
A Useful Facts and Lemmas

Fact A.1. Given non-negative numbers a1, a2, . . . , an and positive numbers b1, b2, . . . , bn, then:

min
i2[n]

ai

bi


P
i2[n] aiP
i2[n] bi

 max
i2[n]

ai

bi

B MAXFLOWGF

We start with the following Lemma. First, note that xqj is a decision variable if xqj = 1 then point
j is assigned to center q and if xqj = 0 then it is not. In an integral solutions xqj 2 {0, 1}, but a
fractional LP solution could instead have values in [0, 1]. We use the bold symbol x for the collection
of value {xqj}q2Q,j2C :

Lemma 3. Given a fractional solution xfrac that satisfies the GF constraints at an additive violation
of at most ⇢, then if there exists an integral solution xinteg that satisfies:
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(3)

8q 2 Q, h 2 H :
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Then this integral solution xinteg satisifies the GF constraints at an additive violation of at most ⇢+ 2.

Proof. Since the fractional solution satisfies the GF constraints at an additive violation of ⇢, then we
have the following:
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We start with the upper bound:
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Now we do the lower bound:
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The LP solution given to MAXFLOWGF satisfies the GF constraints at an additive violation of ⇢, we
want to show that the output integral solution satisfies the above conditions of Eqs (3 and 4). The
MAXFLOWGF(xLP

, C,Q) subroutine is similar to that shown in [20, 5, 10]. Specifically, given an
LP solution xLP

= {x
LP
}q2Q,j2Q, a set of points C, and a set of centers Q and a color assignment

function � : C �! H which assigns to each point in C exactly one color in the set of colors H, we
construct the flow network (V,A) according to the following:

1. V = {s, t} [ C [ {(q, q
h
)|q 2 Q, h 2 H}.

2. A = A1 [ A2 [ A3 [ A4 where A1 = {(s, j)|j 2 C} with upper bound of 1. A2 =

{(j, (q, q
h
))|j 2 C, xqj > 0} with upper bound of 1. The arc set A3 = {((q, q

h
), q)|q 2

Q, h 2 H} with lower bound
jP

j2Ch x
LP
qj

k
and upper bound of

lP
j2Ch x

LP
qj

m
. As for

A4 = {(q, t)|q 2 Q} the lower and upper bounds are
jP

j2C x
LP
qj

k
and

lP
j2C x

LP
qj

m
.

In the above all lower and upper bounds of the network are integral, therefore if we can show a
feasible solution to the above then there must exist an integral flow assignment which also satisfies
the constraints. By the construction of the network we have the following fact about any max flow
integral solution xinteg.
Fact B.1.
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8q 2 Q, h 2 H :
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Accordingly, the following theorem immediately holds:
Theorem B.1. Given an LP solution to MAXFLOWGF that satisfies the GF constraints at an additive
violation of ⇢ and a clustering cost of R, then the output integral solution satisfies the GF constraints
at an additive violation of ⇢+ 2 and a clustering cost of at most R.

Proof. The guarantee for the additive violation of GF follows immediately from Lemma 3 and Fact
B.1. The guarantee for the clustering cost holds, since a point (vertex) j is not connected to a center
vertex (q, q

h
) unless xqj > 0 which can only be the case if d(j, q)  R.
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C OMITTED PROOFS

We restate the following lemma and give its proof:
Lemma 1. Given a non-empty cluster C with center i and radius R that satisfies the GF constraints
at an additive violation of ⇢ and a subset of points Q (Q ⇢ C). Then the clustering (Q,�) where
� = DIVIDE(C,Q) has the following properties: (1) The GF constraints are satisfied at an additive
violation of at most ⇢

|Q|
+ 2. (2) Every center in Q is active. (3) The clustering cost is at most 2R. If

|Q| = 1 then guarantee (1) is for the additive violation is at most ⇢.

Proof. We first consider the case where |Q| > 1. We prove the following claim2:

Claim 1. For the fractional assignment {xfrac
qj }q2Q,j2C such that:

8q 2 Q, 8h 2 H :

X
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x
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|C
h
|

|Q|
= Th

It holds that: (1) 8q 2 Q :
P

j2C x
frac
qj � 1, (2) GF constraints are satisfied at an additive violation

of ⇢
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.

Proof. Now we prove the first property
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h
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.

Since the GF constraints given center i are satisfied at an additive violation of ⇢, then we have:

8h 2 H :� ⇢+ �h|C|  |C
h
|  ↵h|C|+ ⇢ (8)

Therefore, since the amount of color for each center in Q with the fractional assignment can be
obtained by dividing by |Q|, then we have:
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⇢
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(9)

Therefore the GF constraints are satisfied at an additive violation of ⇢
|Q|

.

Denoting the assignment � resulting from DIVIDE by {x
integ
qj }q2Q,j2C , then the following claim

holds:

Claim 2.
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Proof. For any color h we have |Ch| = ah|Q|+ bh where ah and bh are non-negative integers and
bh is the remainder of dividing |Ch| by Q (bh 2 {0, 1, . . . , |Q|� 1}). It follows that

P
j2Ch x

frac
qj =

Th = ah +
bh
|Q|

. DIVIDE gives each center either
P

j2Ch x
integ
qj = ah = bThc =

jP
j2Ch x

frac
qj

k
or

P
j2Ch x

integ
qj = ah + 1 = dThe =

lP
j2Ch x

frac
qj

m
. This proves the second condition.

