
A Additional discussion432

A.1 Additional related work433

Principal stratification and mediation analysis in causal inference [32] studies an optimal434

test-and-treat regime under a no-direct-effect assumption, that assigning a diagnostic test has no effect435

on outcomes except via propensity to treat, and studies semiparametric efficiency using Structural436

Nested-Mean Models. Though our exclusion restriction is also a no-direct-effect assumption, our437

optimal treatment regime is in the space of recommendations only as we do not have control over the438

final decision-maker, and we consider generally nonparametric models.439

We briefly go into more detail about formal differences, due to our specific assumptions, that delineate440

the differences to mediation analysis. Namely, our conditional exclusion restriction implies that441

Y1T0 = YT0 and that Y0T1 = Y1T1 (in mediation notation with Tr = T (r) in our notation), so that442

so-called net direct effects are identically zero and the net indirect effect is the treatment effect (also443

called average encouragement effect here).444

Human-in-the-loop in consequential domains. There is a great deal of interest in designing445

algorithms for the “human in the loop" and studying expertise and discretion in human oversight in446

consequential domains [14]. On the algorithmic side, recent work focuses on frameworks for learning447

to defer or human-algorithm collaboration. Our focus is prior to the design of these procedures for448

improved human-algorithm collaboration: we primarily hold fixed current human responsiveness to449

algorithmic recommendations. Therefore, our method can be helpful for optimizing local nudges.450

Incorporating these algorithmic design ideas would be interesting directions for future work.451

Empirical literature on judicial discretion in the pretrial setting. Studying a slightly different452

substantive question, namely causal effects of pretrial decisions on later outcomes, a line of work453

uses individual judge decision-makers as a leniency instrumental variable for the treatment effect of454

(for example, EM) on pretrial outcomes [3, 2, 34]. And, judge IVs rely on quasi-random assignment455

of individual judges. We focus on the prescriptive question of optimal recommendation rules in view456

of patterns of judicial discretion, rather than the descriptive question of causal impacts of detention457

on downstream outcomes.458

A number of works have emphasized the role of judicial discretion in pretrial risk assessments in459

particular [20, 15, 33]. In contrast to these works, we focus on studying decisions about electronic460

monitoring, which is an intermediate degree of decision lever to prevent FTA that nonetheless461

imposes costs. [23] study a randomized experiment of provision of the PSA and estimate (the sign462

of) principal causal effects, including potential group-conditional disparities. They are interested in a463

causal effect on the principal stratum of those marginal defendants who would not commit a new464

crime if recommended for detention. [9] study policy learning in the absence of positivity (since465

the PSA is a deterministic function of covariates) and consider a case study on determining optimal466

recommendation/detention decisions; however their observed outcomes are downstream of judicial467

decision-making. Relative to their approach, we handle lack of overlap via an exclusion restriction so468

that we only require ambiguity on treatment responsivity models rather than causal outcome models.469
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B Additional discussion on method470

B.1 Additional discussion on constrained optimization471

Feasibility program We can obtain upper/lower bounds on ✏ in order to obtain a feasible region472

for ✏ by solving the below optimization over maximal/minimal values of the constraint:473

✏, ✏ 2 max
⇡

/min
⇡

E[T (⇡) | A = a]� E[T (⇡) | A = b] (3)

V ⇤

✏ = max
⇡

{E[c(⇡, T (⇡), Y (⇡))] : E[T (⇡) | A = a]� E[T (⇡) | A = b]  ✏} (4)

B.2 Additional discussion on Algorithm 2 (general algorithm)474

B.2.1 Additional fairness constraints and examples in this framework475

In this section we discuss additional fairness constraints and how to formulate them in the generic476

framework. Much of this discussion is quite similar to [1] (including in notation) and is included in477

this appendix for completeness only. We only additionally provide novel identification results for478

another fairness measure on causal policies in Appendix B.2.2, concrete discussion of the reduction479

to weighted classification, and provide concrete descriptions of the causal fairness constraints in the480

more general framework.481

We first discuss how to impose the treatment parity constraint. This is similar to the demographic parity482

example in [1], with different coefficients, but included for completeness. (Instead, recommendation483

parity in E[⇡ | A = a] is indeed nearly identical to demographic parity.)484

Example 1 (Writing treatment parity in the general constrained classification framework.). We write485

the constraint486

E[T (⇡) | A = a]� E[T (⇡) | A = b] (5)

in this framework as follows:487

E[T (⇡) | A = a] = E[⇡1(X)(p1|1(X,A)� p1|0(X,A)) + p1|0(X,A) | A = a]

For each u 2 A we enforce that
P

r2{0,1} E
⇥
⇡r(X)p1|r(X,A) | A = u

⇤
=
P

r2{0,1} E
⇥
⇡r(X,A)p1|r(X,A)

⇤

We can write this in the generic notation given previously by letting J = A [ {�},

gj(O,⇡(X); ⌘) = ⇡1(X)(p1|1(X,A)� p1|0(X,A)) + p1|0(X,A), 8j.

