
Acronyms

AUROC Area under the ROC curve

DSBM Directed Stochastic Block Model

FD Frequency Dominant
FGL Fractional Graph Laplacian

GAT Graph Attention Network
GCN Graph Convolutional Network
GNN Graph Neural Network

HFD Highest Frequency Dominant

LCC Largest Connected Components
LFD Lowest Frequency Dominant

MLP Multi-Layer Perceptron

ODE Ordinary Differential Equation

SNA Symmetrically Normalized Adjacency
SVD Singular Value Decomposition

Notation

i Imaginary unit
<(z) Real part of z ∈ C
=(z) Imaginary part of z ∈ C
diag(x) Diagonal matrix with x on the diagonal.
1 Constant vector of all 1s.
MT Transpose of M
M∗ Conjugate of M
MH Conjugate transpose of M
‖M‖ Spectral norm of M
‖M‖2 Frobenius norm of M
λ (M) Spectrum of M
σ (M) Singular values of M
E (x) Dirichlet energy computed on x

H (G) Homophily coefficient of the graph G
A⊗B Kronecker product between A and B

vec (M) Vector obtained stacking columns of M.
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A Implementation Details

In this section, we give the details on the numerical results in Section 6. We begin by describing the
exact model.

Model architecture. Let G be a directed graphs and x0 ∈ RN×K the node features. Our architec-
ture first embeds the input node features x via a multi-layer perceptron (MLP). We then evolve the
features x0 according to a slightly modified version of (3), i.e, x′(t) = −i Lαx(t)W for some time
t ∈ [0, T ]. In our experiments, we approximate the solution with an Explicit Euler scheme with step
size h > 0. This leads to the following update rule

xt+1 = xt − ihLαxtW .

The channel mixing matrix is a diagonal learnable matrix W ∈ CK×K , and α ∈ R, h ∈ C are
also learnable parameters. The features at the last time step xT are then fed into a second MLP,
whose output is used as the final output. Both MLPs use LeakyReLU as non-linearity and dropout
(Srivastava et al., 2014). On the contrary, the graph layers do not use any dropout nor non-linearity.
A sketch of the algorithm is reported in fLode.

Algorithm 1: fLode
% A, x0 are given.
% Preprocessing

1 Din = diag (A1)

2 Dout = diag
(
AT1

)
3 L = D

−1/2
in AD

−1/2
out

4 U, Σ, VH = svd(L)
% The core of the algorithm is very simple

5 def training_step(x0):
6 x0 = input_MLP(x0)
7 for t ∈ {1, . . . , T} do
8 xt = xt−1 − i hUΣαVHxt−1W

9 xT = output_MLP(xT )
10 return xT

Complexity. The computation of the SVD is O(N3). However, one can compute only the first
p � N singular values: this cuts down the cost to O(N2 p). The memory required to store the
singular vectors is O(N2), since they are not sparse in general. Each training step has a cost of
O(N2K).

Experimental details. Our model is implemented in PyTorch (Paszke et al., 2019), using PyTorch
geometric (Fey et al., 2019). The computation of the SVD for the fractional Laplacian is imple-
mented using the library linalg provided by PyTorch. In the case of truncated SVD, we use the
function randomized_svd provided by the library extmath from sklearn. The code and instruc-
tions to reproduce the experiments are available on GitHub. Hyperparameters were tuned using grid
search. All experiments were run on an internal cluster with NVIDIA GeForce RTX 2080 Ti and
NVIDIA TITAN RTX GPUs with 16 and 24 GB of memory, respectively.

Training details. All models were trained for 1000 epochs using Adam (Kingma et al., 2015) as
optimizer with a fixed learning rate. We perform early stopping if the validation metric does not
increase for 200 epochs.

A.1 Real-World Graphs

Undirected graphs We conducted 10 repetitions using data splits obtained from (Pei et al., 2019).
For each split, 48% of the nodes are used for training, 32% for validation and 20% for testing. In all
datasets, we considered the largest connected component (LCC). Chameleon, Squirrel, and Film are
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directed graphs; hence, we converted them to undirected. Cora, Citeseer, and Pubmed are already
undirected graphs: to these, we added self-loops. We normalized the input node features for all
graphs.

As baseline models, we considered the same models as in (Di Giovanni et al., 2023). The results
were provided by Pei et al. (2019) and include standard GNNs, such as GAT (Velickovic et al., 2018),
GCN (Kipf et al., 2017), and GraphSAGE (Hamilton et al., 2017). We also included models designed
to address oversmoothing and heterophilic graphs, such as PairNorm (L. Zhao et al., 2019), GGCN
(Yan et al., 2022), Geom-GCN (Pei et al., 2019), H2GCN (Zhu, Yan, et al., 2020), GPRGNN (Chien
et al., 2021), and Sheaf (Bodnar et al., 2022). Furthermore, we included the graph neural ODE-based
approaches, CGNN (Xhonneux et al., 2020) and GRAND (Chamberlain et al., 2021), as in (Di
Giovanni et al., 2023), and the model GRAFF from (Di Giovanni et al., 2023) itself. Finally, we
included GREAD (Choi et al., 2023), GraphCON (Rusch et al., 2022), ACMP (Y. Wang et al., 2022)
and GCN and GAT equipped with DropEdge (Rong et al., 2020).

Heterophily-specific Models For heterophily-specific datasets, we use the same models and results
as in (Platonov et al., 2023). As baseline models we considered the topology-agnostic ResNet (He
et al., 2016) and two graph-aware modifications: ResNet+SGC(F. Wu et al., 2019) where the initial
node features are multiplied by powers of the SNA, and ResNet+adj, where rows of the adjacency
matrix are used as additional node features; GCN (Kipf et al., 2017), GraphSAGE (Hamilton et al.,
2017); GAT (Velickovic et al., 2018) and GT (Shi et al., 2021) as well as their modification GAT-sep
and GT-sep which separate ego- and neighbor embeddings; H2GCN (Zhu, Yan, et al., 2020), CPGNN
(Zhu, Rossi, et al., 2021), GPRGNN (Chien et al., 2021), FSGNN (Maurya et al., 2021), GloGNN
(X. Li et al., 2022), FAGCN (Bo et al., 2021), GBK-GNN (Du et al., 2022), and JacobiConv (X. Wang
et al., 2022).

The exact hyperparameters for FLODE are provided in Table 5.

A.2 Synthetic Directed Graphs

The dataset and code are taken from (Zhang et al., 2021). As baseline models, we considered the ones
in (Zhang et al., 2021) for which we report the corresponding results. The baseline models include
standard GNNs, such as ChebNet (Defferrard et al., 2016), GCN (Kipf et al., 2017), GraphSAGE
(Hamilton et al., 2017), APPNP (Gasteiger et al., 2018), GIN (Xu et al., 2018), GAT (Velickovic et al.,
2018), but also models specifically designed for directed graphs, such as DGCN (Tong, Liang, Sun,
Rosenblum, et al., 2020), DiGraph and DiGraphIB (Tong, Liang, Sun, X. Li, et al., 2020), MagNet
(Zhang et al., 2021)).

The DSBM dataset. The directed stochastic block model (DSBM) is described in detail in (Zhang
et al., 2021, Section 5.1.1). To be self-contained, we include a short explanation.

The DSBM model is defined as follows. There are N vertices, which are divided into nc clusters
(C1, C2, ...Cnc

), each having an equal number of vertices. An interaction is defined between any two
distinct vertices, u and v, based on two sets of probabilities: {αi,j}nc

i,j=1 and {βi,j}nc

i,j=1.

The set of probabilities {αi,j} is used to create an undirected edge between any two vertices u and v,
where u belongs to cluster Ci and v belongs to cluster Cj . The key property of this probability set is
that αi,j = αj,i, which means the chance of forming an edge between two clusters is the same in
either direction.

The set of probabilities {βi,j} is used to assign a direction to the undirected edges. For all i, j ∈
{1, . . . , nc}, we assume that βi,j + βj,i = 1 holds. Then, to the undirected edge (u, v) is assigned
the direction from u to v with probability βi,j if u belongs to cluster Ci and v belongs to cluster Cj ,
and the direction from v to u with probability βj,i.

The primary objective here is to classify the vertices based on their respective clusters.

There are several scenarios designed to test different aspects of the baseline models and our model. In
the experiments, the total number of nodes is fixed at N = 2500 and the number of clusters is fixed
at nc = 5. In all experiments, the training set contains 20 nodes per cluster, 500 nodes for validation,
and the rest for testing. The results are averaged over 5 different seeds and splits.
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Table 4: Test accuracy on node classification: top three models indicated as 1st , 2nd , 3rd.

(a) Undirected graphs.

Film Squirrel Chameleon Citeseer Pubmed Cora

GGCN 37.54 ± 1.56 55.17 ± 1.58 71.14 ± 1.84 77.14 ± 1.45 89.15 ± 0.37 87.95 ± 1.05

GPRGNN 34.63 ± 1.22 31.61 ± 1.24 46.58 ± 1.71 77.13 ± 1.67 87.54 ± 0.38 87.95 ± 1.18

FAGCN 35.70 ± 1.00 36.48 ± 1.86 60.11 ± 2.15 77.11 ± 1.57 89.49 ± 0.38 87.87 ± 1.20

GCNII 37.44 ± 1.30 38.47 ± 1.58 63.86 ± 3.04 77.33 ± 1.48 90.15 ± 0.43 88.37 ± 1.25

Geom-GCN 31.59 ± 1.15 38.15 ± 0.92 60.00 ± 2.81 78.02 ± 1.15 89.95 ± 0.47 85.35 ± 1.57

PairNorm 27.40 ± 1.24 50.44 ± 2.04 62.74 ± 2.82 73.59 ± 1.47 87.53 ± 0.44 85.79 ± 1.01

GraphSAGE 34.23 ± 0.99 41.61 ± 0.74 58.73 ± 1.68 76.04 ± 1.30 88.45 ± 0.50 86.90 ± 1.04

GCN 27.32 ± 1.10 53.43 ± 2.01 64.82 ± 2.24 76.50 ± 1.36 88.42 ± 0.50 86.98 ± 1.27

GAT 27.44 ± 0.89 40.72 ± 1.55 60.26 ± 2.50 76.55 ± 1.23 87.30 ± 1.10 86.33 ± 0.48

MLP 36.53 ± 0.70 28.77 ± 1.56 46.21 ± 2.99 74.02 ± 1.90 75.69 ± 2.00 87.16 ± 0.37

CGNN 35.95 ± 0.86 29.24 ± 1.09 46.89 ± 1.66 76.91 ± 1.81 87.70 ± 0.49 87.10 ± 1.35

GRAND 35.62 ± 1.01 40.05 ± 1.50 54.67 ± 2.54 76.46 ± 1.77 89.02 ± 0.51 87.36 ± 0.96

Sheaf (max) 37.81 ± 1.15 56.34 ± 1.32 68.04 ± 1.58 76.70 ± 1.57 89.49 ± 0.40 86.90 ± 1.13

GRAFFNL 35.96 ± 0.95 59.01 ± 1.31 71.38 ± 1.47 76.81 ± 1.12 89.81 ± 0.50 87.81 ± 1.13

GREAD 37.90 ± 1.17 59.22 ± 1.44 71.38 ± 1.30 77.60 ± 1.81 90.23 ± 0.55 88.57 ± 0.66

GraphCON 35.58 ± 1.24 35.51 ± 1.40 49.63 ± 1.89 76.36 ± 2.67 88.01 ± 0.47 87.22 ± 1.48

ACMP 34.93 ± 1.26 40.05 ± 1.53 57.59 ± 2.09 76.71 ± 1.77 87.79 ± 0.47 87.71 ± 0.95

GCN+DropEdge 29.93 ± 0.80 41.30 ± 1.77 59.06 ± 2.04 76.57 ± 2.68 86.97 ± 0.42 83.54 ± 1.06

GAT+DropEdge 28.95 ± 0.76 41.27 ± 1.76 58.95 ± 2.13 76.13 ± 2.20 86.91 ± 0.45 83.54 ± 1.06

FLODE 37.16 ± 1.42 64.23 ± 1.84 73.60 ± 1.55 78.07 ± 1.62 89.02 ± 0.38 86.44 ± 1.17

(b) Directed graphs.