For the first condition, note that |C| =
P

h2H
(ah|Q|+ bh) = (

P
h2H

ah)|Q|+ a|Q|+ b where we
set

P
h2H

bh = a|Q|+ b with a and b being non-negative integers. b is the remainder and has values

2In our notation xqj 2 [0, 1] denotes the assignment of point j to center q.
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in {0, 1, . . . , |Q|�1}. Accordingly, the sum of the remainders across the colors is a|Q|+b. Since the
remainders are added “successivly” across the centers (see Figure 2) and a is divisible by |Q|, then for
any center q 2 Q either

P
j2C x

integ
qj = (

P
h2H

ah)+a or
P

j2C x
integ
qj = (

P
h2H

ah)+a+1. Note

that
P

j2C x
frac
qj =

P
h2H

Th = (
P

h2H
ah)+a+

b
|Q|

. Therefore,
jP

j2C x
frac
qj

k
= (

P
h2H

ah)+a

and
lP

j2C x
frac
qj

m
= (

P
h2H

ah) + a+ 1. This proves, the first condition.

By Claim 2 and Lemma 3 it follows that for each center q 2 Q the assignment {xinteg
qj }q2Q,j2C

satisfies the GF constraints at an additive violation of ⇢
|Q|

+ 2, this proves the first guarantee.

By Claim 2 and guarentee (1) of Claim 1, then 8q 2 Q :
P

j2C x
integ
qj �

jP
j2C x

frac
qj

k
� 1.

Therfeore, every center q 2 Q is active proving the second guarantee.

Guarantee (3) follows since 8j 2 C : d(j,�(j))  d(j, i) + d(i,�(j))  2R.

Now if |Q| = 1, then guarantee (2) follows since the cluster C is non-empty. Guarantee (3) follows
similarly to the above. The additive violation in the GF constraint on the other hand is ⇢ since the
single center Q has the exact set of points that were assigned to the original center i.

We restate the next lemma and give its proof:
Lemma 2. Solution (S

0
,�

0
) of line (3) in algorithm 2 has the following properties: (1) It satisfies the

GF constraint at an additive violation of 2, (2) It has a clustering cost of at most (1 + ↵DS)R
⇤

GF+DS
where R

⇤

GF+DS is the optimal clustering cost (radius) of the optimal solution for GF+DS, (3) The set
of centers S0 is a subset (possibly proper subset) of the set of centers S̄, i.e. S0

⇢ S.

Proof. We begin with the following claim which shows that there exists a solution that only uses
centers from S̄ to satisfy the GF constraints exactly and at a radius of at most (1 + ↵DS)R

⇤

GF+DS
.

Note that this claim has non-constructive proof, i.e. it only proves the existence of such a solution:

Claim 3. Given the set of centers S̄ resulting from the ↵DS-approximation algorithm, then there exists
an assignment �0 from points in C to centers in S̄ such that the following holds: (1) The GF constraint
is exactly satisfied (additive violation of 0). (2) The clustering cost is at most (1 + ↵DS)R

⇤

GF+DS.

Proof. Let (S⇤

GF+DS
,�

⇤

GF+DS
) be an optimal solution to the GF+DS problem. 8i 2 S

⇤

GF+DS
let

N(i) = argminī2S̄ d(i, ī), i.e. N(i) is the nearest center in S̄ to center i (ties are broken using the
smallest index). �0 is formed by assigning all points which belong to center i 2 S

⇤

GF+DS
to N(i).

More formally, 8j 2 C : �
⇤

GF+DS
(j) = i we set �0(j) = N(i). Note that it is possible for more

than one center i in S
⇤

GF+DS
to have the same nearest center in S̄. We will now show that �0 satisfies

the GF constraint exactly. Note first that if a center ī 2 S̄ has not been assigned any points by �0,
then it is empty and trivially satisfies the GF constraint exactly. Therefore, we assume that ī has a
non-empty cluster. Denote by N

�1
(̄i) the set of centers i 2 S

⇤

GF+DS
for which ī is the nearest center,

then using Fact A.1 and the fact that every cluster in (S
⇤

GF+DS
,�

⇤

GF+DS
) satisfies the GF constraint

exactly we have:

�h  min
i2N�1 (̄i)

|C
h
i |

|Ci |


P
i2N�1 (̄i) |C

h
i |

P
i2N�1 (̄i) |Ci |

=
|C

h
ī |

|Cī|
 max

i2N�1 (̄i)

|C
h
i |

|Ci |
 ↵h (10)

The proves guarantee (1) of the lemma. Now we prove guarantee (2), we denote by R
⇤

DS
the optimal

clustering cost for the DS constrained problem. We can show that 8j 2 C:

d(j,�0(j))  d(j,�
⇤

GF+DS
(j)) + d(�

⇤

GF+DS
(j),�0(j))

 d(j,�
⇤

GF+DS
(j)) + d(�

⇤

GF+DS
(j), N(�

⇤

GF+DS
(j))) ( since �0(j) = N(�

⇤

GF+DS
(j)) )

 R
⇤

GF+DS
+ ↵DSR

⇤

DS
( since S̄ is an ↵DS-approximation for DS )

 (1 + ↵DS)R
⇤

GF+DS

Where the last holds since R
⇤

DS
 R

⇤

GF+DS
because the set of solutions constrained by DS is a subset

of the set of solutions constrained by GF+DS.
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Now we can prove the lemma. By the above claim, it follows that when ASSIGNMENTGF is called,
the LP solution from line (3) of algorithm block 3 satisfies: (1) The GF constraints exactly and
(2) Has a clustering cost of at most (1 + ↵DS)R

⇤

GF+DS
. This is because LP (2) includes all integral

assignments from C to S̄ including �0. Since this LP assignment is fed to MAXFLOWGF it follows
by Theorem B.1 that the final solution satisfies: (1) The GF constraint at an additive violation of 2,
(2) Has a clustering cost of at most (1 + ↵DS)R

⇤

GF+DS
. Guarantee (3) holds since some centers may

become closed (assigned no points) and therefore S
0
⇢ S̄ (possibly being a proper subset).