We let the conditioning events Ea = {A = a}, E� = {True}, i.e. conditioning on the latter is
equivalent to evaluating the marginal expectation. Then we express Equation (5) as a set of equality
constraints ha(⇡) = h�(⇡), leading to pairs of inequality constraints,

⇢
hu(⇡)� h�(⇡)  0
h�(⇡)� hu(⇡)  0

�

u2A

The corresponding coefficients of M over this enumeration over groups (A) and epigraphical488

enforcement of equality ({+,�}) equation (1), gives K = A ⇥ {+,�} so that M(a,+),a0 =489

1 {a0 = a} ,M(a,+),? = �1, M(a,�),a0 = �1 {a0 = a} ,M(a,�),? = 1, and d = 0. Further we490

can relax equality to small amounts of constraint relaxation by instead setting dk > 0 for some (or491

all) k.492

Next, we discuss a more complicated fairness measure. We first discuss identification and estimation493

before we also describe how to incorporate it in the generic framework.494
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B.2.2 Responder-dependent fairness measures495

We consider a responder framework on outcomes (under our conditional exclusion restriction).496

Because the contribution to the AEE is indeed from the responder strata, this corresponds to additional497

estimation of the responder stratum.498

We enumerate the four possible realizations of potential outcomes (given any fixed recommenda-499

tion) as (Y (0(r)), Y (1(r)) 2 {0, 1}2. We call units with (Y (0(r)), Y (1(r))) = (0, 1) responders,500

(Y (0(r)), Y (1(r))) = (1, 0) anti-responders, and Y (0(r)) = Y (1(r)) non-responders. Such a501

decomposition is general for the binary setting.502

Assumption 8 (Binary outcomes, treatment).
T, Y 2 {0, 1}

Assumption 9 (Monotonicity).
Y (T (1)) � Y (T (0))

Importantly, the conditional exclusion restriction of Assumption 2 implies that responder status is503

independent of recommendation. Conditional on observables, whether a particular individual is a504

responder is independent of whether someone decides to treat them when recommended. In this505

way, we study responder status analogous to its use elsewhere in disparity assessment in algorithmic506

fairness [23, 28]. Importantly, this assumption implies that the conditioning event (of being a507

responder) is therefore independent of the policy ⇡, so it can be handled in the same framework. s508

We may consider reducing disparities in resource expenditure given responder status.509

We may be interested in the probability of receiving treatment assignment given responder status.510

Example 2 (Fair treatment expenditure given responder status).
E[T (⇡) | Y (1(R)) > Y (0(R)), A = a]� E[T (⇡) | Y (1(R)) > Y (0(R)), A = b]  ✏

We can obtain identification via regression adjustment:511

Proposition 7 (Identification of treatment expenditure given responder status). Assume Assump-
tions 8 and 9.

P (T (⇡) = 1 | A = a, Y (1(⇡)) > Y (0(⇡))) =

P
r E[⇡r(X)p1|r(X,A)(µ1(X,A)� µ0(X,A)) | A = a])

E[(µ1(X,A)� µ0(X,A)) | A = a]

Therefore this can be expressed in the general framework.512

Example 3 (Writing treatment responder-conditional parity in the general constrained classification
framework.). For each u 2 A we enforce that

P
r E[⇡r(X)p1|r(X,A)(µ1(X,A)�µ0(X,A))|A=u])

E[(µ1(X,A)�µ0(X,A))|A=u] =
P

r E[⇡r(X)p1|r(X,A)(µ1(X,A)�µ0(X,A))])
E[(µ1(X,A)�µ0(X,A))]

We can write this in the generic notation given previously by letting J = A [ {�},

gj(O,⇡(X); ⌘) =
{⇡1(X)(p1|1(X,A)� p1|0(X,A)) + p1|0(X,A)}(µ1(X,A)� µ0(X,A))

E[(µ1(X,A)� µ0(X,A)) | A = a]
, 8j.

Let Ej
a = {A = aj}, E� = {True}, and we express Equation (5) as a set of equality constraints of the

above moment ha(⇡) = h�(⇡), leading to pairs of inequality constraints,
⇢
hu(⇡)� h�(⇡)  0
h�(⇡)� hu(⇡)  0

�

u2A

The corresponding coefficients of M proceed analogously as for treatment parity.513

B.2.3 Best-response oracles514

Best-responding classifier ⇡, given �: BEST⇡(�) The best-response oracle, given a particular �515

value, optimizes the Lagrangian given ⇡:516

L(⇡,�) = V̂ (⇡) + �>(Mĥ(⇡)� d̂)

= V̂ (⇡)� �>d̂+
X

k,j

Mk,j�k
pj

En [gj(O,⇡)1 {O 2 Ej}] .
517
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Best-responding Lagrange multiplier �, given ⇡: BEST�(Q) is the best response of518

the ⇤ player. It can be chosen to be either 0 or put all the mass on the most violated519

constraint. Let �(Q) := Mh(Q) denote the constraint values, then BEST�(Q) returns520 ⇢
0 if b�(Q)  bc
Bek⇤ otherwise, where k⇤ = argmaxk [b�k(Q)� bck]

521

B.2.4 Weighted classification reduction522

There is a well-known reduction of optimizing the zero-one loss for policy learning to weighted523

classification. A cost-sensitive classification problem is524

argmin
⇡1

nX

i=1

⇡1 (Xi)C
1
i + (1� ⇡1 (Xi))C

0
i

The weighted classification error is
Pn

i=1 Wi1 {h (Xi) 6= Yi} which is an equivalent formulation if525

Wi =
��C0

i � C1
i

�� and Yi = 1
�
C0

i � C1
i

 
.526

The reduction to weighted classification is particularly helpful since taking the Lagrangian will527

introduce datapoint-dependent penalties that can be interpreted as additional weights. We can528

consider the centered regret J(⇡) = E[Y (⇡)]� 1
2E[E[Y | R = 1, X] + E[Y | R = 0, X]]. Then529

J(✓) = J(sgn(g✓(·))) = E[sgn(g✓(X)) { }]

where  can be one of, where µR
r (X) = E[Y | R = r,X],

 DM = (p1|1(X)�p1|0(X))(µ1(X)�µ0(X)), IPW =
RY

eR(X)
, DR =  DM+ IPW+

RµR(X)

eR(X)

We can apply the standard reduction to cost-sensitive classification since  i sgn(g✓(Xi)) = | i| (1�
2I [sgn(g✓(Xi)) 6= sgn( i)]). Then we can use surrogate losses for the zero-one loss,