Film Squirrel Chameleon

ACM 36.89 ± 1.18 54.4 ± 1.88 67.08 ± 2.04

HLP 34.59 ± 1.32 74.17 ± 1.83 77.48 ± 1.50

FSGNN 35.67 ± 0.69 73.48 ± 2.13 78.14 ± 1.25

GRAFF 37.11 ± 1.08 58.72 ± 0.84 71.08 ± 1.75

FLODE 37.41 ± 1.06 74.03 ± 1.58 77.98 ± 1.05

(c) Heterophily-specific graphs. For Minesweeper, Tolokers and Questions the evaluation metric is the AUROC.

Roman-empire Minesweeper Tolokers Questions

ResNet 65.88 ± 0.38 50.89 ± 1.39 72.95 ± 1.06 70.34 ± 0.76

ResNet+SGC 73.90 ± 0.51 70.88 ± 0.90 80.70 ± 0.97 75.81 ± 0.96

ResNet+adj 52.25 ± 0.40 50.42 ± 0.83 78.78 ± 1.11 75.77 ± 1.24

GCN 73.69 ± 0.74 89.75 ± 0.52 83.64 ± 0.67 76.09 ± 1.27

GraphSAGE 85.74 ± 0.67 93.51 ± 0.57 82.43 ± 0.44 76.44 ± 0.62

GAT 80.87 ± 0.30 92.01 ± 0.68 83.70 ± 0.47 77.43 ± 1.20

GAT-sep 88.75 ± 0.41 93.91 ± 0.35 83.78 ± 0.43 76.79 ± 0.71

GT 86.51 ± 0.73 91.85 ± 0.76 83.23 ± 0.64 77.95 ± 0.68

GT-sep 87.32 ± 0.39 92.29 ± 0.47 82.52 ± 0.92 78.05 ± 0.93

FAGCN 60.11 ± 0.52 89.71 ± 0.31 73.35 ± 1.01 63.59 ± 1.46

CPGNN 63.96 ± 0.62 52.03 ± 5.46 73.36 ± 1.01 65.96 ± 1.95

H2GCN 64.85 ± 0.27 86.24 ± 0.61 72.94 ± 0.97 55.48 ± 0.91

FSGNN 79.92 ± 0.56 90.08 ± 0.70 82.76 ± 0.61 78.86 ± 0.92

GloGNN 59.63 ± 0.69 51.08 ± 1.23 73.39 ± 1.17 65.74 ± 1.19

FAGCN 65.22 ± 0.56 88.17 ± 0.73 77.75 ± 1.05 77.24 ± 1.26

GBK-GNN 74.57 ± 0.47 90.85 ± 0.58 81.01 ± 0.67 74.47 ± 0.86

JacobiConv 71.14 ± 0.42 89.66 ± 0.40 68.66 ± 0.65 73.88 ± 1.16

FLODE 74.97 ± 0.53 92.43 ± 0.51 84.17 ± 0.58 78.39 ± 1.22
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Table 5: Selected hyperparameters, learned exponent, step size, and Dirichlet energy in the last layer
for real-world datasets.

(a) Undirected.

Dataset

Film Squirrel Chameleon Citeseer Pubmed Cora

learning rate 10−3 2.5 · 10−3 5 · 10−3 10−2 10−2 10−2

weight decay 5 · 10−4 5 · 10−4 10−3 5 · 10−3 10−3 5 · 10−3

hidden channels 256 64 64 64 64 64

num. layers 1 6 4 2 3 2

encoder layers 3 1 1 1 3 1

decoder layers 2 2 2 1 1 2

input dropout 0 1.5 · 10−1 0 0 5 · 10−2 0

decoder dropout 10−1 10−1 0 0 10−1 0

exponent 1.001 ± 0.003 0.17 ± 0.03 0.35 ± 0.15 0.92 ± 0.03 0.82 ± 0.07 0.90 ± 0.02

step size 0.991 ± 0.002 1.08 ± 0.01 1.22 ± 0.03 1.04 ± 0.02 1.12 ± 0.02 1.06 ± 0.01

Dirichlet energy 0.246 ± 0.006 0.40 ± 0.02 0.13 ± 0.03 0.021 ± 0.001 0.015 ± 0.001 0.0227 ± 0.0006

(b) Directed.

Dataset

Film Squirrel Chameleon

learning rate 10−3 2.5 · 10−3 10−2

weight decay 5 · 10−4 5 · 10−4 10−3

hidden channels 256 64 64

num. layers 1 6 5

encoder layers 3 1 1

decoder layers 2 2 2

input dropout 0 10−1 0

decoder dropout 0.1 10−1 0

exponent 1.001 ± 0.005 0.28 ± 0.06 0.30 ± 0.11

step size 0.990 ± 0.002 1.22 ± 0.02 1.22 ± 0.05

Dirichlet energy 0.316 ± 0.005 0.38 ± 0.02 0.27 ± 0.04

(c) Heterophily-specific graphs.

Dataset

Roman-empire Minesweeper Tolokers Questions

learning rate 10−3 10−3 10−3 10−2

weight decay 0 0 0 5 · 10−4

hidden channels 512 512 512 128

num. layers 4 4 4 5

encoder layers 2 2 1 2

decoder layers 2 2 2 2

input dropout 0 0 0 0

decoder dropout 0 0 0 0

exponent 0.689 ± 0.038 0.749 ± 0.017 1.053 ± 0.041 1.090 ± 0.046

step size 0.933 ± 0.015 0.984 ± 0.004 0.993 ± 0.009 0.789 ± 0.062

Dirichlet energy 0.059 ± 0.003 0.173 ± 0.019 0.155 ± 0.013 0.092 ± 0.039
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Table 6: Node classification accuracy of ordered DSBM graphs: top three models as 1st , 2nd and 3rd.

(a) Varying edge density.

α∗

0.1 0.08 0.05

ChebNet 19.9 ± 0.6 20.0 ± 0.7 20.0 ± 0.7

GCN-D 68.9 ± 2.1 67.6 ± 2.7 58.5 ± 2.0

APPNP-D 97.7 ± 1.7 95.9 ± 2.2 90.3 ± 2.4

GraphSAGE-D 20.1 ± 1.1 19.9 ± 0.8 19.9 ± 1.0

GIN-D 57.3 ± 5.8 55.4 ± 5.5 50.9 ± 7.7

GAT-D 42.1 ± 5.3 39.0 ± 7.0 37.2 ± 5.5

DGCN 84.9 ± 7.2 81.2 ± 8.2 64.4 ± 12.4

DiGraph 82.1 ± 1.7 77.7 ± 1.6 66.1 ± 2.4

DiGraphIB 99.2 ± 0.5 97.7 ± 0.7 89.3 ± 1.7

MagNet 99.6 ± 0.2 98.3 ± 0.8 94.1 ± 1.2

FLODE 99.3 ± 0.1 98.8 ± 0.1 97.5 ± 0.1

(b) Varying net flow.

β∗

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

ChebNet 19.9 ± 0.7 20.1 ± 0.6 20.0 ± 0.6 20.1 ± 0.8 19.9 ± 0.9 20.0 ± 0.5 19.7 ± 0.9 20.0 ± 0.5

GCN-D 68.6 ± 2.2 74.1 ± 1.8 75.5 ± 1.3 74.9 ± 1.3 72.0 ± 1.4 65.4 ± 1.6 58.1 ± 2.4 45.6 ± 4.7

APPNP-D 97.4 ± 1.8 94.3 ± 2.4 89.4 ± 3.6 79.8 ± 9.0 69.4 ± 3.9 59.6 ± 4.9 51.8 ± 4.5 39.4 ± 5.3

GraphSAGE-D 20.2 ± 1.2 20.0 ± 1.0 20.0 ± 0.8 20.0 ± 0.7 19.6 ± 0.9 19.8 ± 0.7 19.9 ± 0.9 19.9 ± 0.8

GIN-D 57.9 ± 6.3 48.0 ± 11.4 32.7 ± 12.9 26.5 ± 10.0 23.8 ± 6.0 20.6 ± 3.0 20.5 ± 2.8 19.8 ± 0.5

GAT-D 42.0 ± 4.8 32.7 ± 5.1 25.6 ± 3.8 19.9 ± 1.4 20.0 ± 1.0 19.8 ± 0.8 19.6 ± 0.2 19.5 ± 0.2

DGCN 81.4 ± 1.1 84.7 ± 0.7 85.5 ± 1.0 86.2 ± 0.8 84.2 ± 1.1 78.4 ± 1.3 69.6 ± 1.5 54.3 ± 1.5

DiGraph 82.5 ± 1.4 82.9 ± 1.9 81.9 ± 1.1 79.7 ± 1.3 73.5 ± 1.9 67.4 ± 2.8 57.8 ± 1.6 43.0 ± 7.1

DiGraphIB 99.2 ± 0.4 97.9 ± 0.6 94.1 ± 1.7 88.7 ± 2.0 82.3 ± 2.7 70.0 ± 2.2 57.8 ± 6.4 41.0 ± 9.0

MagNet 99.6 ± 0.2 99.0 ± 1.0 97.5 ± 0.8 94.2 ± 1.6 88.7 ± 1.9 79.4 ± 2.9 68.8 ± 2.4 51.8 ± 3.1

FLODE 99.3 ± 0.1 98.5 ± 0.1 96.7 ± 0.2 92.8 ± 0.1 87.2 ± 0.3 77.1 ± 0.5 63.8 ± 0.3 50.1 ± 0.5

Following Zhang et al. (2021), we train our model in both experiments for 3000 epochs and use
early-stopping if the validation accuracy does not increase for 500 epochs. We select the best model
based on the validation accuracy after sweeping over a few hyperparameters. We give exact numerical
values for the experiments with the standard error in Table 6a and refer to Appendix A.2 for the
chosen hyperparameters.

DSBM with varying edge density. In the first experiment, the model is evaluated based on its
performance on the DSBM with varying αi,j = α∗, α∗ ∈ {0.1, 0.08, 0.05} for i 6= j, which
essentially changes the density of edges between different clusters. The other probabilities are fixed
at αi,i = 0.5, βi,i = 0.5 and βi,j = 0.05 for i > j. The results are shown in Figure 6 with exact
numerical values in Table 6a.