We restate the following theorem and give its proof:
Theorem 4.1. Given an ↵DS-approximation algorithm for the DS problem, then we can obtain an
2(1 + ↵DS)-approximation algorithm that satisfies GF at an additive violation of 3 and satisfies DS
simultaneously.

Proof. By Lemma 2 above, the set of centers S0 is a subset (possibly proper) subset of S and therefore
the DS constraints may no longer be satisfied. Algorithm 2 select points from each color h so that
when they are added to S

0, then for each color h the set of centers is at least �hk. Since these new
centers are opened using the DIVIDE subroutine then it follows that they are all active (guarantee (2)
of Lemma 1).

Further, by guarantee (3) of Lemma 1 for DIVIDE we have for any point j assigned to a new center q
that d(j, q)  2d(j,�

0
(j))  2(1 + ↵DS)R

⇤

GF+DS
.

Finally, by guarantee (1) of Lemma 1 DIVIDE is called over a cluster that satisfies GF at an additive
violation of 2 and therefore the resulting additive violation is at most max{2,

2
|Qi|

+ 2}. Since
2 

2
|Qi|

+ 2 
2
2 + 2 = 3. The additive violation is at most 3.

We restate the next theorem and give its proof:
Theorem 4.2. If we have a solution (S̄, �̄) of cost R̄ that satisfies the GF constraints where the
number of non-empty clusters is |S̄| = k̄  k, then we can obtain a solution (S,�) that satisfies GF
at an additive violation of 2 and DS simultaneously with cost R  2R̄.

Proof. We point out the following fact:

Fact C.1. Every cluster in (S̄, �̄) has at least one point from each color.

Proof. This holds, since given a center i 2 S̄ we have |C̄i| > 0 and therefore 8h 2 H : |C̄
h
i | �

�h|C̄i| > 0 and therefore |C̄
h
i | � 1 since it must be an integer.

We note that the values {�h,↵h}h2H and k must lead to a feasible DS problem, i.e. there exist
positive integers gh such that

P
h2H

gh = k and 8h 2 H : �hk  gh  ↵hk. Accordingly, since
lines (4-13) in algorithm 4 can always pick a point of some color h such that the upper bound ↵hk is
not exceeded for every cluster i. Therefore the following fact must hold

Fact C.2. By the end of line (13) we have 8i 2 S̄ : |Qi| � 1.

Further, the final sh values are valid for DS:

Claim 4. By the end of line (13) the values of sh satisfy: (1)
P

h2H
sh  k, (2) 8h 2 H : �hk 

sh  ↵hk.

Proof. Lines (4-13) add values to sh if the lower bound �hk for color h is not satisfied. If the lower
bound is satisfied for all colors, then points of some color h are added provided that adding them
would not exceed the upper bound of ↵hk (see line 5). Therefore, by the end of line (13) for any
color h 2 H : sh  ↵hk and either sh � �hk or sh < �hk

3.

If by the end of line (13) we have 8h 2 H : sh � �hk, then the algorithm moves to line (22).
Otherwise, it will keep picking points and incrementing sh until 8h 2 H : sh � �hk.

3To see why we could have sh < �hk, consider the case where k̄ < k and therefore there would not be
enough clusters to so that we can add points for each color.
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Further, since such valid DS values exist it must be that the above satisfies
P

h2H
sh  k and

8h 2 H : sh  ↵hk. This concludes the proof for the claim.

By Lemma 1 for DIVIDE the new centers S = [i2S̄Qi are all active (guarantee 2 of DIVIDE) and
since the values of sh are valid (Claim 4 above), therefore S satisfies the DS constraints.

Since the assignment in each cluster in the new solution (S,�) is formed using DIVIDE over the
clusters of (S̄, �̄) then by guarantee 1 of DIVIDE, each cluster (S,�) satisifes GF at an additive
violation of 2. Finally, the clustering cost is at most R  2R̄ (guarantee 3 of DIVIDE).

We restate the following corollary and give its proof:
Corollary 1. Given an ↵GF-approximation algorithm for GF, then we can have a 2↵GF-
approximation algorithm that satisfies GF at an additive violation of 2 and DS simultaneously.

Proof. Using the previous theorem (Theorem 4.2) the solution (S̄, �̄) has a cost of R̄  ↵GF OPTGF.
The post-processed solution that satisfies GF at an additive violation of 2 and DS simultaneously
has a cost of R  2R̄  2↵GF OPTGF  2↵GF OPTGF+DS. The last inequality follows because
OPTGF  OPTGF+DS which is the case since both problems minimize the same objective, however
by definition the constraint set of GF + DS is a subset of the constraint set of GF.

Before we proceed, we define the following clustering instance which will be used in the proof:
Definition 1. `-Community Instance: The `-community instance is a clustering instance where the
set of points C can be partitioned into ` communities (subsets) {CCI

1 , . . . , C
CI
` } of coinciding points

(points within the same community are separated by a distance of 0). Further, the communities are of
equal size, i.e. 8i 2 ` : |C

CI
i | =

n
` . Moreover, the distance between any two points belonging to

different communities in the partition is at least R > 0.

Figure 5: An `-community instance to show Price of Fairness (GF) and incompatibility between GF

and other fairness constraints when k is even.

Figure 6: An `-community instance to show Price of Fairness (GF) and incompatibility between GF

and other fairness constraints when k is odd.