L(✓) = E[| | `(g✓(X), sgn( ))]

Although many functional forms for `(·) are Fisher-consistent, the logistic (cross-entropy) loss will530

be particularly relevant: l(g, s) = 2 log(1 + exp(g))� (s+ 1)g.531

Example 4 (Treatment parity, continued (weighted classification reduction)). The cost-sensitive
reduction for a vector of Lagrange multipliers can be deduced by applying the weighted classification
reduction to the Lagrangian:

L(�) = E
h
| ̃�

|`
⇣
g�(X), sgn( ̃�)

⌘i
, where  ̃� =  +

�A
pA

(p1|1 � p1|0)�
X

a2A

�a.

where pa := P̂ (A = a) and �a := �(a,+) � �(a,�), effectively replacing two non-negative Lagrange532

multipliers by a single multiplier, which can be either positive or negative.533

Example 5 (Responder-conditional treatment parity, continued). The Lagrangian is L(�) =

E
h
| ̃�

|`
⇣
g�(X), sgn( ̃�)

⌘i
with weights:

 ̃� =  +
�A
pA

(p1|1 � p1|0)(µ1 � µ0)

En[(µ1(X,A)� µ0(X,A)) | A = a]
�

X

a2A

�a.

where pa := P̂ (A = a) and �a := �(a,+) � �(a,�).534
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B.3 Proofs535

Proof of Proposition 7.

P (T (⇡) = 1 | A = a, Y (1(⇡)) > Y (0(⇡)))

=
P (T (⇡) = 1, Y (1(r)) > Y (0(r)) | A = a)

P (Y (1(⇡)) > Y (0(⇡)) | A = a)
by Bayes’ rule

=
P (T (⇡) = 1, Y (1) > Y (0) | A = a)

P (Y (1) > Y (0) | A = a)
by Assumption 2

=

P
r E[E[⇡r(X)I [T (r) = 1] I [Y (1) > Y (0)] | A = a,X]])

P (Y (1) > Y (0) | A = a)
by iter. exp

P
r E[⇡r(X)p1|r(X,A)(µ1(X,A)� µ0(X,A)) | A = a])

E[(µ1(X,A)� µ0(X,A)) | A = a]
by Proposition 1

536
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C Proofs537

C.1 Proofs for generalization under unconstrained policies538

Proposition 8 (Policy value generalization). Assume the nuisance models ⌘ =539

[p1|0, p1|1, µ1, µ0, er(X)]>, ⌘ 2 H are consistent and well-specified with finite VC-dimension V⌘540

over the product function class H . We provide a proof for the general case, including doubly-robust541

estimators, which applies to the statement of Proposition 8 by taking ⌘ = [p1|0, p1|1, µ1, µ0].542

Let ⇧ = {I{E[L(�, X,A; ⌘) | X] > 0: � 2 R; ⌘ 2 F}.

sup⇡2⇧,�2R |(En[⇡L(�, X,A)]� E[⇡L(�, X,A)])| = Op(n�
1
2 )

The generalization bound allows deducing risk bounds on the out-of-sample value:543

Corollary 2.
E[L(�̂, X,A)+]  E[L(�⇤, X,A)+] +Op(n

�
1
2 )

Proof of Proposition 8. We study a general Lagrangian, which takes as input pseudo-outcomes544

 t|r(O; ⌘), y|t(O; ⌘), 1|0,�A where each satisfies that545

E[ t|r(O; ⌘) | X,A] = p1|1(X,A)� p1|0(X,A)

E[ y|t(O; ⌘) | X,A] = ⌧(X,A)

E[ 1|0,�A
| X] = p1|0(X, a)� p1|0(X, b)

We make high-level stability assumptions on pseudooutcomes  relative to the nuisance functions ⌘546

(these are satisfied by standard estimators that we will consider):547

Assumption 10.  t|r, y|t, 1|0,�A respectively are Lipschitz contractions with respect to ⌘ and548

bounded549

We study a generalized Lagrangian of an optimization problem that took these pseudooutcome
estimates as inputs:

L(�, X,A; ⌘) =  t|r(O; ⌘)

⇢
 y|t(O; ⌘) +

�

p(A)
(I [A = a]� I [A = b])

�
+ �( 1|0,�A(O; ⌘))

We will show that

sup
⇡2⇧,�2R

|(En[⇡L(�, X,A)]� E[⇡L(�, X,A)])| = Op(n
�

1
2 )

which, by applying the generalization bound twice gives that

En[⇡L(�, X,A)] = E[⇡L(�, X,A)]) +Op(n
�

1
2 )

Write Lagrangian as550

max
⇡

min
�

= min
�

max
⇡

= min
�

E[L(O,�; ⌘)+]

Suppose the Rademacher complexity of ⌘k is given by R(Hk), so that [7, Thm. 12] gives that the551

Rademacher complexity of the product nuisance class H is therefore
P

k R(Hk). The main result552

follows by applying vector-valued extensions of Lipschitz contraction of Rademacher complexity553

given in [36]. Suppose that  t|r, y|t, 1|0,�A are Lipschitz with constants CL
t|r, C

L
y|t, C

L
1|0,�A.554

We establish VC-properties of555

FL1(O1:n) = {(g⌘(O1), g⌘(Oi), . . . g⌘(On)) : ⌘ 2 H} , where g⌘(O) =  t|r(O; ⌘) y|t(O; ⌘)

FL2(O1:n) = {(h⌘(O1), h⌘(Oi), . . . h⌘(On)) : ⌘ 2 H} , where h⌘(O) =  t|r(O; ⌘)
�

p(A)
(I [A = a]� I [A = b])

FL3(O1:n) = {(m⌘(O1),m⌘(Oi), . . .m⌘(On)) : ⌘ 2 H} , where m⌘(O) = �( 1|0,�A(O; ⌘))
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and the function class for the truncated Lagrangian,