DSBM with varying net flow. In the other scenario, the model is tested on how it performs when
the net flow from one cluster to another varies. This is achieved by keeping αi,j = 0.1 constant for
all i and j, and allowing βi,j to vary from 0.05 to 0.4. The other probabilities are fixed at αi,i = 0.5
and βi,i = 0.5. The results are shown in Figure 6 with exact numerical values in Table 6b.

A.3 Ablation Study

We perform an ablation study on Chameleon and Squirrel (directed, heterophilic), and Citeseer (undi-
rected, homophilic). For this, we sweep over different model options using the same hyperparameters
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Table 7: Selected hyperparameters for DSBM dataset.

(a) Varying edge density.

α∗

0.1 0.08 0.05

learning rate 5 · 10−3 5 · 10−3 5 · 10−3

decay 1 · 10−3 1 · 10−3 5 · 10−4

input dropout 1 · 10−1 2 · 10−1 1 · 10−1

decoder dropout 1 · 10−1 5 · 10−2 1 · 10−1

hidden channels 256 256 256

(b) Varying net flow.

β∗

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

learning rate 5 · 10−3 5 · 10−3 1 · 10−3 1 · 10−3 1 · 10−3 1 · 10−3 1 · 10−3 1 · 10−3

decay 1 · 10−3 1 · 10−3 5 · 10−4 1 · 10−3 1 · 10−3 1 · 10−3 5 · 10−4 1 · 10−3

input dropout 1 · 10−1 1 · 10−1 2 · 10−1 1 · 10−1 1 · 10−1 2 · 10−1 5 · 10−2 2 · 10−1

decoder dropout 1 · 10−1 1 · 10−1 5 · 10−2 5 · 10−2 5 · 10−2 1 · 10−1 2 · 10−1 1 · 10−1

hidden channels 256 256 256 256 256 256 256 256

via grid search. The test accuracy corresponding to the hyperparameters that yielded maximum
validation accuracy is reported in Table 8.

The ablation study on Chameleon demonstrates that all the components of the model (learnable
exponent, ODE framework with the Schrödinger equation, and directionality via the SNA) contribute
to the performance of FLODE. The fact that performance drops when any of these components are
not used suggests that they all play crucial roles in the model’s ability to capture the structure and
evolution of heterophilic graphs. It is important to note that the performance appears to be more
dependent on the adjustable fraction in the FGL than on the use of the ODE framework, illustrating
that the fractional Laplacian alone can effectively capture long-range dependencies. However, when
the ODE framework is additionally employed, a noticeable decrease in variance is observed.

From Theory to Practice. We conduct an ablation study to investigate the role of depth on
Chameleon, Citeseer, Cora, and Squirrel datasets. The results, depicted in Figure 8, demonstrate
that the neural ODE framework enables GNNs to scale to large depths (256 layers). Moreover, we
see that the fractional Laplacian improves over the standard Laplacian in the heterophilic graphs
which is supported by our claims in Section 5.2. We highlight that using only the fractional Laplacian
without the neural ODE framework oftentimes outperforms the standard Laplacian with the neural
ODE framework. This indicates the importance of the long-range connections built by the fractional
Laplacian.

We further demonstrate the close alignment of our theoretical and experimental results, which enables
us to precisely anticipate when the models will exhibit HFD or LFD behaviors. In this context,
we calculate parameters (according to Theorem D.5) and illustrate at each depth the expected and
observed behaviors. For Squirrel and Chameleon, which are heterophilic graphs, we observe that
both their theoretical and empirical behaviors are HFD. Additionally, the learned exponent is small.
In contrast, for Cora and Citeseer, we see the opposite.

Finally, we employ the best hyperparameters in Table 5a to solve both fractional heat and Schrödinger
graph ODEs, further substantiating the intimate link between our theoretical advancements and
practical applications.
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Table 8: Ablation study on node classification task: top two models are indicated as 1st and 2nd

(a) Chameleon (directed, heterophilic).

Update Rule Test Accuracy Dirichlet Energy

D

xt+1 = xt − ihLαxtW 77.79± 1.42 0.213 (t=5)
xt+1 = xt − ihL xtW 75.72± 1.13 0.169 (t=6)
xt+1 = − i LαxtW 77.35± 2.22 0.177 (t=4)
xt+1 = − i L xtW 69.61± 1.59 0.178 (t=4)

U

xt+1 = xt − ihLαxtW 73.60± 1.68 0.131 (t=4)
xt+1 = xt − ihL xtW 70.15± 0.86 0.035 (t=4)
xt+1 = − i LαxtW 71.25± 3.04 0.118 (t=4)
xt+1 = − i L xtW 67.19± 2.49 0.040 (t=4)

D

xt+1 = xt − hLαxtW 77.33± 1.47 0.378 (t=6)
xt+1 = xt − hL xtW 73.55± 0.94 0.165 (t=6)
xt+1 = − LαxtW 74.12± 3.60 0.182 (t=4)
xt+1 = − L xtW 68.47± 2.77 0.208 (t=4)

(b) Squirrel (directed, heterophilic).

Update Rule Test Accuracy Dirichlet Energy

D

xt+1 = xt − ihLαxtW 74.03± 1.58 0.38± 0.02

xt+1 = xt − ihL xtW 64.04± 2.25 0.35± 0.02

xt+1 = − i LαxtW 64.25± 1.85 0.46± 0.01

xt+1 = − i L xtW 42.04± 1.58 0.29± 0.05

U

xt+1 = xt − ihLαxtW 64.23± 1.84 0.40± 0.02

xt+1 = xt − ihL xtW 55.19± 1.52 0.26± 0.03

xt+1 = − i LαxtW 61.40± 2.15 0.43± 0.01

xt+1 = − i L xtW 41.19± 1.95 0.20± 0.02

D

xt+1 = xt − hLαxtW 71.86± 1.65 0.50± 0.01

xt+1 = xt − hL xtW 59.34± 1.78 0.43± 0.03

xt+1 = − LαxtW 42.91± 7.86 0.32± 0.08

xt+1 = − L xtW 35.37± 1.69 0.25± 0.05

U

xt+1 = xt − hLαxtW 62.95± 2.02 0.61± 0.08

xt+1 = xt − hL xtW 52.19± 1.17 0.51± 0.07

xt+1 = − LαxtW 59.04± 0.02 0.44± 0.02

xt+1 = − L xtW 39.69± 1.54 0.20± 0.02

(c) Citeseer (undirected, homphilic).

Update Rule Test Accuracy Dirichlet Energy

xt+1 = xt − ihLαxtW 78.07± 1.62 0.021 (t=5)
xt+1 = xt − ihL xtW 77.97± 2.29 0.019 (t=4)
xt+1 = − i LαxtW 77.27± 2.10 0.011 (t=6)
xt+1 = − i L xtW 77.97 ±2.23 0.019 (t=4)
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Table 9: Learned α and spectrum of W. According to Theorem 5.3, we denote
FD := λK(W) fα(λ1(L))− λ1(W) and FD := =(λK(W)) fα(λ1(L))−=(λ1(W)) for the frac-
tional heat (H) and Schrödinger (S) graph ODEs, respectively. The heterophilic graphs Squirrel and
Chameleon exhibit HFD since FD < 0, while the homophilic Cora, Citeseer, Pubmed exhibit LFD
since FD > 0.

λ1(L)
Film

−0.9486
Squirrel
−0.8896

Chameleon
−0.9337

Citeseer
−0.5022

Pubmed
−0.6537

Cora
−0.4826

H

α 1.008 ± 0.007 0.19 ± 0.05 0.37 ± 0.14 0.89 ± 0.06 1.15 ± 0.08 0.89 ± 0.01

λ1(W) −2.774 ± 0.004 −1.62 ± 0.03 −1.81 ± 0.02 −1.76 ± 0.01 −1.66 ± 0.06 −1.81 ± 0.01

λK(W) 2.858 ± 0.009 2.21 ± 0.03 2.29 ± 0.05 2.28 ± 0.06 1.1 ± 0.3 2.32 ± 0.01

FD 0.367 ± 0.001 −0.54 ± 0.02 −0.42 ± 0.04 0.52 ± 0.02 0.97 ± 0.09 0.60 ± 0.01

S

α 1.000 ± 0.002 0.17 ± 0.03 0.34 ± 0.11 0.90 ± 0.07 0.76 ± 0.07 0.90 ± 0.02

=(λ1(W)) −2.795 ± 0.001 −1.68 ± 0.01 −1.79 ± 0.01 −1.70 ± 0.04 −1.74 ± 0.01 −1.78 ± 0.01

=(λK(W)) 2.880 ± 0.002 2.21 ± 0.03 2.46 ± 0.02 2.29 ± 0.07 0.98 ± 0.09 2.30 ± 0.02

FD 0.4945 ± 0.0001 −0.48 ± 0.03 −0.62 ± 0.03 0.46 ± 0.06 1.03 ± 0.05 0.59 ± 0.01
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Figure 8: Ablation study on the effect of different update rules and different number of layers on
undirected datasets. The x-axis shows the number of layers 2L for L ∈ {0, . . . , 8}. FD is calculated
according to Theorem 5.3.
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B Appendix for Section 3

Proposition 3.3. Let G be a directed graph with SNA L. For every λ ∈ λ(L), it holds |λ| ≤ 1 and
λ(I− L) = 1− λ(L).

Proof. We show that the numerical range W(L) =
{
xHLx : xHx = 1

}
satisfies W(L) ⊂ [−1, 1].

As W(L) contains all eigenvalues of L the thesis follows.

Let A be the adjacency matrix of G and x ∈ CN with xHx = 1. Applying the Cauchy-Schwartz
inequality in (2) and (3), we get

∣∣xHLx
∣∣ (1)≤ N∑

i=1

N∑
j=1

ai,j
|xi| |xj |√
dini d

out
j

=

N∑
i=1

|xi|√
dini

N∑
j=1

ai,j
|xj |√
doutj

(2)

≤
N∑
i=1

|xi|√
dini

√√√√ N∑
j=1

ai,j
|xj |2

doutj

N∑
j=1

ai,j

=

N∑
i=1

|xi|

√√√√ N∑
j=1

ai,j
|xj |2

doutj

(3)

≤

√√√√ N∑
i=1

|xi|2
N∑
i=1

N∑
j=1

ai,j
|xj |2

doutj

=

N∑
i=1

|xi|2 ,

where we used a2i,j = ai,j . We have
∑N

i=1 |xi|
2
= xHx = 1 such that W(L) ⊂ [−1, 1] follows. The

second claim follows directly by (I− L)v = v − λv = (1− λ)v.

Proposition 3.5. Let G be a directed graph with SNA L. Then 1 ∈ λ(L) if and only if the graph is
weakly balanced. Suppose the graph is strongly connected; then −1 ∈ λ(L) if and only if the graph
is weakly balanced with an even period.

Proof. Since the numerical range is only a superset of the set of eigenvalues, we cannot simply
consider when the inequalities (1)− (3) in the previous proof are actual equalities. Therefore, we
have to find another way to prove the statement. Suppose that the graph is weakly balanced, then

N∑
j=1

ai,j

(
kj√
dout
j

− ki√
din
i

)
= 0 , ∀j ∈ {1, . . . , N} .