Figures 5 and 6 show two examples of the `-community instances. When clustering with a value of k,
the given `-community instance with k = ` is arguably the most “natural” clustering instance where
the clustering output is the communities {CCI

1 , . . . , C
CI
k }.

The following fact clearly holds for any `-community instance:
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Fact C.3. If we cluster an `-community instance with k = ` then: (1) The set of optimal solutions
are (SCI ,�CI) where SCI has exactly one center from each community {C

CI
1 , . . . , C

CI
k }. Further,

points are assigned to a center in the same community. (2) Clustering cost of (SCI ,�CI) is 0. (3)
Any solution other than (SCI ,�CI) has a clustering cost of at least R > 0.

We restate the following proposition and give its proof:
Proposition 5.1. For any value of k � 2, imposing GF can lead to an unbounded PoF even if we
allow an additive violation of ⌦(nk ).

Proof. Consider the case where k � 2 is even and refer to Figure 5 where we have ` = k communities
that alternate from red to blue color. Further, by Fact C.3 the optimal solution has a clustering cost of
0. The optimal solution would have one center in each of the k = ` communities, and assign points
to its closest center.

If we set the lower and upper proportion bounds to 1
2 for both colors, then to satisfy GF each cluster

should have both red and blue points. There must exists a cluster Ci of size |Ci| �
n
k , it follows that

to satisfy the GF constraints at an additive violation of ⇢, then |C
blue
i | �

1
2 |Ci| � ⇢ =

n
2k � ⇢ and

similarly we would have |C
red
i | �

n
2k � ⇢. By setting ⇢ =

n
2k � ✏ for some constant ✏ > 0, then we

have |Cblue
i |, |C

red
i | > 0. This implies that a point will be assigned to a center at a distance R > 0 and

therefore the PoF is unbounded.

For a value of k that is odd, see the example of Figure 6. Here instead the last community has the
same number of red and blue points. We call the cluster whose center is in the last community Clast.
If |Clast| 6=

n
k , then there are points assigned to the center of Clast from other communities incurring

cost R > 0 or points in the last community are assigned to other centers at distance R > 0. If
|Clast| =

n
k , then in the remaining k � 1 communities with total of n�

n
k points, k � 1 centers are

chosen. There must exists a cluster Ci of size |Ci| �
n
k . We then follow the same argument as in the

even k case, which is to satisfy GF with additive violation ⇢ =
n
2k � ✏ for both color, we must have

|C
blue
i |, |C

red
i | > 0. This means at least a point will be assigned to a center at a distance R > 0 and

therefore the PoF is unbounded for the odd k case as well.

We restate the following proposition and give its proof:
Proposition 5.2. For any value of k � 3, imposing DS can lead to an unbounded PoF.

Proof. Consider a case of the ` community instance shown in Figure 7 where k � 3 and k = `. Here
all communities are blue, except for the last which has n

2k red points and n
2k green points. Similar to

the previous proposition since it is a community instance with ` = k, then by Fact C.3 the optimal
solution has a clustering cost of 0 and would have one center in each community and assign each
point to its closest center.

Suppose for DS we set klblue, k
l
red, k

l
green > 0, this implies that we should pick a center of each

color. This implies that we can have at most k � 2 blue center, therefore there will be a community
(composed of all blue points) where no point is picked as a center. Therefore, the clustering cost is
R > 0 and the PoF is unbounded.

Figure 7: An `-community instance to show Price of Fairness (DS) and incompatibility between DS

and other fairness constraints.

We restate the following proposition and give its proof:
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Proposition 5.3. For any value of k � 2, imposing GF on a solution that only satisfies DS can lead
to an unbounded increase in the clustering cost even if we allow an additive violation of ⌦(nk ).

Proof. The proof follows similarly to Proposition 5.1. For k � 2 and k is even. Consider the same
case as in Figure 5 where we have ` = k. In this case, we set the upper and lower proportion bounds
for both GF and DS to 1

2 . This implies to satisfy DS the number of red and blue centers should
each be k

2 . Thus solutions that satisfy the DS constraint are the optimal unconstrained solutions
as specified in Fact C.3. The rest of the proof proceeds exactly as the proof for the even k case in
Proposition 5.1.

For k � 3 and k is odd, consider the same case as in Figure 6. In this case, we set the upper and lower
proportion bounds for GF to 1

2 . And we set the upper and lower bound for number of centers in DS

constraint as k�1
2 +1 and k�1

2 respectively for both colors. Note that an optimal solution specified in
Fact C.3 which chooses either a red or blue point in the right most community as a center satisfy this
DS constraint. The rest of the proof proceeds exactly as the proof for the odd k case in Proposition
5.1.

We restate the following proposition and give its proof:
Proposition 5.4. Imposing DS on a solution that only satisfies GF leads to a bounded increase in the
clustering cost of at most 2 (PoF  2) if we allow an additive violation of 2 in the GF constraints.

Proof. This follows from Theorem 4.2 since we can always post-process a solution that only satisfies
GF into one that satisfies both GF at an additive violation of 2 and DS simultaneously and clearly from
the theorem we would have PoF =

clustering cost of GF post-processed solution
clustering cost of GF solution 

2 clustering cost of GF solution
clustering cost of GF solution 

2.