FL+ = {{(g⌘(Oi) + h⌘(Oi) +m⌘(Oi))+}1:n : g 2 FL1(O1:n), h 2 FL2(O1:n),m 2 FL3(O1:n), ⌘ 2 H}

[36, Corollary 4] (and discussion of product function classes) gives the following: Let X be any set,556

(x1, . . . , xn) 2 X
n, let F be a class of functions f : X ! `2 and let hi : `2 ! R have Lipschitz557

norm L. Then558

E sup
⌘2H

X

i

✏i i (⌘ (Oi)) 
p

2LE sup
⌘2H

X

i,k

✏ik⌘ (Oi) 
p

2L
X

k

E sup
⌘k2Hk

X

i

✏i⌘k (Oi) (6)

where ✏ik is an independent doubly indexed Rademacher sequence and fk (xi) is the k-th component559

of f (xi).560

Applying Equation (6) to each of the component classes FL1(O1:n),FL2(O1:n),FL3(O1:n), and
Lipschitz contraction [7, Thm. 12.4] of the positive part function FL+ , we obtain the bound

sup
�,⌘

|En[L(O,�; ⌘)+]� E[L(O,�; ⌘)+]| 
p

2(CL
t|rC

L
y|t + CL

t|rBpaB +BCL
1|0,�A)

X

k

R(Hk)

561

Proposition 9 (Threshold solutions). Define

L(�, X,A) = (p1|1(X,A)�p1|0(X,A))

⇢
⌧(X,A) +

�

p(A)
(I [A = a]� I [A = b])

�
+�(p1|0(X, a)�p1|0(X, b))

562

�⇤ 2 argmin
�

E[L(�, X,A)+], ⇡⇤(x, u) = I{L(�⇤, X, u) > 0}

If instead d(x) is a function of covariates x only,563

�⇤ 2 argmin
�

E[E[L(�, X,A) | X]+], ⇡⇤(x) = I{E[L(�⇤, X,A) | X] > 0}

Proof of Proposition 9. The characterization follows by strong duality in infinite-dimensional linear564

programming [42]. Strict feasibility can be satisfied by, e.g. solving eq. (3) to set ranges for ✏.565
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C.2 Proofs for robust characterization566

Proof of Proposition 5.

V (⇡) =
X

t2T ,r2{0,1}

E[⇡r(X)E[crt(Y (t))I [T (r) = t] | R = r,X]]

=
X

t2T ,r2{0,1}

E[⇡r(X)E[crt(Y (t)) | R = r,X]P (T (r) = t | R = r,X)] unconf.

=
X

t2T ,r2{0,1}

E[⇡r(X)E[crt(Y (t)) | X]P (T (r) = t | R = r,X)] Assumption 2 (ER)

(7)

=
X

t2T ,r2{0,1}

E

⇡r(X)E


crt(Y (t))

I [T (r) = t]

pt(X)
| X

�
P (T (r) = t | R = r,X)

�
unconf.

=
X

t2T ,r2{0,1}

E

⇡r(X)

⇢
E

crt(Y (t))

I [T (r) = t]

pt(X)
+

✓
1�

T

pt(X)

◆
µt(X) | X

�
pt|r(X)

��
control variate

=
X

t2T ,r2{0,1}

E

⇡r(X)

⇢⇢
crt(Y (t))

I [T (r) = t]

pt(X)
+

✓
1�

T

pt(X)

◆
µt(X)

�
pt|r(X)

��
(LOTE)

where pt(X) = P (T = t | X) (marginally over R in the observational data) and (LOTE) is an567

abbreviation for the law of total expectation.568

Proof of Lemma 1.

V no(⇡) := max
qtr(X)2U

8
<

:
X

t2T ,r2{0,1}

E[⇡r(X)µt(X)qtr(X)I [X 2 X
no]]]

9
=

;

= max
qtr(X)2U

8
<

:
X

t2T ,r2{0,1}

E[⇡r(X)E[Y | T = t,X]qtr(X)I [X 2 X
no]]]

9
=

;

Note the objective function can be reparametrized under a surjection of qt|r(X) to its marginalization,569

i.e. marginal expectation over a {T = t} partition (equivalently {T = t, A = a} partition for a570

fairness-constrained setting).571

Define572

�t|r(a) := E[qt|r(X,A) | T = t, A = a],�t|r := E[qt|r(X,A) | T = t]

Therefore we may reparametrize V no(⇡) as an optimization over constant coefficients (bounded by573

B):574

= max

8
<

:
X

t2T ,r2{0,1}

E[{ct�t|r}⇡r(X)E[Y | T = t,X]I [X 2 X
no]]] : B  c1  B, c0 = 1� c1

9
=

;

= max

8
<

:
X

t2T ,r2{0,1}

E[{ct�t|r}E[Y ⇡r(X) | T = t]I [X 2 X
no]]] : B  c1  B, c0 = 1� c1

9
=

; LOTE

=
X

t2T ,r2{0,1}

E[c⇤rt�t|rE[Y ⇡r(X) | T = t]I [X 2 X
no]]]

where c⇤rt =

⇢
BI [t = 1] +BI [t = 0] if E[Y ⇡r(X) | T = t] � 0
BI [t = 0] +BI [t = 1] if E[Y ⇡r(X) | T = t] < 0

575
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Proof of proposition 6.

max
⇡

E[c(⇡, T (⇡), Y (⇡))I [X 62 X
no]] + E[c(⇡, T (⇡), Y (⇡))I [X 2 X

no]] (8)

E[T (⇡)I [X 62 X
no] | A = a]� E[T (⇡)I [X 62 X

no] | A = b] (9)
+ E[T (⇡)I [X 2 X

no] | A = a]� E[T (⇡)I [X 2 X
no] | A = b]  ✏, 8qr1 2 U (10)

