.96
SIREN wo n 0.42 7.67 0.08 1.42

SAL 0.36 7.47 0.13 3.50
IGR+FF 0.96 11.06 0.32 4.75

PHASE+FF 0.22 4.96 0.07 1.56
DiGS 0.19 3.52 0.08 1.47

Our StEik 0.18 2.80 0.10 1.45

Anchor

IGR wo n 0.45 7.45 0.17 4.55
SIREN wo n 0.72 10.98 0.11 1.27

SAL 0.42 7.21 0.17 4.67
IGR+FF 0.72 9.48 0.24 8.89

PHASE+FF 0.29 7.43 0.09 1.49
DiGS 0.29 7.19 0.11 1.17

Our StEik 0.26 4.26 0.13 1.12

Daratech

IGR wo n 4.9 42.15 0.7 3.68
SIREN wo n 0.21 4.37 0.09 1.78

SAL 0.62 13.21 0.11 2.15
IGR+FF 2.48 19.6 0.74 4.23

PHASE+FF 0.35 7.24 0.08 1.21
DiGS 0.20 3.72 0.09 1.80

Our StEik 0.18 1.72 0.10 1.77

DC

IGR wo n 0.63 10.35 0.14 3.44
SIREN wo n 0.34 6.27 0.06 2.71

SAL 0.18 3.06 0.08 2.82
IGR+FF 0.86 10.32 0.28 3.98

PHASE+FF 0.19 4.65 0.05 2.78
DiGS 0.15 1.70 0.07 2.75

Our StEik 0.16 1.73 0.08 2.77

Gargoyle

IGR wo n 0.77 17.46 0.18 2.04
SIREN wo n 0.46 7.76 0.08 0.68

SAL 0.45 9.74 0.21 3.84
IGR+FF 0.26 5.24 0.18 2.93

PHASE+FF 0.17 4.79 0.07 1.58
DiGS 0.17 4.10 0.09 0.92

Our StEik 0.18 4.49 0.10 0.87

Lord Quas

IGR wo n 0.16 4.22 0.08 1.14
SIREN wo n 0.35 8.96 0.06 0.65

SAL 0.13 4.14 0.07 4.04
IGR+FF 0.49 10.71 0.14 3.71

PHASE+FF 0.11 0.71 0.05 0.74
DiGS 0.12 0.91 0.06 0.70

Our StEik 0.13 1.81 0.07 0.73

Table 1: Additional quantitative results on the Surface Reconstruction Benchmark[7] using only point
data (no normals).

1.3.3 Additional visual results30

In Figure 1 we provide visualization results for all shapes in SRB. The improvement is not so31

dramatic compared to DiGS because this SRB is a relatively easy task without many thin structures32

and complex structures, and DiGS already has a good performance. In the Anchor shape, which33

is the most difficult one, the edges are much sharper, and the hole is recovered much better in our34

reconstruction result.35
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Figure 1: Visual results of SRB.

1.4 ShapeNet36

1.4.1 Training details37

We use the preprocessing and evaluation method from [8]. They first preprocess using the method38

from [9], then report on the first 20 shapes of the test set for each shape class. The preprocessing39

extracts ground truth surface points from the shapes of ShapeNet[10], and extracts random samples40

within the space with their labelled occupancy values. The evaluation method uses the ground truth41

points to calculate squared Chamfer distance, and uses the labelled random samples to calculate IoU.42

In each iteration, we sample 15,000 points from the original point cloud and sample 15,000 points43

uniformly randomly in a bounding box. We train for 10k iterations with a learning rate of 5e-5. The44

weights for loss terms are [50, 5000, 100, 100] for [αe, αm, αn, αl]. We use the annealing strategy for45

the weight of second-order loss so that it will drop linearly to zero from the 2kth to the 4kth iteration.46

The network has 5 hidden layers and 128 channels. The initialization for the l2 neuron is MFGI. The47

experiment is done on a single Tesla A100 80G GPU.48

1.4.2 Additional quantitative results49

In Table 2, we provide a quantitative result of our method for each shape in the ShapeNet dataset and50

compare it against other SoTA methods. we report the result for SAL from [5], SIREN wo n and51

DiGS from [2]. It shows that we achieve the best performance for most of the shapes.52

1.4.3 Additional visual results53

In Figure 2, we provide visualization results for some shapes in ShapeNet. Our method could remove54

some ghost geometries in lamps and benches, and recover complex topological structures like chair55

feet.56

1.5 Scene Reconstruction57

1.5.1 Training details58

In each iteration, we sample 15,000 points from the original point cloud and sample 15,000 points59

uniformly randomly in a bounding box. We train for 100k iterations with a learning rate of 8e-6.60