D Omitted Proofs, Additional Results, and Details for Section 6

In this section, we provide more details and proofs for theorems and facts that appeared in Section
6. We present proof for theorem 6.1. We begin by giving the full definitions of the relevant fairness
constraints.
Definition 2. Neighborhood Radius [30]: For a given set of points C to cluster and a given number
of centers k, the neighborhood radius of a point j is the minimum radius r such that at least |C|/k of
the points in C are within distance r of j: NRC,k(j) = min{r : |Br(j) \ C| � |C|/k},where Br(j)

is the closed ball of radius r around j.
Definition 3. Fairness in Your Neighborhood Constraint [30]: For a given set of points C with metric
d(., .), a clustering (S,�) is ↵NR-fair if for all j 2 C, d(j,�(j))  ↵NR · NRC,k(j).
Definition 4. Socially Fair [1, 24]: For a clustering problem with k centers on points C which are
from |H | groups and [h2H C

h
= C, the socially fair clustering optimization problem is to minimize

the maximum average clustering cost across all groups: min
S:|S|k,�

max
h2H

1

| C
h
|

X

j2Ch

d
p
(j,�(j))

4.

Note that socially fair does not optimize over assignment functions because it assumes assignment
follows optimal rule: a point is assigned to the cluster center closest to it.
Definition 5. An ↵SF-socially fair solution to a clustering problem is a solution of cost at most ↵SF
of the optimal socially fair solution.

This definition allows us to bound the clustering cost of an ↵SF-Socially Fair solution (S↵,�↵) as:

max
h2H

1

| C
h
|

X

j2Ch

d
p
(j,�↵(j))  ↵SF min

S:|S|k
max
h2H

1

| C
h
|

X

j2Ch

d
p
(j,�(j)).

Definition 6. Approximately proportional[15]: Given a set of centers S ✓ C with |S| = k, it is
↵AP-approximately proportional (↵AP-proportional) if 8U ✓ C and |U | �

⌃
n
k

⌥
and for all y 2 C,

there exists i 2 U with ↵AP · d(i, y) � d(i,�(i)) .
4p = 1 for the k-median and p = 2 for the k-means
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We restate the following theorem and give its proof:
Theorem 6.1. For any value k � 2, the fairness in your neighborhood [30], socially fair constraint
[1, 24] are each incompatible with GF even if we allow an additive violation of ⌦(nk ) in the GF
constraint. For any value k � 5, the proportionally fair constraints [15] is incompatible with GF
even if we allow an additive violation of ⌦(nk ) in the GF constraint.

Proof. We show incompatibility of GF with the three Fairness notions. Recall that we consider GF

and another fairness constraint at the same time, and incompatible means there are cases where no
feasible solution exists that satisfies both constraints at the same time.

Lemma 4. For any k � 2, there exist a clustering problem where no feasible solution exists that
satisfies both Fairness in Your Neighborhood and GF even if we allow an additive violation of ⌦(nk )
in the GF constraint.

Proof. Consider the case where k � 2, and consider the clustering problem on a `-community
instance with k = `. We consider the case where lower and upper proportion bound of GF are set to
1
2 for both colors.

Claim 5. On the above mentioned clustering problem, an ↵NR-fair solution in the Fairness in Your
Neighborhood notion for finite ↵NR is a solution in the set of optimal solutions (SCI ,�CI).

Proof. By Definitions 1 and 2, for any point j 2 C, its neighborhood radius is NRC,k(j) = min{r :

|Br(j) \ C| � |C|/k} = 0. This is because each point is in one of the l subset, and by definition,
the subset is of size n

l =
n
k , and points in the same subset are separated by a distance 0.

For a solution on a `-community instance (S,�) 2 (SCI ,�CI), for any point j 2 C, because S

contains a center in the community where j is, d(j, S) = 0.

By definition of ↵NR-fairness, this means on a `-community instance, any solution in (SCI ,�CI)

is ↵NR-fair with a finite ↵NR. This is because for any (S,�) 2 (SCI ,�CI), d(j, S) = 0  ↵NR ·

NRC,k(j) holds for ↵NR equal to any finite value.

In any solution that is not in (SCI ,�CI), there is at least a point which is assigned to a center not
in the point’s own community. Thus for such a solution (S,�), there exist j 2 C, d(i, S) = R.
Thus for (S,�) /2 (SCI ,�CI), for some j 2 C, there is no finite ↵NR such that d(j,�(j)) = R 

↵NR · NRC,k(j) holds.

This shows that a solution that achieves ↵NR-fairness for a finite ↵NR must be a solution from the
set of solutions (SCI ,�CI).

Thus we have shown that any solution that satisfies the fairness in your neighborhood constraint
approximately do not assign points to centers not in its original community.

To characterize the set of solutions that satisfy GF with additive ⌦(
n
k ) violation, we consider two

cases separately: k is even and k is odd.

Consider the case where k � 2 is even and refer to Figure 5 where we have ` = k communities that
alternate from red to blue color.

Since the lower and upper proportion bounds are set to 1
2 for both colors, then to satisfy GF each

cluster should have both red and blue points. There must exists a cluster Ci of size |Ci| �
n
k , it follows

that to satisfy the GF constraints at an additive violation of ⇢, then |C
blue
i | �

1
2 |Ci| � ⇢ =

n
2k � ⇢

and similarly we would have |C
red
i | �

n
2k � ⇢. By setting ⇢ =

n
2k � ✏ for some constant ✏ > 0, then

we have |Cblue
i |, |C

red
i | > 0. This implies that a point need be assigned to a center at a distance R > 0

for the solution to satisfy GF with additive ⌦(
n
k ) violation. Therefore such a solution is not in the

solution set that satisfies fairness in your neighborhood.

For a value of k that is odd, see the example Figure 6. Here instead the last community has the same
number of red and blue points. We call the cluster whose center is in the last community Clast.