Define
gr(x, u) = (µr1(x, u)� µr0(x, u))

then we can rewrite this further and apply the standard epigraph transformation:576

max t

t�

Z

x2X no

X

u2{a,b}

X

r2{0,1}

{gr(x, u)⇡r(x, u)f(x, u)}qr1(x, u)}dx  Vov(⇡) + E[µ0], 8qr1 2 U

Z

x2X no
{f(x | a)(

X

r

⇡r(x, a)qr1(x, a))� f(x | b)(
X

r

⇡r(x, b)qr1(x, b))}+ E[�ovT (⇡)]  ✏, 8qr1 2 U

Project the uncertainty set onto the direct product of uncertainty sets:577

max t

t�

Z

x2X no

X

u2{a,b}

X

r2{0,1}

{gr(x, u)⇡r(x, u)f(x, u)}qr1(x, u)}dx  Vov(⇡) + E[µ0], 8qr1 2 U1

Z

x2X no
{f(x | a)(

X

r

⇡r(x, a)qr1(x, a))� f(x | b)(
X

r

⇡r(x, b)qr1(x, b))}+ E[�ovT (⇡)]  ✏, 8qr1 2 U2

Clearly robust feasibility of the resource parity constraint over the interval is obtained by the578

highest/lowest bounds for groups a, b, respectively:579

max t

t�

Z

x2X no

X

u2{a,b}

X

r2{0,1}

{gr(x, u)⇡r(x, u)f(x, u)}qr1(x, u)}dx  Vov(⇡) + E[µ0], 8qr1 2 U1

Z

x2X no
{f(x | a)(

X

r

⇡r(x, a)Br(x, a))� f(x | b)(
X

r

⇡r(x, b)Br(x, u))}+ E[�ovT (⇡)]  ✏

We define
�r1(x, u) =

2(qr1(x, u)�Br(x, u))

Br(x, u)�Br(x, u)
� (Br(x, u)�Br(x, u)),

then
{Br(x, u)  qr1(x, u)  Br(x, u)} =) {k�r1(x, u)k1  1}

and
qr1(x, u) = Br(x, u) +

1

2
(Br(x, u)�Br(x, u))(�r1(x, u) + 1).

For brevity we denote �B = (Br(x, u)�Br(x, u)), so580

max t

t+ max
k�r1(x,u)k11
r2{0,1},u2{a,b}

8
<

:�

Z

x2X no

X

u2{a,b}

X

r2{0,1}

{gr(x, u)⇡r(x, u)f(x, u)}
1

2
�B(x, u)�r1(x, u)dx

9
=

;� c1(⇡)  Vov(⇡) + E[µ0]

Z

x2X no
{f(x | a)(

X

r

⇡r(x, a)Br(x, a))� f(x | b)(
X

r

⇡r(x, b)Br(x, u))}+ E[�ovT (⇡)]  ✏,
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where

c1(⇡) =

Z

x2X no

X

u2{a,b}

X

r2{0,1}

{gr(x, u)⇡r(x, u)f(x, u)}(Br(x, u) +
1

2
(Br(x, u)�Br(x, u)))dx

This is equivalent to:581

max t

t+

Z

x2X no

X

u2{a,b}

X

r2{0,1}

|�gr(x, u)⇡r(x, u)f(x, u)|
1

2
�B(x, u)dx� c1(⇡)  Vov(⇡) + E[µ0]

Z

x2X no
{f(x | a)(

X

r

⇡r(x, a)Br(x, a))� f(x | b)(
X

r

⇡r(x, b)Br(x, u))}+ E[�ovT (⇡)]  ✏

Undoing the epigraph transformation, we obtain:582

max Vov(⇡) + E[µ0] + c1(⇡)�

Z

x2X no

X

u2{a,b}

X

r2{0,1}

|�gr(x, u)⇡r(x, u)f(x, u)|
1

2
�B(x, u)dx

Z

x2X no
{f(x | a)(

X

r

⇡r(x, a)Br(x, a))� f(x | b)(
X

r

⇡r(x, b)Br(x, u))}+ E[�ovT (⇡)]  ✏

and simplifying the absolute value:583

max Vov(⇡) + E[µ0] + c1(⇡)�

Z

x2X no

X

u2{a,b}

X

r2{0,1}

|gr(x, u)⇡r(x, u)f(x, u)|
1

2
�B(x, u)dx

Z

x2X no
{f(x | a)(

X

r

⇡r(x, a)Br(x, a))� f(x | b)(
X

r

⇡r(x, b)Br(x, u))}+ E[�ovT (⇡)]  ✏

584
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C.3 Proofs for general fairness-constrained policy optimization algorithm and analysis585

We begin with some notation that will simplify some statemetns. Define, for observation tuples586

O ⇠ (X,A,R, T, Y ), the value estimate v(Q; ⌘) given some pseudo-outcome  (O; ⌘) dependent on587

observation information and nuisance functions ⌘. (We often suppress notation of ⌘ for brevity). We588

let estimators sub/super-scripted by 1 denote estimators from the first dataset.589

v(·)(Q) = E⇡⇠Q[⇡ (·) | O], for (·) 2 {;,DR}

V (·)(Q) = E[v(·)(Q)]

V̂ (·)
1 (Q) = En1 [v

(·)(Q)]

gj(O;Q) = E⇡⇠Q[gj(O;⇡) | O, Ej ]

hj(Q) = E[gj(O;Q) | Ej ]

ĥ1
j (Q) = En1 [gj(O;Q) | Ej ]

C.3.1 Preliminaries: results from other works used without proof590

Theorem 3 (Thm. 3, [1] (saddle point generalization bound (non-localized)) ). Let ⇢ :=
maxh kMµ̂(h) � ĉk1. Let Assumption 1 hold for C 0

� 2C + 2 +
p
ln(4/�)/2, where � > 0.