We will prove that k = (ki)
N
i=1 is an eigenvector corresponding to the eigenvalue 1,

(Lk)i =

N∑
j=1

ai,j√
din
i d

out
j

kj =
1√
din
i

N∑
j=1

ai,j√
dout
j

kj =
1√
din
i

N∑
j=1

ai,j√
din
i

ki =
1

din
i

 N∑
j=1

ai,j

 ki = ki .

For the other direction, suppose that there exists x ∈ RN such that x 6= 0 and x = Lx. Then for all
i ∈ {1, . . . , N}

0 = (Lx)i − xi =

N∑
j=1

ai,j√
din
i d

out
j

xj − xi =

N∑
j=1

ai,j√
din
i d

out
j

xj −
N∑
j=1

ai,j
din
i

xi
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=

N∑
j=1

ai,j√
din
i

(
xj√
dout
j

− xi√
din
i

)
,

hence, the graph is weakly balanced.

By Perron-Frobenius theorem for irreducible non-negative matrices, one gets that L has exactly h
eigenvalues with maximal modulus corresponding to the h roots of the unity, where h is the period of
L. Hence, −1 is an eigenvalue of L if and only if the graph is weakly balanced and h is even.

Proposition 3.6. For every x ∈ CN×K , we have

<
(
trace

(
xH (I− L)x

))
=

1

2

N∑
i,j=1

ai,j

∥∥∥∥∥ xi√
din
i

− xj√
dout
j

∥∥∥∥∥
2

2

,

Moreover, there exists x 6= 0 such that E (x) = 0 if and only if the graph is weakly balanced.

Proof. By direct computation, it holds

1

2

N∑
i,j=1

ai,j

∥∥∥∥∥ xi,:√
din
i

− xj,:√
dout
j

∥∥∥∥∥
2

2
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1

2
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ai,j
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din
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∣∣∣∣∣
2

=
1

2
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K∑
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(
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i

− xj,k√
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j

)∗(
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j

)
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2
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− 1

2
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ai,j
x∗i,kxj,k√
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i d
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− 1

2
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∗
j,k√

din
i d

out
j

=
1

2

N∑
i=1

K∑
k=1

|xi,k|2 +
1

2

N∑
j=1

K∑
k=1

|xj,k|2 −
1

2

N∑
i,j=1
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ai,j
x∗i,kxj,k√
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− 1

2
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ai,j
xi,kx
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j,k√

din
i d

out
j

=

N∑
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|xi,k|2 −
1

2
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K∑
k=1

ai,j
(xH)k,ixj,k√

din
i d

out
j

− 1

2

N∑
i,j=1

K∑
k=1

ai,j
xi,k(x

H)k,j√
din
i d

out
j

=

N∑
i=1

K∑
k=1

|xi,k|2 −
1

2

N∑
i,j=1

K∑
k=1

ai,j
(xH)k,ixj,k√
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i d

out
j

− 1

2

 N∑
i,j=1

K∑
k=1

ai,j
(xH)k,ixj,k√
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i d
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j

∗

= <

 N∑
i=1

K∑
k=1

|xi,k|2 −
N∑

i,j=1

K∑
k=1

ai,j
x∗i,kxj,k√
din
i d

out
j


= <

(
trace

(
xH (I− L)x

))
.

The last claim can be proved as follows. For simplicity, suppose x ∈ RN . The “ ⇐= ” is clear since
one can choose x to be k. To prove the “ =⇒ ”, we reason by contradiction. Suppose there exists a
x 6= 0 such that E (x) = 0 and the underlying graph is not weakly connected, i.e.,

∀x̃ 6= 0 ,

∣∣∣∣∣∣
N∑
j=1

ai,j

(
x̃j√
dout
j

− x̃i√
din
i

)∣∣∣∣∣∣ > 0 , ∀i ∈ {1, . . . , N} ,
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Then, since x 6= 0,

0 = E (x) =
1

4

N∑
i,j=1

ai,j

∣∣∣∣∣ xi√
din
i

− xj√
dout
j

∣∣∣∣∣
2

≥ 1

4

N∑
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1

din
i

 N∑
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ai,j

∣∣∣∣∣ xi√
din
i

− xj√
dout
j
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2
 N∑
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ai,j


≥ 1

4
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i=1

1

din
i

 N∑
j=1

ai,j
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din
i

− xj√
dout
j

∣∣∣∣∣
2

≥ 1

4

N∑
i=1

1
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i

∣∣∣∣∣∣
N∑
j=1

ai,j

(
xi√
din
i

− xj√
dout
j

)∣∣∣∣∣∣
2

> 0 ,

where we used Cauchy-Schwartz and triangle inequalities.

We give the following simple corollary.

Corollary B.1. For every x ∈ RN×K , it holds E (x) = 1
2<
(
vec(x)H(I⊗ (I− L))vec(x)

)
.

C Appendix for Section 4

In this section, we provide some properties about FGLs. The first statement shows that the FGL of a
normal SNA L only changes the magnitude of the eigenvalues of L.

Lemma C.1. Let M be a normal matrix with eigenvalues λ1, . . . , λN and corresponding eigenvectors
v1, . . . ,vN . Suppose M = LΣRH is its singular value decomposition. Then it holds

Σ = |Λ| , L = V , R = V exp (iΘ) , Θ = diag
(
{θi}Ni=1

)
, θi = atan2 (<λi,=λi) .

Proof. By hypothesis, there exist a unitary matrix V such that M = VΛVH, then

MHM = VΛ∗VHVΛVH = V |Λ|2 VH ,

MHM = RΣLHLΣRH = LΣ2LH .

Therefore, Σ = |Λ| and L = V

M = R |Λ|VH

Finally, we note that it must hold R = V exp(iΘ) where Θ = diag
(
{atan2(<λi,=λi)}Ni=1

)
and

atan2 is the 2-argument arctangent.

We proceed by proving Theorem 4.1, which follows the proof of a similar result given in (Benzi
et al., 2020) for the fractional Laplacian defined in the spectral domain of an in-degree normalized
graph Laplacian. However, our result also holds for directed graphs and in particular for fractional
Laplacians that are defined via the SVD of a graph SNA.

Lemma C.2. Let M ∈ Rn×n with singular values σ(M) ⊂ [a, b]. For f : [a, b] → R, define
f(M) = Uf(Σ)VH, where M = UΣVH is the singular value decomposition of M. If f has
modulus of continuity ω and d(i, j) ≥ 2, it holds

|f(M)|i,j ≤
(
1 +

π2

2

)
ω

(
b− a

2
|d(i, j)− 1|−1

)
.
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Proof. Let g : [a, b] → R be any function, then

‖f(M)− g(M)‖2 =
∥∥Uf(Σ)VH −Ug(Σ)VH

∥∥
2

= ‖f(Σ)− g(Σ)‖2
= ‖f(λ)− g(λ)‖∞,σ(M) .

The second equation holds since the 2-norm is invariant under unitary transformations. By Jackson’s
Theorem, there exists for every m ≥ 1 a polynomial pm of order m such that

‖f(M)− pm(M)‖2 ≤ ‖f − pm‖∞,[a,b] ≤
(
1 +

π2

2

)
ω

(
b− a

2m

)
.

Fix i, j ∈ {1, . . . , n}. If d(i, j) = m + 1, then any power of M up to order m has a zero entry in
(i, j), i.e., (Mm)i,j = 0. Hence, f(M)i,j = f(M)i,j − pm(M)i,j , and we get

|f(M)i,j | ≤ ‖f(M)− g(M)‖2 ≤ ω

(
1 +

π2

2

)(
b− a

2m

)
=

(
1 +

π2

2

)
ω

(
b− a

2
|d(i, j)− 1|−1

)
from which the thesis follows.

Finally, we give a proof of Theorem 4.1, which is a consequence of the previous statement.

Proof of Theorem 4.1. The eigenvalues of L are in the unit circle, i.e., ‖L‖ ≤ 1. Hence,
∥∥LLH

∥∥ ≤ 1,
and the singular values of L are in [0, 1]. By Lemma C.2 and the fact that f(x) = xα has modulus of
continuity ω(t) = tα the thesis follows.

D Appendix for Section 5

In this section, we provide the appendix for Section 5. We begin by analyzing the solution of linear
matrix ODEs. For this, let M ∈ CN×N . For x0 ∈ CN , consider the initial value problem

x′(t) = −Mx(t), x(0) = x0. (5)

Theorem D.1 (Existence and uniqueness of linear ODE solution). The initial value problem given by
(5) has a unique solution x(t) ∈ CN for any initial condition x0 ∈ CN .

The solution of (5) can be expressed using matrix exponentials, even if M is not symmetric. The
matrix exponential is defined as:

exp(−Mt) =

∞∑
k=0

(−M)ktk

k!
,

where Mk is the k-th power of the matrix M. The solution of (5) can then be written as

x(t) = exp(−Mt)x0. (6)

D.1 Appendix for Section 5.1

In this section, we analyze the solution to (2) and (3). We further provide a proof for Theorem 5.3. We
begin by considering the solution to the fractional heat equation (2). The analysis for the Schrödinger
equation (3) follows analogously.

The fractional heat equation x′(t) = −LαxW can be vectorized and rewritten via the Kronecker
product as

vec(x)′(t) = −W ⊗ Lαvec(x)(t). (7)

In the undirected case L and I− L are both symmetric, and the eigenvalues satisfy the relation
λi(I− L) = 1− λi(L). The corresponding eigenvectors ψi(L) and ψi(I− L) can be chosen to be
the same for L and I− L. In the following, we assume that these eigenvectors are orthonormalized.

If L is symmetric, we can decompose it via the spectral theorem into L = UDUT , where U =
[ψ1(L), . . . , ψN (L)] is an orthogonal matrix containing the eigenvectors of L, and D is the diagonal
matrix of eigenvalues.
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Due to Lemma C.1, the fractional Laplacian Lα can be written as Lα = U fα(D)UT , where
fα : R → R is the map x 7→ sign(x) |x|α and is applied element-wise. Clearly, the eigendecom-
position of Lα is given by the eigenvalues {fα(λ1(L)), . . . , fα(λN (L))} and the corresponding
eigenvectors {ψ1(L), . . . , ψN (L)}.

Now, by well-known properties of the Kronecker product, one can write the eigendecomposition of
W ⊗ Lα as

{λr(W) fα (λl(L))}r∈{1,...,K} , l∈{1,...,N} , {ψr(W)⊗ ψl(L)}r∈{1,...,K} , l∈{1,...,N} .

Note that 1 ∈ λ (L) and, since trace (L) = 0, the SNA has at least one negative eigenvalue. This
property is useful since it allows to retrieve of the indices (r, l) corresponding to eigenvalues with
minimal real (or imaginary) parts in a simple way.

The initial condition vec(x0) can be decomposed as

vec(x0) =

K∑
r=1

N∑
l=1

cr,l ψr(W)⊗ ψl(L) , cr,l = 〈vec(x0) , ψr(W)⊗ ψl(W)〉 .

Then, the solution vec(x)(t) of (7) can be written as

vec(x)(t) =

K∑
r=1

N∑
l=1

cr,l exp (−tλr (W) fα (λl (L))) ψr(W)⊗ ψl(L). (8)

The following result shows the relationship between the frequencies of I− L and the Dirichlet energy
and serves as a basis for the following proofs.