The weights for loss terms are [50, 5000, 100, 10] for [αe, αm, αn, αl]. We use the annealing strategy61

for the weight of second-order loss so that it will drop linearly to zero from the 10kth to the 30kth62

iteration. The network has 8 hidden layers and 256 channels. The initialization for the l2 neuron is63

the initialization method proposed in SIREN[1]. The experiment is done on a single Tesla A100 80G64

GPU.65
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Squared Chamfer
Overall airplane bench

Methods Mean Median Std Mean Median Std Mean Median Std
SIREN wo n 3.08e-4 2.58e-4 3.26e-4 2.42e-4 2.50e-4 5.92e-5 1.93e-4 1.67e-4 9.09e-5

SAL 1.14e-3 2.11e-4 3.63e-3 5.98e-4 2.38e-4 9.22e-4 3.55e-4 1.71e-4 4.26e-4
DiGS 1.32e-4 2.55e-5 4.73e-4 1.32e-5 1.01e-5 7.56e-6 7.26e-5 2.21e-5 1.74e-4
Ours 6.86e-5 6.33e-6 3.34e-4 3.33e-6 2.59e-6 1.78e-6 7.90e-6 5.27e-6 9.63e-6

cabinet car chair
Methods Mean Median Std Mean Median Std Mean Median Std

SIREN wo n 3.16e-4 2.72e-4 1.72e-4 2.67e-4 2.58e-4 4.78e-5 2.63e-4 2.60e-4 1.31e-4
SAL 2.81e-4 1.86e-4 1.81e-4 4.51e-4 2.74e-4 4.36e-4 1.28e-3 2.92e-4 2.05e-3
DiGS 4.07e-4 4.45e-5 9.25e-4 7.89e-5 3.97e-5 1.10e-4 3.72e-4 2.73e-5 1.05e-3
Ours 2.81e-5 1.01e-5 3.90e-5 3.69e-5 1.11e-5 8.68e-5 1.24e-5 6.51e-6 1.37e-5

display lamp loudspeaker
Methods Mean Median Std Mean Median Std Mean Median Std

SIREN wo n 2.49e-4 2.20e-4 8.45e-4 6.10e-4 3.49e-4 1.04e-3 3.29e-4 3.04e-4 1.31e-4
SAL 2.56e-4 8.86e-4 4.99e-4 5.86e-3 1.29e-3 9.35e-3 4.04e-4 2.63e-4 4.50e-4
DiGS 3.16e-5 2.53e-5 2.32e-5 1.70e-4 2.18e-5 3.96e-4 1.18e-4 6.18e-5 2.15e-4
Ours 4.62e-5 6.97e-6 1.69e-4 5.75e-5 4.94e-6 1.59e-4 3.12e-4 2.79e-5 5.56e-4

rifle sofa table
Methods Mean Median Std Mean Median Std Mean Median Std

SIREN wo n 5.44e-4 5.56e-4 1.44e-4 2.72e-4 2.66e-4 6.75e-5 2.29e-4 2.38e-4 8.40e-5
SAL 2.18e-3 1.15e-4 5.17e-3 3.75e-4 1.93e-4 4.31e-4 1.82e-3 5.10e-4 4.31e-3
DiGS 9.10e-6 5.26e-6 1.03e-5 5.76e-5 3.27e-5 5.39e-5 2.94e-4 2.98e-5 6.76e-4
Ours 2.37e-6 2.03e-6 1.40e-6 1.23e-5 8.00e-6 1.27e-5 3.62e-4 9.80e-6 8.76e-4

telephone watercraft
Methods Mean Median Std Mean Median Std

SIREN wo n 2.10e-4 1.86e-4 6.60e-5 2.97e-4 2.43e-4 1.26e-4
SAL 1.04e-4 6.81e-5 7.99e-5 8.08e-4 2.06e-4 1.75e-3
DiGS 1.77e-5 1.74e-5 4.49e-6 6.10e-5 2.43e-5 9.03e-5
Ours 5.53e-6 4.63e-6 2.61e-6 6.13e-6 4.25e-6 6.53e-6

IoU
Overall airplane bench

Methods Mean Median Std Mean Median Std Mean Median Std
SIREN wo n 0.3085 0.2952 0.2014 0.2248 0.1735 0.1103 0.4020 0.4231 0.1953