Let Q? minimize V (Q) subject to Mµ(Q)  c. Then Algorithm 1 with ⌫ / n�↵, B / n↵ and
⌘ / ⇢�2n�2↵ terminates in O

�
⇢2n4↵ ln |K|

�
iterations and returns Q̂. If np?j � 8 log(2/�) for all

j, then with probability at least 1� (|J |+ 1)� then for all k Q̂ satisfies:

V (Q̂)  V (Q?) + eO
�
n�↵

�

�k( bQ)  ck +
1 + 2⌫

B
+
X

j2J

|Mk,j |
eO
⇣�

np?j
��↵

⌘

The proof of [1, Thm. 3] is modular in invoking Rademacher complexity bounds on the objective591

function and constraint moments, so that invoking standard Rademacher complexity bounds for off-592

policy evaluation/learning [5, 45] yields the above statement for V (⇡) (and analogously, randomized593

policies by [7, Thm. 12.2] giving stability for convex hulls of policy classes).594

Lemma 2 (Lemma 4, [17]). Consider a function class F : X ! Rd, with supf2F
kfk1,2  1 and

pick any f⇤
2 F . Assume that v(⇡) is L-Lipschitz in its first argument with respect to the `2 norm

and let:
Zn(r) = sup

Q2Q

{|En[v̂(Q)� v̂(Q⇤)]� E[v(Q)� v(Q⇤)]| : E[(E⇡⇠Q[v(⇡)]�E⇡⇠Q⇤ [v(⇡)])2]
1
2  r}

Then for some universal constants c1, c2 :

Pr

"
Zn(r) � 16L

dX

t=1

R (r, conv(⇧t)�Q⇤

t ) + u

#
 c1 exp

⇢
�

c2nu2

L2r2 + 2Lu

�

Moreover, if �n is any solution to the inequalities:
8t 2 {1, . . . , d} : R (�; star (conv(⇧t)�Q⇤

t ))  �2

then for each r � �n :

P (Zn(r) � 16Ldr�n + u)  c1 exp

⇢
�

c2nu2

L2r2 + 2Lu

�

Lemma 3 (Concentration of conditional moments ([1, 47]). For any j 2 J , with probability at least
1� �, for all Q,

���bhj(Q)� hj(Q)
���  2Rnj (H) +

2
p
nj

+

s
ln(2/�)

2nj

If np?j � 8 log(2/�), then with probability at least 1� �, for all Q,
���bhj(Q)� hj(Q)

���  2Rnp?
j /2

(H) + 2

s
2

np?j
+

s
ln(4/�)

np?j
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Lemma 4 (Orthogonality (analogous to [12] (Lemma 8), others)). Suppose the nuisance estimates
satisfy a mean-squared-error bound

max
l

{E[(⌘̂l � ⌘l)
2]}l2[L] := �2

n

Then w.p. 1� � over the randomness of the policy sample,

V (Q0)� V (Q̂)  O(Rn,� + �2
n)

C.4 Adapted lemmas595

In this subsection we collect results similar to those that have appeared previously, but that require596

substantial additional argumentation in our specific saddle point setting.597

Lemma 5 (Feasible vs. oracle nuisances in low-variance regret slices ([12], Lemma 9) ). Consider
the setting of Corollary 7. Suppose that the mean squared error of the nuisance estimates is upper
bounded w.p. 1� � by h2

n,� and suppose h2
n,�  ✏n. Then:

V 0
2 = sup

⇡,⇡02⇧⇤(✏n+2h2
n,�)

Var
�
v0DR(x;⇡)� v0DR (x;⇡0)

�

Then V2  V 0
2 +O (hn,�).598

C.5 Proof of Theorem 1599

Proof of Theorem 1. We first study the meta-algorithm with “oracle" nuisance functions ⌘ = ⌘0.600

Define601

⇧2 (✏n) =
n
⇡ 2 ⇧ : En1 [v(Q; ⌘0)� v(Q̂1; ⌘0)]  ✏n,En1 [gj(O;⇡, ⌘0)� gj (O; ⇡̂1, ⌘0) | Ej ]  ✏n, j 2 Î1

o

Q2 (✏n) = {Q 2 � (⇧2(✏n))}

Q
⇤ (✏n) = {Q 2 �(⇧) : E[(v(Q; ⌘0)� v(Q⇤; ⌘0)]  ✏n,E[gj(O;Q, ⌘0) | Ej ]� E[gj(O;Q⇤, ⌘0) | Ej ]  ✏n}

In the following, we suppress notational dependence on ⌘0.602

Note that Q̂1 2 Q2 (✏n) .603

Step 1: First we argue that w.p. 1� �/6, Q⇤
2 Q2.604

Invoking Theorem 3 on the output of the first stage of the algorithm, yields that with probability605

1� �
6 over the randomness in D1, by choice of ✏n = Ō(n�↵)),606

V (Q̂1)  V (Q⇤) + ✏n/2

�k(Q̂1)  dk +
X

j2J

|Mk,j |
eO
�
(np⇤j )

�↵
�
 dk + ✏n/2 for all k

Further, by Lemma 2,607

sup
Q2Q

|En1 [(v(Q)� v(Q⇤))]� E[(v(Q)� v(Q⇤))]|  ✏n/2

sup
Q2Q

|En1 [(g(O;Q)� g(O;Q⇤))]� E[(g(O;Q)� g(O;Q⇤))]|  ✏n/2

Therefore, with high probability on the good event, Q⇤
2 Q2.608

Step 2: Again invoking Theorem 3, this time on the output of the second stage of the algorithm with609

function space ⇧2 (hence implicitly Q2), and conditioning on the “good event" that Q⇤
2 Q2, we610

obtain the bound that with probability � 1� �/3 over the randomness of the second sample D2,611