If |Clast| 6=
n
k , then there are points assigned to the center of Clast from other communities incurring

cost R > 0 or points in the last community are assigned to other centers at distance R > 0. In
both cases there is at least a point assigned to a center not in its community. If |Clast| =

n
k , then
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in the remaining k � 1 communities with total of n �
n
k points, k � 1 centers are chosen. A

solution satisfying GF has one cluster Ci with at least 1
k�1

�
n�

n
k

�
=

n
k points. Then we follow

the same argument as in the even k case. That is, to satisfy GF with ⇢ additive violation on the Ci,
|C

blue
i | �

1
2 |Ci|� ⇢ =

n
2k � ⇢, |C red

i | �
n
2k � ⇢, with ⇢ =

n
2k � ✏ for some constant ✏ > 0, at least a

point will be assigned to center at distance R > 0. Thus such a solution is not in the set of solutions
(SCI ,�CI). Thus the set of solutions that satisfies fairness in your neighborhood has no overlap with
the set of solutions that satisfies GF with ⌦(

n
k ) additive violation.

Lemma 5. For any k � 2, there exist a clustering problem where no feasible solution exists
that satisfies both Socially Fair and GF even if we allow an additive violation of ⌦(nk ) to the GF
constraint.

Proof. We follow a similar line of argument as in Lemma 4. Consider the case when k � 2, and
consider the clustering problem on a `-community instance with k = `. We consider the case where
lower and upper proportion bound of GF are set to 1

2 for both colors.

Claim 6. On the above mentioned clustering problem, an ↵SF-fair solution in the Socially Fair notion
for finite ↵SF is a solution in the set of optimal solutions (SCI ,�CI).

Proof. Denote the clustering cost of an optimal solution to the a Socially Fair clustering problem as
OPTSF. By definition,

OPTSF = min
S:|S|k

max
h2H

1

| C
h
|

X

j2Ch

d
p
(j,�(j)).

We can formulate a problem that aims to find an ↵SF-socially fair solution as a constrained opti-
mization problem. We use a dummy objective function f . The constraint can be set up as requiring
maximum clustering costs across all colors to be upper-bounded by ↵SF times that of the optimal
socially fair solution OPTSF.

The constrained program can be set up as below:

min
S:|S|k

f

s.t. max
h2H

1

| C
h
|

X

j2Ch

d
p
(j,�(j))  ↵SFOPTSF

For a clustering problem with k centers on the `-community instance with k = `, in a solution (S,�)

that has one center in each subset, d(j,�(j)) = 0 for each point j 2 C. Thus this solution has
clustering cost for each color h as

P
j2Ch d

p
(j,�(j)) = 0. Which implies that OPTSF = 0.

Thus on the `-community instance, feasible solutions to the ↵SF-socially fair problem, for finite ↵SF,
have maxh2H

1
| Ch |

P
j2Ch d

p
(j,�(j)) = 0. We now show (SCI ,�CI) is the only set of solutions

that have maxh2H

P
j2Ch d

p
(j,�(j)) = 0. Thus, they will be the only feasible solutions.

For any solution (S,�) that is not in (SCI ,�CI), there must be a point assigned to a center that is not
in its own community. For such a point d(j,�(j)) = R. Thus maxh2H

1
| Ch |

P
j2Ch d

p
(j,�(j)) �

R
maxh2H | Ch |

. Therefore, an ↵SF-fair solution in the socially fair notion for finite ↵SF must be a
solution in the set of optimal solutions (SCI ,�CI) .

At this point, similar to proof of Lemma 4, we had shown that any solution that satisfies socially
fair approximately do not assign points to centers not in its original community on the `-community
instance. The remaining of the proof is the same as that part of the proof in Lemma 4. We can
use the same examples for even k and odd k to show that any solution that satisfies GF with ⌦(

n
k )

additive violation any k � 2 is not in the set of solutions (SCI ,�CI). Thus the set of solutions that
satisfies socially fair has no overlap with the set of solutions that satisfies GF with ⌦(

n
k ) additive

violation.
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Lemma 6. For any k � 5, there exist a clustering problem where no feasible solution exists that
satisfies both Proportional Fairness and GF even if we allow an additive violation of ⌦(nk ) in the GF
constraint.

Proof. For a given value of ↵AP for the proportionally fair constraint, consider Figure 8. For the
GF constraints, the upper and lower bounds for each color to 1

2 and the total number of points n is
always even. Consider some k � 5. It follows that the sum of cluster sizes assigned to centers on
either the right side or the left side would be at least n

2 , WLOG assume that it is the left side and
denote the total number of points assigned to clusters on the left size by |CLS | and let SLS be the
centers on the left side. The total number of points on the left side may not be assigned to a single
center but rather distributed among the centers SLS . To satisfy the GF constraints at an additive
violation of ⇢, it follows that the number of red points that have to be assigned to the left side is at
least

P
i2SLS

(
1
2 |Ci|�⇢) �

n
4 �k⇢. Set ⇢ =

n
4k �

n
k2 � 1, then it follows that at least

⌃
n
k

⌥
red points

are assigned to a center on the left at a distance of at least R. Since the maximum distance between
any two red points by the triangle inequality is 2r <

R
↵AP

it follows that this set of red points forms a
blocking coalition. I.e., these points would also have a lower distance from their assigned center if
they were instead assigned to a red center.

Figure 8: Instances to show incompatibility between Proportional Fairness and GF. We always have
n/2 blue points on the left and n/2 red points on the right. For even k we would have k/2 locations
for the blue and red points each. For odd k we have bk/2c blue locations and dk/2e red locations.
For each color, there is always a location at the center at a distance r from the other locations. Points
of different color are at a distance of at least R from each other. For any value of ↵AP for the
proportionally fair constraint, we set r <

R
2↵AP

.