Lemma D.2. Let G be a graph with SNA L. Consider x(t) ∈ CN×K such that there exists
ϕϕϕ ∈ CN×K \ {0} with

vec(x)(t)

‖vec(x)(t)‖2
t→∞−−−→ vec(ϕϕϕ) ,

and (I⊗ (I− L))vec(ϕϕϕ) = λvec(ϕϕϕ). Then,

E

(
x(t)

‖x(t)‖2

)
t→∞−−−→ <(λ)

2
.

Proof. As vec(ϕϕϕ) is the limit of unit vectors, vec(ϕϕϕ) is a unit vector itself. We calculate its Dirichlet
energy,

E (vec(ϕϕϕ)) =
1

2
<
(
vec(ϕϕϕ)H(I⊗ (I− L))vec(ϕϕϕ)

)
=

1

2
<
(
λ vec(ϕϕϕ)Hvec(ϕϕϕ)

)
=

1

2
< (λ) .

Since x 7→ E (x) is continuous, the thesis follows.

Another useful result that will be extensively used in proving Theorem 5.3 is presented next.

Lemma D.3. Suppose x(t) can be expressed as

x(t) =

K∑
k=1

N∑
n=1

ck,n exp (−t λk,n)vk ⊗wn ,

for some choice of ck,n, λk,n, {vk}, {wn}. Let (a, b) be the unique index of λk,n with minimal real
part and corresponding non-null coefficient ck,n, i.e.

(a, b) := argmin
(k,n)∈[K]×[N ]

{< (λk,n) : ck,n 6= 0} .

Then
x(t)

‖x(t)‖2
t→∞−−−→ ca,b va ⊗wb

‖ca,b va ⊗wb‖2
.

28



Proof. The key insight is to separate the addend with index (a, b). It holds

x(t) =

K∑
k=1

N∑
n=1

ck,n exp (−t λk,n)vn ⊗wm

= exp (−t λa,b)

ca,bva ⊗wb +
∑

(k,n)∈[K]×[N ]
(k,n)6=(a,b)

ck,n exp (−t (λk,n − λa,b))vk ⊗wn

 .

We note that

lim
t→∞

|exp (−t (λk,n − λa,b))| = lim
t→∞

|exp (−t< (λk,n − λa,b)) exp (−i t= (λk,n − λa,b))|

= lim
t→∞

exp (−t< (λk,n − λa,b))

= 0 ,

for all (k, n) 6= (a, b), since < (λk,n − λa,b) > 0. Therefore, one gets

x(t)

‖x(t)‖2
t→∞−−−→ ca,b va ⊗wb

‖ca,b va ⊗wb‖2
,

where the normalization removes the dependency on exp (−t λa,b)

When λa,b is not unique, it is still possible to derive a convergence result. In this case, x will converge
to an element in the span generated by vectors corresponding to λa,b, i.e.,

x(t)

‖x(t)‖2
t→∞−−−→

∑
(a,b)∈A

ca,b va ⊗wb

‖
∑

(a,b)∈A
ca,b va ⊗wb‖2

,

where A := {(k, n) : <(λk,n) = <(λa,b) , ck,n 6= 0}.

A similar result to Lemma D.3 holds for a slightly different representation of x(t).

Lemma D.4. Suppose x(t) can be expressed as

x(t) =

K∑
k=1

N∑
n=1

ck,n exp (i t λk,n)vk ⊗wn ,

for some choice of ck,n, λk,n, {vk}, {wn}. Let (a, b) be the unique index of λk,n with minimal
imaginary part and corresponding non-null coefficient ck,n, i.e.

(a, b) := argmin
(k,n)∈[K]×[N ]

{= (λk,n) : ck,n 6= 0} .

Then
x(t)

‖x(t)‖2
t→∞−−−→ ca,b va ⊗wb

‖ca,b va ⊗wb‖2
.

Proof. The proof follows the same reasoning as in the proof of Lemma D.3. The difference is that
the dominating frequency is the one with the minimal imaginary part, since

< (i λk,n) = −= (λk,n) ,

and, consequently,

argmax
(k,n)∈[K]×[N ]

{< (i λk,n)} = argmin
(k,n)∈∈[K]×[N ]

{= (λk,n)} .
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D.1.1 Proof of Theorem 5.3

We denote the eigenvalues of L closest to 0 from above and below as

λ+(L) := argmin
l

{λl(L) : λl(L) > 0} ,

λ−(L) := argmax
l

{λl(L) : λl(L) < 0} .
(9)

We assume that the channel mixing W ∈ RK×K and the graph Laplacians L, I− L ∈ RN×N are
real matrices. Finally, we suppose the eigenvalues of a generic matrix M are sorted in ascending
order, i.e., λi(M) ≤ λj(M), i < j.

We now reformulate Theorem 5.3 for the fractional heat equation (2) and provide its full proof, which
follows a similar frequency analysis to the one in (Di Giovanni et al., 2023, Theorem B.3)
Theorem D.5. Let G be an undirected graph with SNA L. Consider the initial value problem in
(2) with channel mixing matrix W ∈ RK×K and α ∈ R. Then, for almost all initial conditions
x0 ∈ RN×K the following is satisfied.

(α > 0) The solution to (2) is HFD if

λK(W) fα (λ1(L)) < λ1(W) ,

and LFD otherwise.

(α < 0) The solution to (2) is (1− λ−(L))-FD if

λK(W) fα (λ−(L)) < λ1(W) fα (λ+(L)) ,

and (1− λ+(L))-FD otherwise.

Proof of (α > 0). As derived in (8), the solution of (2) with initial condition x0 can be written in a
vectorized form as

vec(x)(t) = exp
(
−tWT ⊗ Lα

)
vec(x0)

=

K∑
r=1

N∑
l=1

cr,l exp (−t λr(W) fα (λl(L))) ψr(W)⊗ ψl(L),

where λr(W) are the eigenvalues of W with corresponding eigenvectors ψr(W), and λl(L) are
the eigenvalues of L with corresponding eigenvectors ψl(L). The coefficients cr,l are the Fourier
coefficients of x0, i.e.,

cr,l := 〈vec(x0) , ψr(W)⊗ ψl(L)〉 .
The key insight is to separate the eigenprojection corresponding to the most negative frequency. By
Lemma D.3, this frequency component dominates for t going to infinity.

Suppose
λK(W) fα (λ1(L)) < λ1(W) fα (λN (L)) = λ1(W) .

In this case, λK(W) fα (λ1(L)) is the most negative frequency. Assume for simplicity that λK(W)
has multiplicity one; the argument can be applied even if this is not the case, since the corresponding
eigenvectors are orthogonal for higher multiplicities.

For almost all initial conditions x0, the coefficient cK,1 is not null; hence

vec(x)(t)

‖vec(x)(t)‖2
t→∞−−−→ cK,1 ψK (W)⊗ ψ1 (L)

‖cK,1 ψK (W)⊗ ψ1 (L) ‖2
.

By standard properties of the Kronecker product, we have

(I⊗ L) (ψK (W)⊗ ψ1 (L)) = (IψK (W))⊗ (Lψ1 (L)) = λ1(L)ψK (W)⊗ ψ1 (L) , (10)

i.e., ψK (W) ⊗ ψ1 (L) is an eigenvector of I ⊗ L corresponding to the eigenvalue λ1(L). Then,
by Proposition 3.3, ψK (W) ⊗ ψ1 (L) is also an eigenvector of I ⊗ I− L corresponding to the
eigenvalue 1− λ1(L) = λN (I− L). An application of Lemma D.2 finishes the proof.

Similarly, we can show that if α > 0 and λK(W) fα (λ1 (L)) > λ1 (W) the lowest frequency
component λ1(I− L) is dominant.
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Proof of (α < 0). In this case either fα (λ+ (L))λ1 (W) or fα (λ− (L))λK (W) are the most neg-
ative frequency components. Hence, if fα (λ− (L))λK (W) > fα (λ+ (L))λ1 (W) the frequency
fα (λ+ (L))λ1 (W) is dominating and otherwise the frequency fα (λ− (L))λK (W). We can see
this by following the exact same reasoning of (i).

Remark D.6. In the proof of (α < 0), we are tacitly assuming that L has only non-zero eigenvalues.
If not, we can truncate the SVD and remove all zeros singular values (which correspond to zeros
eigenvalues). In doing so, we obtain the best invertible approximation of L to which the theorem can
be applied.

We now generalize the previous result to all directed graphs with normal SNA.

Theorem D.7. Let G be a a strongly connected directed graph with normal SNA L such that
λ1(L) ∈ R. Consider the initial value problem in (2) with channel mixing matrix W ∈ RK×K and
α > 0. Then, for almost all initial values x0 ∈ RN×K the solution to (2) is HFD if

λK(W)|λ1(L)|α < λ1(W)|λN (L)|α,

and LFD otherwise.

Proof. Any normal matrix is unitary diagonalizable, i.e., there exist eigenvalues λ1, . . . , λN and
corresponding eigenvectors v1, . . . ,vN such that L = VΛVH. Then, by Lemma C.1, the singular
value decomposition of L is given by L = UΣVH, where

Σ = |Λ| , U = V exp (iΘ) , Θ = diag
(
{θi}Ni=1

)
, θi = atan2 (<λi,=λi) .

Hence,
Lα = UΣαVH = V |Λ|α exp (iΘ)VH.

Then, equivalent to the derivation of (8), the solution to the vectorized fractional heat equation

vec(x)′(t) = −W ⊗ Lαvec(x)(t)

is given by

vec(x)(t) =

K∑
r=1

N∑
l=1

cr,l exp (−tλr (W) fα (λl (L))) ψr(W)⊗ ψl(L).

with
fα(λl(L)) = |λ(L)l|α exp(iθl).

Now, equivalent to the proof of Theorem 5.3, we apply Lemma D.3. Therefore, the dominating
frequency is given by the eigenvalue of W⊗Lα with the most negative real part. The eigenvalues of
W ⊗ Lα are given by λr(W) fα(λl(L)) for r = 1, . . . ,K, l = 1, . . . , N . The corresponding real
parts are given by

<(λr(W) fα(λl(L))) = λr(W) |λ(L)i|α cos(θi) = λr(W) |λ(L)i|α−1 <(λ(L)i).

By Perron-Frobenius, the eigenvalue of L with the largest eigenvalues is given by λN (L) ∈ R. Hence,
for all l = 1, . . . , N ,

|λ(L)l|α cos(θl) ≤ |λ(L)N |α .

Similarly, for all l = 1, . . . , N with <(λ(L)l) < 0,

− |λ(L)l|α cos(θl) ≤ − |λ(L)1|α .

Thus, the frequency with the most negative real part is either given by λK(W) fα (λ1(L)) or
λ1(W) fα (λN (L)). The remainder of the proof is analogous to the proof of Theorem D.7.

In the following, we provide the complete statement and proof for the claims made in Theorem 5.3
when the underlying ODE is the Schrödinger equation as presented in (3).
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Theorem D.8. Let G be a undirected graph with SNA L. Consider the initial value problem in (3)
with channel mixing matrix W ∈ CK×K and α ∈ R. Suppose that W has at least one eigenvalue
with non-zero imaginary part and sort the eigenvalues of W in ascending order with respect to their
imaginary part. Then, for almost initial values x0 ∈ CN×K , the following is satisfied.