SAL 0.4030 0.3944 0.2722 0.1908 0.1693 0.0955 0.2260 0.2311 0.1401
DiGS 0.9390 0.9754 0.1262 0.9613 0.9577 0.0164 0.9061 0.9536 0.1413
Ours 0.9671 0.9841 0.0878 0.9814 0.9827 0.0073 0.9607 0.9756 0.0493

cabinet car chair
Methods Mean Median Std Mean Median Std Mean Median Std

SIREN wo n 0.3014 0.2564 0.1275 0.3336 0.3030 0.0997 0.4208 0.3748 0.2322
SAL 0.6923 0.7224 0.1637 0.6261 0.6561 1525 0.2589 0.1491 0.2213
DiGS 0.9261 0.9853 0.2137 0.9455 0.9765 0.0699 0.9082 0.9650 0.1523
Ours 0.9889 0.9902 0.0053 0.9624 0.9842 0.0621 0.9754 0.9767 0.0150

display lamp loudspeaker
Methods Mean Median Std Mean Median Std Mean Median Std

SIREN wo n 0.3566 0.3123 0.1790 0.3055 0.2573 0.2598 0.2229 0.1724 0.1575
SAL 0.5067 0.5801 0.2474 0.1689 0.0698 0.1994 0.6702 0.7264 0.1976
DiGS 0.9839 0.9886 0.0102 0.8776 0.9646 0.1943 0.9632 0.9851 0.0978
Ours 0.9850 0.9870 0.0084 0.9290 0.9776 0.1337 0.9710 0.9877 0.0681

rifle sofa table
Methods Mean Median Std Mean Median Std Mean Median Std

SIREN wo n 0.0265 0.0092 0.0554 0.3397 0.3444 0.1206 0.3797 0.3603 0.1528
SAL 0.2835 0.2821 0.1530 0.4844 0.4530 0.1404 0.0965 0.0320 0.1502
DiGS 0.9486 0.9567 0.0281 0.9572 0.9807 0.0896 0.8943 0.9720 0.1996
Ours 0.9772 0.9830 0.0123 0.9859 0.9894 0.0089 0.8830 0.9742 0.2446

telephone watercraft
Methods Mean Median Std Mean Median Std

SIREN wo n 0.3778 0.3806 0.2590 0.3190 0.3007 0.1877
SAL 0.6025 0.6704 0.2203 0.4170 0.4728 0.2367
DiGS 0.9854 0.9876 0.0071 0.9522 0.9735 0.0504
Ours 0.9866 0.9883 0.0051 0.9858 0.9894 0.0090

Table 2: Additional quantitative results on the ShapeNet dataset[10] using only point data (no
normals).
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(a) Ground Truth (b) DiGS (c) Linear + LL.n. (d) Quadratic + Ldiv (e) Ours

Figure 2: Additional visual results of ShapeNet.

1.5.2 Additional visual result66

In Figure 3, we provide more visual results for the scene reconstruction from different angles in a67

higher resolution. It’s clear to see that our method could recover more thin structures and fine details.68

2 Derivations of functional gradients69

2.1 Gradients for Ldiv(u) =
∫
Ω
|∆u(x)|p dx70

When p = 2 and adding a factor 1
2 , we have71

−∇uLdiv = −∇2 · ∂L

∂(D2u)

= −∇2 · (∆uI)

= −∆[∆u] (2)

where L denotes the integrand and I an identity matrix. The first equations comes from the Euler-72

Lagrange equation and the first zero and first order parts are eliminated.73
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(a)DiGS (b)Ours

Figure 3: Visual results of scene reconstruction.

For p = 1, the derivation is similar as follows,74

−∇uLdiv = −∇2 · ∂L

∂(D2u)

= −∇2 ·
(
∆uI

|∆u|

)
= −∆[sgn(∆u)] (3)

2.2 Gradient for LL.n.(u) =
∫
Ω
|∇u(x)TD2u(x)∇u(x)|dx75

In the implementation, we normalize the gradient of u to reduce the weight tunning overheads. This76

formula is converted as77

LL.n(u) =

∫
Ω

∣∣∣∣∇u(x)TD2u(x)∇u(x)

∥∇u∥2

∣∣∣∣ dx (4)

However, we note that these two expressions are equivalent when the eikonal loss is minimized. We
use the unnormalized version to compute the gradient for simplicity. One may notice that the inner

6



part of equation (4) computes the second order derivative along the normal direction, which equals to
the divergence subtracting the orthonormal tangential components

∆u−
n−1∑
i

tTi D
2uti

where ti, i = 1, ..., n− 1 denotes the orthonormal tangent vectors that span the tangent subspace.78