We restate the following theorem and give its proof:
Theorem 6.2. For any value k � 3, the fairness in your neighborhood [30], socially fair [1, 24]
and proportionally fair [15] constraints are each incompatible with DS.

Proof. Consider a case of the `-community instance where the first ` � 1 communities consist of
points of only blue points. And the last community contains n

2` points of red points and n
2` points of

green color. This `-community instance is illustrated in Figure 7. Consider the clustering problem
where k = ` and DS constraint kblue, kred, kgreen > 0. We establish below two claims.

Claim 7. On the above mentioned clustering problem, an ↵NR-fair solution in the Fairness in Your
Neighborhood notion for finite ↵NR is a solution in the set of optimal solutions (SCI ,�CI).
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Claim 8. On the above mentioned clustering problem, an ↵SF-fair solution in the Socially Fair notion
for finite ↵SF is a solution in the set of optimal solutions (SCI ,�CI).

Those two claims can be proved with the same argument as in claim 5 and claim 6.

However, satisfying DS on this with kblue, kred, kgreen > 0 requires a center of each color be picked.
Thus a solution from the set of optimal solutions (SCI ,�CI) does not satisfy DS because it will only
pick one point from the right most subset as a center. Thus either green points or red points will not
appear in the set of centers.

On the other hand, since a solution satisfying DS has at least one center of each color, it will contain
two centers, one green, one red chosen from the right most subset. And there are k � 2 centers
allocated to the k � 1 communities on the left. By pigeon hole principle, one of the communities
of all blue points will have no center allocated. All blue points in this subset are then assigned to a
center in a nearby community, thus a DS satisfying solution is not in the set (SCI ,�CI). Thus the set
of DS satisfying solutions has no overlap with the set of solutions that satisfy either one of the two
fairness constraints.

Below we use the same example to show incompatibility between DS and Proportional Fair.

Claim 9. On the above mentioned clustering problem, there is no feasible solution exists that satisfies
both Proportional Fairness and DS.

Proof. We show a DS satisfying solution on above example is not proportional fair. As argued above,
a solution satisfying DS can allocate k � 2 centers for the k � 1communities on the left. There will
be a community of size n

k of which all points are assigned to a nearby center not in its community.
This community forms a coalition of size n

k and would have smaller distance if they get assigned a
center in their own community. Therefore a DS satisfying solution is not proportional fair.

Remark: For each of the above proofs we constructed an example which is parametric in the
number of centers k. Moreover, for these examples for the optimal unconstrained k-center objective
to equal 0 at least k centers have to be used. I.e., the points are spread over at least k locations.
Furthermore, it is not difficult to see in each of the above examples that an optimal solution for
the unconstrained k-center objective satisfies fairness in your neighborhood, socially fair, and the
proportionally fair constraints. In fact, it is easy to show that any k-center which has a radius
of 0 immediately satisfies fairness in your neighborhood, socially fair, and the proportionally fair
constraints. However, the same is not true for GF or DS. This indicates that the above distance-based
fairness constraints can be aligned with the clustering cost whereas the same cannot be said about GF

or DS.

Compatibility between GF and DS: One can easily show compatibility between GF and DS.
Specifically, consider some values for the centers over the colors {kh}h2H that satisfies the DS

constraints, i.e. 8h 2 H : k
l
h  kh  k

u
h and has

P
h2H

kh  k. Then simply pick a set Qh of kh
points of color h. Now if we give DIVIDE the entire dataset C and the set of centers [h2HQh as
inputs, i.e. call DIVIDE(C,[h2HQh), then by the guarantees of divide each center would be active
and each cluster would satisfy the GF constraints at an additive violation of 2.

Our final conclusions about the incompatibility and compatibility of the constrains are summarized
in Figure 9.

E Example for Running DIVIDE:

Consider the following example running the DIVIDE subroutine. Specifically, we have a set of points
C with a total of n = |C| = 38 points. We have 3 colors (blue, red, and green) with the following
points: |Cblue

| = 15, |C red
| = 14, and |C

green
| = 9. We have Q ⇢ C with a total size of 4 (|Q| = 4).

Accordingly, we have Tblue =
15
4 = 3

3
4 , Tred =

14
4 = 3

1
2 , and Tgreen =

9
4 = 2

1
4 . Therefore, in the

beginning of the iteration for each color h (line (8) in algorithm block 1) we have bblue = 3, bred = 2,
bgreen = 1. Following the execution of the algorithm, the first three centers q = 0 to q = 2 receive
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Figure 9: (In)Compatibility of clustering constraints. Red arrows indicate empty feasible set when
both constraints are applied, while green arrows indicate non-empty feasibility set when both con-
straints are applied.

dTbluee many blue points, the last (q = |Q| � 1) and first center (q = 0) receive dTrede many red
points, and center q = 1 receives dTgreene. All other assignments would be the floor of Th. Figure 10
illustrates this.

Figure 10: Diagram illustrating how DIVIDE would run over the example. The “tape” has different
centers (cells) starting from q = 0 and ending with q = |Q|� 1. We go over the tape for each color
h 2 H. In a given row h, centers marked with an X are assigned dThe points, otherwise they are
assigned bThc points.

F Additional Experiments Results

Here we show additional experimental results. As a reminder, the lower and upper proportion bounds
for any color h to ↵h = (1+�)rh and �h = (1��)rh for some � 2 [0, 1]. Further, the DS constraints
are set to k

l
h = d✓rhke where ✓ 2 [0, 1] and k

u
h = k for every color h 2 H.