(α > 0) Solutions of (3) are HFD if

= (λK(W)) fα (λ1(L)) < = (λ1(W)) ,

and LFD otherwise.

(α < 0) Let λ+(L) and λ−(L) be the smallest positive and biggest negative non-zero eigenvalue of
L, respectively. Solutions of (3) are (1− λ−(L))-FD if

= (λK(W)) fα (λ−(L)) < = (λ1(W)) fα (λ+(L)) .

Otherwise, solutions of (3) are (1− λ+(L))-FD.

Proof. The proof follows the same reasoning as the proof for the heat equation in Theorem D.5. The
difference is that we now apply Lemma D.4 instead of Lemma D.3.

Therefore, the dominating frequency is either λK(W) fα (λ1(L)) or λ1(W) fα (λN (L)) if α > 0,
and λK(W) fα (λ−(L)) or λ1(W) fα (λ+(L)) if α < 0.

D.2 Frequency Dominance for Numerical Approximations of the Heat Equation

For n ∈ N and h ∈ R, h > 0, the solution of (2) at time nh > 0 can be approximated with an explicit
Euler scheme

vec(x)(nh) =

n∑
k=0

(
n

k

)
hk(−W ⊗ Lα)kvec(x0) ,

which can be further simplified via the binomial theorem as

vec(x)(nh) = (I− h (W ⊗ Lα))
n
vec(x0) . (11)

Hence, it holds the representation formula

vec(x)(nh) =
∑
r,l

cr,l (1− hλr (W) fα (λl(L)))
n
ψr (W)⊗ ψl (L) .

In this case, the dominating frequency maximizes |1− hλr (W) fα (λl(L))|. When h < ‖W‖−1,
the product hλr (W) fα (λl(L)) is guaranteed to be in [−1, 1], and

|1− hλr (W) fα (λl(L))| = 1− hλr (W) fα (λl(L)) ∈ [0, 2] .

Therefore, the dominating frequency minimizes hλr (W) fα (λl(L)). This is the reasoning behind
the next result.
Proposition D.9. Let h ∈ R, h > 0. Consider the fractional heat equation (2) with α ∈ R. Let
{x(nh)}n∈N be the trajectory of vectors derived by approximating (2) with an explicit Euler scheme
with step size h. Suppose h < ‖W‖−1. Then, for almost all initial values x0

E

(
x(nh)

‖x(nh)‖2

)
n→∞−−−−→


λN (I− L)

2
, if λK(W) fα (λ1(L)) < λ1(W) ,

0 , otherwise .

Proof. Define

(λa, λb) := argmax
r,l

{|1− hλr (W) fα (λl(L))| : r ∈ {1, . . . ,K} , l ∈ {1, . . . , N}} .

By the hypothesis on h, this is equivalent to

(λa, λb) = argmin
r,l

{λr (W) fα (λl(L)) : r ∈ {1, . . . ,K} , l ∈ {1, . . . , N}} .
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Therefore, (λa, λb) is either (λ1(W), λN (L)) or (λK(W), λ1(L)). Hence,

vec(x)(nh)

‖vec(x)(nh)‖2
n→∞−−−−→ ca,b ψa (W)⊗ ψb (L)

‖ca,b ψa (W)⊗ ψb (L) ‖2
.

If the condition λK(W) fα (λ1(L)) < λ1(W) is satisfied, we have b = 1. Then by (10), the
normalized vec(x) converges to the eigenvector of I⊗ I− L corresponding to the largest frequency
1− λ1(L) = λN (I− L). An application of Lemma D.2 finishes the proof.

If λK(W) fα (λ1(L)) < λ1(W) is not satisfied, we have b = N , and the other direction follows
with the same argument.

Similarly to Proposition D.9 one can prove the following results for negative fractions.
Proposition D.10. Let h ∈ R, h > 0. Consider the fractional heat equation (2) with α < 0.
Let {x(nh)}n∈N be the trajectory of vectors derived by approximating the solution of (2) with an
explicit Euler scheme with step size h. Suppose that h < ‖W‖−1. The approximated solution is
(1− λ−(L))-FD if

λ1(W) fα (λ+(L)) < λK(W) fα (λ−(L)) ,

and (1− λ+(L))-FD otherwise.

Proof. The proof follows the same reasoning as the proof of Proposition D.9 by realizing that the
dominating frequencies (λa, λb) are either given by (λ1(W), λ+(L)) or (λK(W), λ−(L)).

D.3 Frequency Dominance for Numerical Approximations of the Schrödinger Equation

For n ∈ N and h ∈ R, h > 0, the solution of (3) at time nh > 0 can be approximated with an
explicit Euler scheme as well. Similarly to the previous section, we can write

vec(x)(nh) = (I+ i h (W ⊗ Lα))
n
vec(x0) .

and
vec(x)(nh) =

∑
r,l

cr,l (1 + i h λr (W) fα (λl(L)))
n
ψr (W)⊗ ψl (L) .

The dominating frequency will be discussed in the following theorem.
Proposition D.11. Let h ∈ R, h > 0. Let {x(nh)}n∈N be the trajectory of vectors derived
by approximating (3) with an explicit Euler scheme with sufficiently small step size h. Sort the
eigenvalues of W in ascending order with respect to their imaginary part. Then, for almost all initial
values x0

E

(
x(nh)

‖x(nh)‖2

)
n→∞−−−−→


λN (I− L)

2
, if fα (λ1(L))= (λK(W)) < fα (λN (L))= (λ1(W))

0 , otherwise.

Proof. Define

(λa, λb) := argmax
r,l

{|1 + i hλr (W) fα (λl(L))| : r ∈ {1, . . . ,K} , l ∈ {1, . . . , N}} .

By definition of a and b, for all r and l it holds

|1 + i h λa (W) fα (λb(L))| > |1 + i h λr (W) fα (λl(L))| . (12)

Hence,
vec(x)(t)

‖vec(x)(t)‖2
t→∞−−−→ ca,bψa (W)⊗ ψb (L)

‖ca,bψa (W)⊗ ψb (L) ‖2
.

We continue by determining the indices a and b. To do so, we note that (12) is equivalent to

fα (λl (L))= (λr (W))− fα (λb (L))= (λa (W))

>
h

2

(
fα (λl (L))

2 |λr (W)|2 − fα (λb(L))
2 |λa (W)|2

)
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for all r, l. Denote by ε the gap
0 < ε := min

(r,l) 6=(a,b)
{fα (λl (L))= (λr (W))− fα (λb (L))= (λa (W))} .

Noting that
h

2

(
fα (λl (L))

2 |λr (W)|2 − fα (λb(L))
2 |λa (W)|2

)
≤ h ‖W‖2 ‖L‖2α = h ‖W‖2 ,

h

2

(
fα (λl (L))

2 |λr (W)|2 − fα (λb(L))
2 |λa (W)|2

)
< ε

one gets that (12) is satisfied for h < ε ‖W‖−2. Therefore, for sufficiently small h, the domi-
nating frequencies are the ones with minimal imaginary part, i.e., either fα (λ1(L))= (λK(W))
or fα (λN (L))= (λ1(W)). If fα (λ1(L))= (λK(W)) < fα (λN (L))= (λ1(W)), then b = 1,
and the normalized vec (x) converges to the eigenvector corresponding to the smallest frequency
λ1(L). By (10), this is also the eigenvector of I ⊗ I− L corresponding to the largest frequency
1− λ1(L) = λN (I− L). An application of Lemma D.2 finishes the proof.

Finally, we present a similar result for negative powers.
Proposition D.12. Let h ∈ R, h > 0. Consider the fractional Schrödinger equation (3) with α < 0.
Let {x(nh)}n∈N be the trajectory of vectors derived by approximating the solution of (3) with an
explicit Euler scheme with step size h. Suppose that h is sufficiently small. Sort the eigenvalues of W
in ascending order with respect to their imaginary part. The approximated solution is (1−λ+(L))-FD
if

λ1(W) fα (λ+(L)) < λK(W) fα (λ−(L)) ,

and (1− λ−(L))-FD otherwise.

Proof. Similar to Proposition D.11, we can prove the statement by realizing that the dominating
frequencies (λa, λb) in (12) are either given by (λ1(W), λ+(L)) or (λK(W), λ−(L)).

E Appendix for Section 5.2

We begin this section by describing the solution of general linear matrix ODEs of the form (6)
in terms of the Jordan decomposition of M. This is required when M is not diagonalizable. For
instance, the SNA of a directed graph is not in general a symmetric matrix, hence, not guaranteed to
be diagonalizable. We then proceed in Appendix E.1 with the proof of Theorem 5.6.

For a given matrix M ∈ CN×N , the Jordan normal form is given by
M = PJP−1,

where P ∈ CN×N is an invertible matrix whose columns are the generalized eigenvectors of M,
and J ∈ CN×N is a block-diagonal matrix with Jordan blocks along its diagonal. Denote with
λ1, . . . , λm the eigenvalues of M and with J1, . . . ,Jm the corresponding Jordan blocks. Let kl be
the algebraic multiplicity of the eigenvalue λl, and denote with

{
ψi
l(M)

}
i∈{1,...,kl}

the generalized
eigenvectors of the Jordan block Jl.

We begin by giving the following well-known result, which fully characterizes the frequencies for the
solution of a linear matrix ODE.
Lemma E.1. Let M = PJP−1 ∈ CN×N be the Jordan normal form of M. Let x : [0, T ] → Rn be
a solution to

x′(t) = Mx(t) , x(0) = x0.

Then, x is given by

x(t) =

m∑
l=1

exp (λl(M)t)

kl∑
i=1

cjl

i∑
j=1

ti−j

(i− j)!
ψj
l (M),

where

x0 =

m∑
l=1

kl∑
i=1

cilPeil ,

and
{
eil : i ∈ {1, . . . kl} , l ∈ {1, . . . ,m}

}
is the standard basis satisfying Peil = ψi

l(M).
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Proof. By (Perko, 2001, Section 1.8), the solution can be written as

exp (M t)x0 = P exp (J t)P−1

(
m∑
l=1

kl∑
i=1

cilPeil

)
= P exp (J t)

(
m∑
l=1

kl∑
i=1

cile
i
l

)
,

where exp (J t) = diag ({exp (Jl t)}ml=1) and

exp (Jl t) = exp (λl(M) t)



1 t t2

2! · · · tkl

(kl−1)!

1 t
...

1
. . . t2

2!
. . . t

1


.

Since exp (J t) =
⊕m

l=1 exp (Jl t), we can focus on a single Jordan block. Fix l ∈ {1, . . . ,m}, it
holds

P exp (Jl t)

(
kl∑
i=1

cile
i
l

)

= P exp (λl(M) t)

(
c1l e

1
l + c2l

(
t e1l + e2l

)
+ c3l

(
t2

2!
e1l + t e2l + e3l

)
+ . . .

)
= exp (λl(M) t)

(
c1l ψ

1
l (M) + c2l

(
t ψ1

l (M) + ψ2
l (M)

)
+ c3l

(
t2

2!
ψ1
l (M) + t ψ2

l (M) + ψ3
l (M)

)
+ . . .