V (Q̂2)  V (Q⇤) + ✏n/2

�k(Q̂2)  �k(Q
⇤) + ✏n/2
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Step 3: empirical small-regret slices relate to population small-regret slices, and variance bounds612

We show that if Q 2 Q2, then with high probability Q 2 Q
0
2 (defined on small population value- and

constraint-regret slices relative to Q̂1 rather than small empirical regret slices)

Q
0
2 = {Q 2 conv(⇧) :

���V (Q)� V (Q̂1)
���  ✏n/2,E[gj(O;Q)� gj(O; Q̂1)) | Ej ]  ✏n, 8j}

so that w.h.p. Q2 ✓ Q
0
2.613

Note that for Q 2 Q, w.h.p. 1� �/6 over the first sample, we have that614

sup
Q2Q

���En[v(Q)� v(Q̂1)]� E[v(Q)� v(Q̂1)]
���  2 sup

Q2Q

|En[v(Q)]� E[v(Q)]|  ✏,

sup
Q2Q

���En1 [gj(O;Q)� gj(O; Q̂1) | Ej ]� E[gj(O;Q)� gj(O; Q̂1) | Ej ]
���

 2 sup
Q2Q

|En1 [gj(O;Q) | Ej ]� E[gj(O;Q) | Ej ]|  ✏, 8j

The second bound follows from [7, Theorem 12.2] (equivalence of Rademacher complexity over615

convex hull of the policy class) and linearity of the policy value and constraint estimators in ⇡, and616

hence Q.617

On the other hand since Q1 achieves low policy regret, the triangle inequality implies that we can618

contain the true policy by increasing the error radius. That is, for all Q 2 Q2, with high probability619

� 1� �/3:620

|E[(v(Q)� v(Q⇤))]| 
���E[(v(Q)� v(Q̂1))]

���+
���E[(v(Q̂1)� v(Q⇤))]

���  ✏n

|E[gj(O;Q)� gj(O;Q⇤) | Ej ]| 
���E[gj(O;Q)� gj(O; Q̂1) | Ej ]

���+
���E[gj(O; Q̂1)� gj(O;Q⇤) | Ej ]

���  ✏n

Define the space of distributions over policies that achieve value and constraint regret in the population
of at most ✏n :

Q⇤(✏n) = {Q 2 Q : V (Q)� V (Q⇤)  ✏n, E[gj(O;Q)� gj(O;Q⇤) | Ej ]  ✏n, 8j},

so that on that high-probability event,621

Q
0
2(✏n) ✓ Q⇤(✏n). (11)

Then on that event with probability � 1� �/3,622

r22 = sup
Q2Q2

E[(v(Q)� v(Q⇤))2]  sup
Q2Q⇤(✏n)

E[(v(Q)� v(Q⇤))2]

= sup
Q2Q⇤(✏n)

Var(v(Q)� v(Q⇤)) + E[(v(Q)� v(Q⇤))]2

 sup
Q2Q⇤(✏n)

Var(v(Q)� v(Q⇤)) + ✏2n

Therefore:623

r2 

r
sup

Q2Q⇤(✏n)
Var (v(Q)� v(Q⇤)) + 2✏n =

p
V2 + 2✏n

Combining this with the local Rademacher complexity bound, we obtain that:

E[v(Q̂2)� v(Q⇤)] = O

 

⇣p

V2 + 2✏n,Q⇤ (✏n)
⌘
+

r
V2 log(3/�)

n

!

These same arguments apply for the variance of the constraints

V j
2 = sup {Var (gj(O;Q)� gj (O;Q0)) : Q,Q0

2 Q⇤(✏̃n)}

624
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C.6 Proofs of auxiliary/adapted lemmas625

Proof of Lemma 5. The proof is analogous to that of [12, Lemma 9] except for the step of establishing626

that ⇡⇤ 2 Q
0
✏n+O(�2

n,�)
: in our case we must establish relationships between saddlepoints under627

estimated vs. true nuisances. We show an analogous version below.628

Define the saddle points to the following problems (with estimated vs. true nuisances):629

(Q⇤

0,0,�
⇤

0,0) 2 argmin
Q

max
�

E[vDR(Q; ⌘0)] + �>(�DR(Q; ⌘0)� d) := L(Q,�; ⌘0, ⌘0) := L(Q,�),

(Q⇤

⌘,0,�
⇤

⌘,0) 2 argmin
Q

max
�

E[vDR(Q; ⌘)] + �>(�DR(Q; ⌘0)� d),

(Q⇤,�⇤) 2 argmin
Q

max
�

E[vDR(Q; ⌘)] + �>(�DR(Q; ⌘)� d).

We have that:630

E[vDR(Q
⇤)]  L(Q⇤,�⇤; ⌘, ⌘) + ⌫

 L(Q⇤,�⇤; ⌘, ⌘0) + ⌫ + �2
n,�

 L(Q⇤,�⇤; ⌘, ⌘0) + ⌫ + �2
n,� by Lemma 4

 L(Q⇤,�⇤⌘,0; ⌘, ⌘0) + ⌫ + �2
n,� by saddlepoint prop.

 L(Q⇤

⌘,0,�
⇤

⌘,0; ⌘, ⌘0) +
��L(Q⇤

⌘,0,�
⇤

⌘,0; ⌘, ⌘0)� L(Q⇤,�⇤⌘,0; ⌘, ⌘0)
��+ ⌫ + �2

n,� triangle ineq.