We call our run over the Adult dataset in Section 7 as (A-Adult). In that run � = 0.2 and ✓ = 0.8. We
also, run another experiment (B-Adult) over the Adult where we set � = 0.05 and ✓ = 0.9. Figure
11 shows the new results. We do not see a change qualitatively. It is perhaps noteworthy that the
DS-Violation values for COLOR-BLIND and ALG-GF are even higher as well as the GF-Violation

for ALG-DS. On the other hand, we find that our algorithms that satisfy GF+DS have very low
(almost zero) values for GF-Violation and DS-Violation at a moderate PoF that is comparable to
ALG-GF which satisfies only one constraint.

Figure 11: B-Adult results: (a) PoF comparison of 5 algorithms, with COLOR-BLIND as baseline;
(b) GF-Violation comparison; (c) DS-Violation comparison.
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Additionally, we show results over the Census1990 dataset where we use age as the color (group)
membership attribute. As done in [20] we merge the 9 age groups into 3. Specifically, groups {0, 1, 2},
{4, 5, 6}, and {7, 8} are each merged into one group leading to total of 3 groups. Further, we sub-
sample 6, 000 records from the dataset. We run two experiments where in the first (A-Census1990)

we have � = 0.05 and ✓ = 0.7 whereas in the second (B-Census1990) we have � = 0.1 and ✓ = 0.8.
We also use different cluster values. In terms of the 3 objective measures of PoF, GF-Violation, and
DS-Violation, we do not see a qualitative change as can be seen from Figures 12 and 13. Specifically,
the DS algoruthim (ALG-DS) has a low PoF but high GF-Violation. Further, COLOR-BLIND and
ALG-GF have significant DS-Violation values. On the other hand our algorithms for GF+DS have
low values for both GF-Violation and DS-Violation and a moderate PoF.

Figure 12: A-Census1990 results: (a) PoF comparison of 5 algorithms, with COLOR-BLIND as
baseline; (b) GF-Violation comparison; (c) DS-Violation comparison.

Figure 13: B-Census1990 results: (a) PoF comparison of 5 algorithms, with COLOR-BLIND as
baseline; (b) GF-Violation comparison; (c) DS-Violation comparison.

Run-Time: Here we show some run-time analysis results. We first calculate the “incremental” run
time over GF. Specifically, given a solution from the ALG-GF (the algorithm for the GF constraints)
we see that the additional run-time to post-process it to satisfy the GF+DS is very small in proportion.
We measure tGF�!GF+DS =

Time to process GF Solution to satisfy GF+DS

Time to obtain GF Solution and show the results in Figure 14
over all 4 runs. We see that the additional run time is constantly at least two orders of magnitude
smaller than the time required to obtain a GF solution. The fact that added run-time is small further
encourages a decision maker to satisfy the DS constraint given a solution that satisfies GF only.

Figure 14: tGF�!GF+DS over the 4 runs of (A-Adult), (B-Adult), (A-Census1990), and (B-

Census1990).
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If we were to do the same using the ALG-DS we find the opposite. Specifically, we measure
tDS�!GF+DS =

Time to process DS Solution to satisfy GF+DS

Time to obtain DS Solution and find that the additional run-time required to
satisfy GF+DS starting from a DS solution is orders of magnitude higher in comparison to the time
required to satisfy DS as shown in Figure 15. We conjecture that the reason is that ALG-DS is
highly optimized in terms of run-time since it runs in O(nk) time [37]. On the other hand, the
post-processing step (post-processing a DS solution to a GF+DS) requires solving an LP which
although is done in polynomial time, can be more costly in terms of run time.

Figure 15: tDS�!GF+DS over the 4 runs of (A-Adult), (B-Adult), (A-Census1990), and (B-

Census1990).

Finally, we show a full run-time comparison between GFTOGFDS which starts from a GF solution
and DSTOGFDS which starts from a DS solution. We find that the run-times are generally comparable
with one algorithm at times being faster than the other.

Figure 16: Full run-time comparison between GFTOGFDS and DSTOGFDS over the 4 runs of
(A-Adult), (B-Adult), (A-Census1990), and (B-Census1990).

Using a Bi-Criteria Algorithm as ALG-GF: Our implementation of GF follows Bercea et al.
[10] and Bera et al. [9] which would violate the GF constraints by at most 2. Empirically, this
may cause issues for the GFTOGFDS algorithm since it requires a GF algorithm with zero additive
violation and therefore assumes that every cluster has at least one point from each color. However,
it would not cause issues as long as the resulting solution satisfies condition of having at least one
point from each color in every cluster which would be the case if minh2H,i2S̄ �h|C̄i| > 2 where S̄

is the GF solution and C̄i is its ith cluster. If the condition not met, then it is reasonable to think that
the value of k was set too high or that the dataset includes outlier points since the cluster sizes are
very small. Furthermore, using a GF algorithm with an additive violation of 2 lead to a final GF+DS

having a GF violation of at most 4 if the condition is satisified. However, empirically we find the GF

violation to be generally smaller than 1. Finally, note that we treat the GF algorithm as a block-box
and therefore it can be replaced by other algorithms such as those of [17, 40] which have no violation
for GF. In our experiments, we run our algorithms over datasets and value of k where the condition
is satisifed.

27


	Introduction
	Related Work
	Preliminaries and Symbols
	Algorithms for GF+DS
	Active Centers
	The Divide Subroutine
	Solving GF+DS using a DS Algorithm 
	Solving GF+DS using a GF Solution 

	Price of (Doubly) Fair Clustering
	Incompatibility with Other Distance-Based Fairness Constraints
	Experiments
	Useful Facts and Lemmas
	MaxFlowGF
	OMITTED PROOFS
	Omitted Proofs, Additional Results, and Details for Section 6
	Example for Running Divide:
	Additional Experiments Results