Hence we could rewrite equation (4) as79

LL.n.(u) =

∫
Ω

∣∣∣∣∣∆u−
n−1∑
i

tTi D
2uti

∣∣∣∣∣ dx (5)

The negative gradient can be computed using Euler-Lagrange equation as follows,80

−∇uLL.n. = ∇ · ∂L

∂(∇u)︸ ︷︷ ︸
1

−∇2 · ∂L

∂(D2u)︸ ︷︷ ︸
2

(6)

Only the term 2 in equation (6) would contain a fourth order term. Therefore we expand term 2 in the81

following,82

∇2 · ∂L

∂(D2u)
= ∇2 ·

 ∆u−
∑n−1

i tTi D
2uti

|∆u−
∑n−1

i tTi D
2uti|

(
∂(∆u)

∂(D2u)
−

∂
(∑n−1

i tTi D
2uti

)
∂(D2u)

)


= ∇2 ·

 ∆u−
∑n−1

i tTi D
2uti

|∆u−
∑n−1

i tTi D
2uti|

(I−
∂
(∑n−1

i tTi D
2uti

)
∂(D2u)

)

 (7)

From ∆u and I, we can get ∇2 · (∆u) = ∆[∆u] as mentioned in the paper, factored by83
1

|∆u−
∑n−1

i tTi D2uti|
.84

2.3 Gradients for Leik(u) =
1
2

∫
Ω
|∥∇u∥ − 1|p dx85

The negative gradient for the above equation (for p = 2) is86

−∇uLeik = −∂L

∂u
+∇ · ∂L

∂(∇u)

= ∇ · ∂L

∂(∇u)

= ∇ ·
(
∥∇u∥ − 1

∥∇u∥
∇u

)
(8)

= ∇ ·
((

1− 1

∥∇u∥

)
∇u

)
=

(
1− 1

∥∇u∥

)
∆u+∇u · ∇

(
1− 1

∥∇u∥

)
=

(
1− 1

∥∇u∥

)
∆u−∇u · ∇ 1

∥∇u∥

=

(
1− 1

∥∇u∥

)
∆u+

1

∥∇u∥2
∇u · ∇∥∇u∥

=

(
1− 1

∥∇u∥

)
∆u+

1

∥∇u∥

(
∇uT

∥∇u∥
[
∇2u

] ∇u

∥∇u∥

)
=

(
1− 1

∥∇u∥

)
(uηη +

n−1∑
i

uξiξi) +
1

∥∇u∥
uηη

7



= uηη +

(
1− 1

∥∇u∥

) n−1∑
i

uξiξi (9)

where the first equality is from the Euler-Lagrange equation. We remove the variable x for simplicity.87

Equation (8) is demonstrated in the paper and the remaining part decomposes the second order88

derivatives into the normal direction η and the tangential directions ξi. Equation (9) shows that89

minimizing the squared eikonal loss comes down to a stable diffusion along the normal direction and90

instable diffusion in all tangential directions.91

Similarly, for p = 1, we have92

−∇uLeik = −∂L

∂u
+∇ · ∂L

∂(∇u)

= ∇ ·
(

∥∇u∥ − 1

|∥∇u∥ − 1|
∇u

∥∇u∥

)
= ∇ ·

(
sgn (∥∇u∥ − 1)

∥∇u∥
∇u

)
(10)

=
∥∇u∥ − 1

|∥∇u∥ − 1| ∥∇u∥
∆u+∇u · ∇

(
∥∇u∥ − 1

|∥∇u∥ − 1| ∥∇u∥

)

=
(∥∇u∥ − 1)∆u+∇u ·

(
∇∥∇u∥ − ∥∇u∥−1

∥∇u∥ ∇∥∇u∥ − (∥∇u∥−1)2

|∥∇u∥−1|2 ∇∥∇u∥
)

|∥∇u∥ − 1| ∥∇u∥

=
(∥∇u∥ − 1)∆u− ∥∇u∥−1

∥∇u∥ ∇u · ∇∥∇u∥
|∥∇u∥ − 1| ∥∇u∥

=
(∥∇u∥ − 1)

(
∆u− ∇u

∥∇u∥ · ∇∥∇u∥
)

|∥∇u∥ − 1| ∥∇u∥

=
sgn (∥∇u∥ − 1)

∥∇u∥

(
∆u− ∇uT

∥∇u∥
[
∇2u

] ∇u

∥∇u∥

)
=

sgn (∥∇u∥ − 1)

∥∇u∥

(
(

n−1∑
i

uξiξi + uηη)− uηη

)