)
= exp (λl(M) t)

kl∑
i=1

cil

i∑
j=1

ti−j

(i− j)!
ψj
l (M) .

Bringing the direct sums together, we get

exp (M t)x0 =

m∑
l=1

exp (λl(M) t)

kl∑
i=1

cil

i∑
j=1

ti−j

(i− j)!
ψj
l (M) ,

from which the thesis follows.

In the following, we derive a formula for the solution of ODEs of the form
x′(t) = Mx(t)W , x(0) = x0 , (13)

for a diagonal matrix W ∈ CK×K and a general square matrix M ∈ CN×N with Jordan normal
form PJP−1. By vectorizing, we obtain the equivalent linear system

vec(x)′(t) = W ⊗M vec(x)(t) , vec(x)(0) = vec(x0) . (14)
Then, by properties of the Kronecker product, there holds

W ⊗M = W ⊗ (PJP−1) = (I⊗P)(W ⊗ J)(I⊗P−1) = (I⊗P)(W ⊗ J)(I⊗P)−1.

Note that (I⊗P)(W ⊗ J)(I⊗P)−1 is not the Jordan normal form of D⊗M. However, we can
characterize the Jordan form of W ⊗M as follows.
Lemma E.2. The Jordan decomposition of W⊗ J is given by W⊗ J = P̃J̃P̃−1 where J̃ is a block
diagonal matrix with blocks

J̃j,l =


wjλl(J) 1

wjλl(J) 1
. . .

wjλl(J) 1

wjλl(J)

 ,

and P̃ is a diagonal matrix obtained by concatenating P̃j,l = diag
({
w−n+1

j

}kl

n=1

)
.
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Proof. As J =
⊕m

l=1 Jl, we can focus on a single Jordan block. Fix l ∈ {1, . . . ,m}. We have

W ⊗ Jl = diag
(
{wj Jl}Kj=1

)
=

K⊕
j=1

wjJl ,

hence, we can focus once again on a single block. Fix j ∈ {1, . . . ,K}; the Jordan decomposition of
wjJl is given by P̃l = diag

({
w−n+1

j

}kl

n=1

)
and

J̃l =


wjλl(J) 1

wjλl(J) 1
. . . . . .

wjλl(J) 1

wjλl(J)

 .
To verify it, compute the (n,m) element(

P̃lJ̃lP̃
−1
l

)
n,m

=
∑
i,k

(
P̃l

)
n,i

(
J̃l

)
i,k

(
P̃−1

l

)
k,m

.

Since P̃l is a diagonal matrix, the only non-null entries are on the diagonal; therefore, i = n and
k = m

=
(
P̃l

)
n,n

(
J̃l

)
n,m

(
P̃−1

l

)
m,m

and the only non-null entries of J̃l are when m = n or m = n+ 1, hence

=


(
P̃l

)
n,n

(
J̃l

)
n,n

(
P̃−1

l

)
n,n

= wjλl (J) , m = n ,(
P̃l

)
n,n

(
J̃l

)
n,n+1

(
P̃−1

l

)
n+1,n+1

= w−n+1
j wn

j = wj , m = n+ 1 .

The thesis follows from assembling the direct sums back.

Lemma E.2 leads to the following result that fully characterizes the solution of (14) in terms of the
generalized eigenvectors and eigenvalues of M and W.
Proposition E.3. Consider (14) with M = PJP−1 and W ⊗ J = P̃J̃P̃−1, where J̃ and P̃ are
given in Lemma E.2. The solution of (14) is

vec(x)(t) =

K∑
l1=1

m∑
l2=1

exp (λl1(W)λl2(M)t)

kl2∑
i=1

cil1,l2

i∑
j=1

ti−j

(i− j)!
(λl1(W))

1−j
el1 ⊗ ψj

l2
(M) ,

where the coefficients cil1,l2 are given by

vec(x0) =

K∑
l1=1

m∑
l2=1

kl2∑
i=1

cil1,l2(I⊗P)P̃el1 ⊗ eil2

where
{
eil2 : l2 ∈ {1, . . . ,m} , i ∈ {1, . . . , kl2}

}
is the standard basis satisfying Peil2 = ψi

l2
(M).

Proof. By Lemma E.2, the eigenvalues of W⊗M and the corresponding eigenvectors and generalized
eigenvectors are

λl1(W)λl2(M) , el1 ⊗ ψ1
l2(M) , (λl1(W))−i+1el1 ⊗ ψi

l2(M)

for l1 ∈ {1, . . . ,K}, l2 ∈ {1, . . . ,m} and i ∈ {2, . . . , kl}. Hence, by Lemma E.1, the solution of
(14) is given by

vec(x)(t) =

K∑
l1=1

m∑
l2=1

exp (λl2(M)λl1(W)t)

kl2∑
i=1

cil1,l2

i∑
j=1

ti−j

(i− j)!
(λl1(W))1−j(el1 ⊗ ψj

l2
(L)) ,

where the coefficients cil1,l2 are given by

vec(x0) =

K∑
l1=1

m∑
l2=1

kl2∑
i=1

cil1,l2(I⊗P)P̃(el1 ⊗ eil2(M)) .
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E.1 Proof of Theorem 5.6

In the following, we reformulate and prove Theorem 5.6.

Corollary E.4. Let G be a strongly connected directed graph with SNA L ∈ RN×N . Consider the
initial value problem in (2) with diagonal channel mixing matrix W ∈ RK×K and α = 1. Then, for
almost all initial values x0 ∈ RN×K , the solution to (2) is HFD if

λK(W)<λ1(L) < λ1(W)λN (L)

and λ1(L) is the unique eigenvalue that minimizes the real part among all eigenvalues of L. Otherwise,
the solution is LFD.

Proof. Using the notation from Proposition E.3 and its proof, we can write the solution of the
vectorized form of (2) as

vec(x)(t) =

K∑
l1=1

m∑
l2=1

exp (−λl1(W)λl2(L)t)

kl2∑
i=1

cil1,l2

i∑
j=1

ti−j

(i− j)!
(λl1(W))1−j(el1 ⊗ ψj

l2
(L)).

As done extensively, we separate the terms corresponding to the frequency with minimal real
part. This frequency dominates as the exponential converges faster than polynomials for t going
to infinity. Consider the case λK(W)<(λ1(L)) < λ1(W)<(λN (L)). As λ1(L) is unique, the
product λK(W)< (λ1(L)) is the unique most negative frequency. Assume without loss of generality
that λK(W) has multiplicity one. The argument does not change for higher multiplicities as the
corresponding eigenvectors are orthogonal since W is diagonal. Then, λK(W)λ1(L) has multiplicity
one, and we calculate vec(x)(t) as

K∑
l1=1

m∑
l2=1

exp (−λl1(W)λl2(L)t)

kl2∑
i=1

cil1,l2

i∑
j=1

ti−j

(i− j)!
(λl1(W))1−j(el1 ⊗ ψj

l2
(L))

= ck1

K,1 exp (−tλK(W)λ1(L))
tk1−1

(k1 − 1)!
(eK ⊗ ψ1

1(L))

+ ck1

K,1 exp (−tλK(W)λ1(L))

k1∑
j=2

tk1−j

(k1 − j)!
(λK(W))1−j(eK ⊗ ψj

1(L))

+ exp (−tλK(W)λ1(L))

k1−1∑
i=1

ciK,1

i∑
j=1

ti−j

(i− j)!
(λK(W))1−j(eK ⊗ ψj

1(L))

+

K∑
l1=1

m∑
l2=2

exp (−λl1(W)λl2(L)t)

kl2∑
i=1

cil1,l2

i∑
j=1

ti−j

(i− j)!
(λl1(W))1−j(el1 ⊗ ψj

l2
(L))

= exp (−tλK(W)λ1(L)) t
k1−1

(
ck1

K,1

1

(k1 − 1)!
(eK ⊗ ψ1

1(L))

+ ck1

K,1

k1∑
j=2

t1−j

(k1 − j)!
(λK(W))1−j(eK ⊗ ψj

1(L))

+

k1−1∑
i=1

ciK,1

i∑
j=1

1

(i− j)!
ti−j−k1+1(λK(W))1−j(eK ⊗ ψj

1(L))

+

K∑
l1=1

m∑
l2=2

exp (−t(λl1(W)λl2(L)− λK(W)λ1(L)))

kl2∑
i=1

cil1,l2

·
i∑

j=1

ti−j−k1+1

(i− j)!
(λl1(W))1−j(el1 ⊗ ψj

l2
(L))

)
.
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We can then write the normalized solution as(
ck1

K,1

(k1 − 1)!
(eK ⊗ ψ1

1(L)) + ck1

K,1

k1∑
j=2

t1−j

(k1 − j)!
(λK(W))1−j(eK ⊗ ψj

1(L))

+

k1−1∑
i=1

ciK,1

i∑
j=1

ti−j−k1+1

(i− j)!
(λK(W))1−j(eK ⊗ ψj

1(L))

+

K∑
l1=1

m∑
l2=2

e−t(λK(W)λl2
(L)−λK(W)λ1(L))

kl2∑
i=1

cil1,l2

i∑
j=1

ti−j−k1

(i− j)!
(λl1(W))1−j(el1 ⊗ ψj

l2
(L))

)

·

∥∥∥∥∥ ck1

K,1

(k1 − 1)!

(
eK ⊗ ψ1

1(L)
)
+ ck1

K,1

k1∑
j=2

t1−j

(k1 − j)!
(λK(W))1−j(eK ⊗ ψj

1(L))

+

k1−1∑
i=1

ciK,1

i∑
j=1

ti−j−k1+1

(i− j)!
(λl1(W))1−j(eK ⊗ ψj

1(L))

+

K∑
l1=1

m∑
l2=2

exp (−t(λl1(W)λl2(L)− λK(W)λ1(L)))

·
kl2∑
i=1

cil1,l2

i∑
j=1

ti−j−k1

(i− j)!
(λl1(W))1−j(el1 ⊗ ψj

l2
(L))

∥∥∥∥∥
−1

2

.

All summands, except the first, converge to zero for t going to infinity. Hence,

vec(x)(t)

‖vec(x)(t)‖2
t→∞−−−→

∥∥∥∥∥ ck1

K,1

(k1 − 1)!
(eK ⊗ ψ1

1(L))

∥∥∥∥∥
−1

2

(
ck1

K,1

(k1 − 1)!
(eK ⊗ ψ1

1(L))

)
.

We apply Lemma D.2 to finish the proof for the HFD case. Note that ψ1
1(L) is an eigenvector

corresponding to λ1(L). The LFD case is equivalent. By Perron-Frobenius for irreducible non-
negative matrices, there is no other eigenvalue with the same real part as 1−λN (L) = λ1(I− L).

Remark E.5. If the hypotheses are met, the convergence result also holds for Lα. With the same
reasoning, we can prove that the normalized solution converges to the eigenvector corresponding to
the eigenvalue of Lα with minimal real part. It suffices to consider the eigenvalues and generalized
eigenvectors of Lα. However, we do not know the relationship between the singular values of
Lα, where we defined the fractional Laplacian, and the eigenvalues of L. Hence, it is much more
challenging to draw conclusions on the Dirichlet energy.