 L(Q⇤

⌘,0,�
⇤

⌘,0; ⌘, ⌘0) + ✏n + ⌫ + �2
n,� assuming ✏n � �2

n,�

 E[vDR(Q
⇤

⌘,0; ⌘)] + ✏n + 2⌫ + �2
n,� apx. complementary slackness

 E[vDR(Q
⇤

0,0; ⌘)] + ✏n + 2⌫ + �2
n,� suboptimality

Hence
E[vDR(Q

⇤; ⌘)]� E[vDR(Q
⇤

0,0; ⌘)]  ✏n + 2⌫ + �2
n,�.

We generally assume that the saddlepoint suboptimality ⌫ is of lower order than ✏n (since it is under631

our computational control).632

Applying Lemma 4 gives;

V (Q⇤)� V (Q⇤

0,0)  ✏n + 2⌫ + 2�2
n,�.

Define policy classes with respect to small-population regret slices (with a nuisance-estimation
enlarged radius):

Q
0(✏) = {Q 2 �(⇧) : V (Q⇤

0)� V (Q)  ✏, �(Q⇤

0)� �(Q)  ✏}

Then we have that633

V obj
2  sup

Q2Q0(✏n)
Var(vDR(O;⇡)� vDR(O;⇡⇤)),

where we have shown that ⇡⇤
2 Q

0(✏+ 2⌫ + 2�2
n,�).634

Following the result of the argumentation in [12, Lemma 9] from here on out gives the result.635
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D Case Studies636

D.1 Oregon Health Insurance Study637

The Oregon Health Insurance Study [16] is an important study on the causal effect of expanding638

public health insurance on healthcare utilization, outcomes, and other outcomes. It is based on639

a randomized controlled trial made possible by resource limitations, which enabled the use of a640

randomized lottery to expand Medicaid eligibility for low-income uninsured adults. Outcomes of641

interest included health care utilization, financial hardship, health, and labor market outcomes and642

political participation.643

Because the Oregon Health Insurance Study expanded access to enroll in Medicaid, a social safety644

net program, the effective treatment policy is in the space of encouragement to enroll in insurance645

(via access to Medicaid) rather than direct enrollment. This encouragement structure is shared by646

many other interventions in social services that may invest in nudges to individuals to enroll, tailored647

assistance, outreach, etc., but typically do not automatically enroll or automatically initiate transfers.648

Indeed this so-called administrative burden of requiring eligible individuals to undergo a costly649

enrollment process, rather than automatically enrolling all eligible individuals, is a common policy650

design lever in social safety net programs. Therefore we expect many beneficial interventions in this651

consequential domain to have this encouragement structure.652

We preprocess the data by partially running the Stata replication file, obtaining a processed data file653

as input, and then selecting a subset of covariates. These covariates include household information654

that affected stratified lottery probabilities, socioeconomic demographics, medical status and other655

health information.656

In the notation of our framework, the setup of the optimal/fair encouragement policy design question657

is as follows:658

• X covariates (baseline household information, socioeconomic demographics, health infor-659

mation)660

• A race (non-white/white), or gender (female/male)661

These protected attributes were binarized.662

• R encouragement: lottery status of expanded eligibility (i.e. invitation to enroll when663

individual was previously ineligible to enroll)664

• T : whether the individual is enrolled in insurance ever665

Note that for R = 1 this can be either Medicaid or private insurance while for R = 0 this is666

still well-defined as this can be private insurance.667

• Y : number of doctor visits668

This outcome was used as a measure of healthcare utilization. Overall, the study found669

statistically significant effects on healthcare utilization. An implicit assumption is that670

increased healthcare utilization leads to better health outcomes.671

We subsetted the data to include complete cases only (i.e. without missing covariates). We learned672

propensity and treatment propensity models via logistic regression for each group, and used gradient-673

boosted regression for the outcome model. We first include results for regression adjustment identifi-674

cation.675

In Figure 3 we plot descriptive statistics. We include histograms of the treatment responsivity lifts676

p1|1a(x, a)� p1|0a(x, a). We see some differences in distributions of responsivity by gender and race.677

We then regress treatment responsivity on the outcome-model estimate of ⌧ . We find substantially678

more heterogeneity in treatment responsivity by race than by gender: whites are substantially more679

likely to take up insurance when made eligible, conditional on the same expected treatment effect680

heterogeneity in increase in healthcare utilization. (This is broadly consistent with health policy681

discussions regarding mistrust of the healthcare system).682

Next we consider imposing treatment parity constraints on an unconstrained optimal policy (defined683

on these estimates). In Figure 4 we display the objective value, and E[T (⇡) | A = a], for gender and684

race, respectively, enumerated over values of the constraint. We use costs of 2 for the number of685

doctors visits and 1 for enrollment in Medicaid (so E[T (⇡) | A = a] is on the scale of probability of686
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Figure 3: Distribution of lift in treatment probabilities p1|1,a � p1|0,a = P (T = 1 | R = 1, A =
a,X)� P (T = 1 | R = 0, A = a,X), and plot of p1|1,a � p1|0,a vs. ⌧.

Figure 4: Policy value V (⇡�), treatment value E[T (⇡�) | A = a], for A = race, gender.

enrollment). These costs were chosen arbitrarily. Finding optimal policies that improve disparities687

in group-conditional access can be done with relatively little impact to the overall objective value.688

These group-conditional access disparities can be reduced from 4 percentage points (0.04) for gender689

and about 6 percentage points (0.06) for race at a cost of 0.01 or 0.02 in objective value (twice the690

number of doctors’ visits). On the other hand, relative improvements/compromises in access value691

for the “advantaged group" show different tradeoffs. Plotting the tradeoff curve for race shows that,692

consistent with the large differences in treatment responsivity we see for whites, improving access693

for blacks. Looking at this disparity curve given � however, we can also see that small values of �694

can have relatively large improvements in access for blacks before these improvements saturate, and695

larger � values lead to smaller increases in access for blacks vs. larger decreases in access for whites.696
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