=
sgn (∥∇u∥ − 1)

∥∇u∥

n−1∑
i

uξiξi (11)

Comparing against p = 2, the absolute value of the eikonal loss (p = 1) leads to instable diffusion93

along all tangential directions and no constraints in the normal direction.94

2.4 Gradients for Lnorm.(u) =
∫
Ωo

∥∇u(x)−Ngt∥p dx95

For p = 2, we could get96

−∇uLnorm. = −∂L

∂u
+∇ · ∂L

∂(∇u)

= 2∇ · (∇u−Ngt)

= 2∆u− 2div (Ngt) (12)

8



Not that factor 2 was omitted in the full paper for simplicity. For p = 1, we have97

−∇uLnorm. = −∂L

∂u
+∇ · ∂L

∂(∇u)

= ∇ ·
(

∇u−Ngt

∥∇u−Ngt∥

)
= ∆u−∇

(
1

∥∇u−Ngt∥

)
·Ngt

= ∆u+
NT

gtD
2u∇u

∥∇u−Ngt∥3
(13)

3 Choices of p in the eikonal loss98

3.1 Influence on the instability99

Given the equations (11) and (9), both exhibit instability in the tangential directions. While the100

coefficients of the diffusion terms are different, it is not straightforward to justify the effectiveness of101

one over the other. However, we show empirically that p = 1 achieves better results on SRB, present102

in the next subsection.103

3.2 Ablation Study of the performance104

We investigate the effects of design choices made for regularization terms and report the averages105

over all shapes in the dataset in Table 3. We demonstrate that if we choose p = 1 for both first-order106

and second-order regularization, the algorithm will achieve the best performance.107

GT Scans
Leik LL.n. dC dH dC⃗ dH⃗
L1 L1 0.180 2.800 0.096 1.454
L1 L2 0.205 4.389 0.105 1.486
L2 L1 0.194 3.917 0.469 1.486
L2 L2 0.217 4.844 0.093 1.483

Table 3: Ablation study of regularization terms on SRB[7]

4 Additional results on the eikonal instability108

We showed in Fig. 1 (in the full paper), with quadratic networks, the instability incurred by the109

eikonal loss when divergence terms are removed. Linear networks, though even less complex, will110

encounter the eikonal instability as well according to our analysis. We demonstrate additional results111

in Fig. 4 with linear networks and SIREN.112

5 Ablation study on regularization weight113

We have conducted this experiment on SRB varying regularization weights. It shows that around the114

optimal weight choice, the results are not sensitive. Furthermore, increasing the weight beyond the115

optimal, only degrades results slightly since that simply enforces further a constraint that is true of116

all SDFs, without smoothing the geometry much. This is consistent Lagrange multiplier theory for117

enforcing a constraint into the optimization problem.118

6 Ablation study on SRB dataset of Regularizations & Linear vs Quad Layers119

In Table 5, we study the effectiveness of each of our novel contributions (the Laplacian normal120

regularization and quadratic layers) on the SRB dataset. We get a better result with linear networks121

9



Almost converged Intermediate after instability Final

Figure 4: Instability on linear networks. (left) The evolution is almost converged. (middle) However,
after several additional iterations, instability occurs. We show the intermediate results 50 steps after
the instability. (right) This instability drives the network to a sub-optimal local minimizer.

GT Scans
αl dC dH dC⃗ dH⃗
10 0.264 6.089 0.099 1.513
50 0.191 3.799 0.096 1.485
100∗ 0.180 2.800 0.096 1.453
200 0.188 3.520 0.097 1.495
300 0.192 3.497 0.102 1.535
400 0.187 3.177 0.102 1.537
500 0.194 3.557 0.098 1.499

Table 4: Varying αl and performance. The relationship between αl and the performance is not salient.
We may mention that the weight needs to be tuned based on different tasks, but a relatively larger
weight is preferred given the annealing strategy.

if we replace the divergence in [2] with our Laplacian normal. Also replacing linear with quadratic122

layers, irrespective of regularization leads to better results. The combination of the two produces the123

best results. All the experiments are run under the same hyper-parameters.124

GT Scans
Method dC dH dC⃗ dH⃗
Lin+Ldiv 0.190 4.397 0.099 1.446
Lin+LL. n. 0.188 4.321 0.100 1.498
Qua+Ldiv 0.187 3.597 0.098 1.496
Ours(Qua+LL. n.) 0.180 2.800 0.096 1.454

Table 5: Ablation study on the Surface Reconstruction Benchmark[7] using only point data (no
normals).
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