E.2 Explicit Euler

In this subsection, we show that the convergence properties of the Dirichlet energy from Theorem 5.6
are also satisfied when (2) is approximated via an explicit Euler scheme.

As noted in (11), the vectorized solution to (2) can be written as

vec(x)(nh) = (I− h (W ⊗ L))
n
vec(x0) ,

when α = 1. We thus aim to analyze the Jordan decomposition of Ln for L ∈ Cn×n and n ∈ N. Let
L = PJP−1, where J is the Jordan form, and P is a invertible matrix of generalized eigenvectors.

Consider a Jordan block Ji associated with the eigenvalue λi(M). For a positive integer n, the n-th
power of the Jordan block can be computed as:
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Jn
l = λl(L)

n



1
(
n
1

)
λl(L)

−1
(
n
2

)
λl(L)

−2 · · ·
(

n
kl−1

)
λl(L)

−kl+1

1
(
n
1

)
λl(L)

−1
(

n
kl−2

)
λl(L)

−kl+2

1
...

. . .
(
n
1

)
λl(L)

−1

1


We compute the n-th power of L as Ln = (PJP−1)n = PJnP−1, and we expand x0 as

x0 =

m∑
l=1

kl∑
i=1

cilPeil ,

where
{
eil : i ∈ {1, . . . kl} , l ∈ {1, . . . ,m}

}
is the standard basis and Peil = ψi

l(L) are the general-
ized eigenvectors of L. It is easy to see that

Lnx0 = PJnP−1

(
m∑
l=1

kl∑
i=1

cilPeil

)
= PJn

(
m∑
l=1

kl∑
i=1

cile
i
l

)
.

As Jn =
⊕m

l=1 J
n
l , we can focus on a single Jordan block. Fix l ∈ {1, . . . ,m}, and compute

PJn
l

(
kl∑
i=1

cile
i
l

)
= P

(
λl(M)nc1l e

1
l

)
+P

((
n

1

)
λl(M)n−1c1l e

1
l + λl(M)nc2l e

2
l

)
+P

((
n

2

)
λl(M)n−2c1l e

1
l +

(
n

1

)
λl(L)

n−1c2l e
2
l + λl(M)nc3l e

3
l

)
+ . . . .

We can summarize our findings in the following lemma.

Lemma E.6. For any L = PJP−1 ∈ RN×N and x0 =
m∑
l=1

kl∑
i=1

cilψ
i
l (L), we have

Lnx0 =

m∑
l=1

min{kl,n−1}∑
i=1

i∑
j=1

(
n

i− j

)
λl(L)

n−i+jcjlψ
j
l (L) .

We proceed with the main result of this subsection.
Proposition E.7. Let G be a strongly connected directed graph with SNA L ∈ RN×N . Consider
the initial value problem in (2) with diagonal channel mixing matrix W ∈ RK×K and α = 1.
Approximate the solution to (2) with an explicit Euler scheme with a sufficiently small step size h.
Then, for almost all initial values x0 ∈ CN×K the following holds. If λ1(L) is unique and

λK(W)<λ1(L) < λ1(W)<λN (L), (15)

the approximated solution is HFD. Otherwise, the solution is LFD.

Proof. As noted in (11), the vectorized solution to (2) with α = 1, can be written as

vec(x)(nh) = (I− h (W ⊗ L))
n
vec(x0).

Consider the Jordan decomposition of L = PJP−1 and the Jordan decomposition of W ⊗ J =
P̃J̃P̃−1, where J̃ and P̃ are specified in Lemma E.2. Then,

vec(x)(nh) =
(
I+ hW ⊗ (PJP−1)

)n
vec(x0)

= (I⊗P)(I− hW ⊗ J)n(I⊗P)−1vec(x0)
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= (I⊗P)(I− hP̃J̃P̃−1)n(I⊗P)−1vec(x0)

= (I⊗P)P̃(I− hJ̃)nP̃−1(I⊗P)−1vec(x0)

= (I⊗P)P̃(I− hJ̃)n((I⊗P)P̃)−1vec(x0).

Now, decompose x0 into the basis of generalized eigenvectors, i.e.,

vec(x0) =

K∑
l1=1

m∑
l2=1

kl2∑
i=1

cil((I⊗P)P̃)(el1 ⊗ eil2(L)).

Then, by Lemma E.6, we have

vec(x)(nh) =
K∑

l1=1

m∑
l2=1

min
{
kl2

,t−1
}∑

i=1

i∑
j=1

(
n

i− j

)
(1− hλl1(W)λl2(L))

n−i+j
cjl1,l2

(λl1(W))
1−j

ψl1(W)⊗ ψj
l2
(L).

Now, consider the maximal frequency, i.e.,

L1, L2 = argmax
l1,l2

{|1− hλl1(W)λl2(L)|} .

Then, the solution vec(x)(nh) can be written as

K∑
l1=1

m∑
l2=1

min
{
kl2

,n−1
}∑

i=1

i∑
j=1

(
n

i− j

)
(1− hλl1(W)λl2(L))

n−i+j
cjl1,l2ψl1(W)⊗ ψj

l2
(L)

= (1− hλL1
(W)λL2

(L))
n

·
K∑

l1=1

m∑
l2=1

min
{
kl2

,t−1
}∑

i=1

i∑
j=1

(
n

i− j

)
(1− hλl1(W)λl2(L))

n−i+j

(1− hλL1
(W)λL2

(L))
n cjl1,l2ψl1(W)⊗ ψj

l2
(L).

(16)

With a similar argument as in the proof of Theorem 5.6, we can then see that

vec(x)(nh)

‖vec(x)(nh)‖2
t→∞−−−→

c1L1,L2
ψL1(W)⊗ ψ1

L2
(L)

‖c1L1,L2
ψL1

(W)⊗ ψ1
L2
(L)‖2

,

where ψ1
L2
(L) is the eigenvector corresponding to λL2

(L). Note that for almost all x, we have
c1L1,L2

6= 0. Then ψ1
L2
(L) is also an eigenvector of I− L corresponding to the eigenvalue 1−λL2

(L).
By Lemma D.2, we have that the approximated solution is (1− λL2(L))-FD.

We finish the proof by showing that L2 = 1 if (15) is satisfied, and L2 = N otherwise. First,
note that either λK(W)<λ1(L) or λ1(W)<λN (L) are the most negative real parts among all
{λl(W)<λr(L)}l∈{1,...,K},r∈{1...,N}. Assume first that λK(W)<λ1(L) has the most negative real
part, i.e., (15) holds. Then, define

ε := max
l,r

|λK(W)<λ1(L)− λl(W)<λr(L)| ,

and assume h < ε ‖W‖2. Now it is easy to see that

2λK(W)<λ1(L)− hλK(W)2|λ1(L)|2 < 2λl(W)<λr(L)− hλl(W)2|λr(L)|2,

which is equivalent to (K, 1) = (L1, L2). Hence, the dynamics are (1− λ1(L))-FD. As (1− λ1(L))
is highest frequency of I− L, we get HFD dynamics. Similary, we can show that if λ1(W)<λN (L)
is the most negative frequency, we get LFD dynamics. Note that for the HFD argument, we must
assume that λ1(L) is the unique eigenvalue with the smallest real part. For the LFD argument, it is
already given that λN (L) has multiplicity one by Perron-Frobenius Theorem.
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E.3 GCN oversmooths

Proposition E.8. Let G be a strongly connected and aperiodic directed graph with SNA L ∈ RN×N .
A GCN with the update rule

xt+1 = LxtW,

where x0 ∈ RN×K are the input node features, always oversmooths.

Proof. The proof follows similarly to the proof of Proposition E.7. The difference is that instead of
(16), we can write the node features after t layers as

vec(xt) =

K∑
l1=1

m∑
l2=1

min
{
kl2

,t−1
}∑

i=1

i∑
j=1

(
t

i− j

)
(λl1(W)λl2(L))

t−i+j
cjl1,l2ψl1(W)⊗ ψj

l2
(L).

Now note that by Perron-Frobenius the eigenvalue λN (L) with the largest absolute value is real
and has multiplicity one. Then, maxl1,l2 |λl1(W)λl2(L)| is attained at either λ1(W)λN (L) or
λK(W)λN (L). Equivalently to the proof of Proposition E.7, we can show that the corresponding
GCN is 1 − λN (L)-FD. Now 1 − λN (L) = λ1(I− L), and λ1(I− L)-FD corresponds to LFD,
hence the GCN oversmooths.

F Appendix for the Cycle Graph Example

Consider the cycle graph with N nodes numbered from 0 to N − 1. Since each node has degree
2, the SNA L = A/2 is a circulant matrix produced by the vector v = (e1 + eN−1) /2. Denote
ω = exp (2πi/N), the eigenvectors can be computed as

vj =
1√
N

(
1, ωj , ω2j , . . . , ω(N−1)j

)
asociated to the eigenvalue λj = cos(2πj/N). First, we can note that λj = λN−j for all j ∈
{1, . . . , N/2}; therefore, the multiplicity of each eigenvalue is 2 except λ0 and, if N is even, λN/2.
Since the original matrix is symmetric, there exists a basis of real eigenvectors. A simple calculation

L<vj + iL=vj = Lvj = λjvj = λj<vj + iλj=vj

shows that <vj and =vj , defined as

<vj =
1√
N

(
cos

(
2πj n

N

))N−1

n=0

, =vj =
1√
N

(
sin

(
2πj n

N

))N−1

n=0

are two eigenvectors of the same eigenvalue λj . To show that they are linearly independent, we
compute under which conditions

0 = a<vj + b=vj .

We note that the previous condition implies that for all n /∈ {0, N/2}

0 = a cos

(
2πj n

N

)
+ b sin

(
2πj n

N

)
=
√
a2 + b2 sin

(
2πj n

N
+ arctan

(
b

a

))
Suppose a, b 6= 0, then it must be

2πj n

N
+ arctan

(
b

a

)
= kπ , k ∈ Z

which is equivalent to

2j n =

k − arctan

(
b

a

)
π

N , k ∈ Z
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The left-hand side is always an integer, while the right-hand side is an integer if and only if b = 0.
This reduces the conditions to 

a cos

(
2πj n

N

)
= 0

|a| sin
(
2πj n

N

)
= 0

which is true if and only if a = 0. Consider now an even number of nodes N ; the eigenspace of
λN/2 = −1 is

vN/2 =
1√
N

((−1)n)
N−1
n=0

hence, the maximal eigenvector of I− L guarantees homophily 0. Consider now a number of nodes
N divisible by 4; the eigenspace of λN/4 = 0 has basis

<vN/4 =
1√
N

(
cos
(πn

2

))N−1

n=0
, =vN/4 =

1√
N

(
sin
(πn

2

))N−1

n=0

Their sum is then equivalent to

<vN/4 + =vN/4 =
1√
N

(
cos
(πn

2

)
+ sin

(πn
2

))N−1

n=0

=

√
2√
N

(
sin
(πn

2
+
π

4

))N−1

n=0

=

√
2

N

(
sin
(π
4
(2n+ 1)

))N−1

n=0

=
1√
N

(1, 1,−1,−1, . . .)

hence, the mid eigenvector of L guarantees homophily 1/2. A visual explanation is shown in Figure 4.
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