
A Additional Explanation for the Methods1

A.1 Derivation of Eq. 10, 11, 122

Eq. 10: ∀F ∈ Rb×D, X(Y ;K) = Y K+K + F (I −KK+) is a solution to Y = XK.3

Proof. From the property of Moore-Penrose pseudo-inverse [Moo] we know that4

KK+K = K. (1)

Additionally, for a orthonormal K (with linearly independent columns), we have5

K+K = I. (2)

Then, right-multiply X(Y ;K) by K, we get6

X(Y ;K)K = Y K+K + F (I −KK+)K (3)
= Y + FK − FK = Y.

7

Eq. 11 can be derived similarly.8

Eq. 12 can be derived similarly knowing that K+ = V S−1UT .9

B More Experimental Results10

B.1 More Experiment Setup11

The detailed encoding and decoding transform is illustrated in Fig. 1. To extend the idempotent12

framework to near-idempotent framework, we change the first blocked convolution in the encoding13

transform to non-surjective by increasing its output channel number from 10 to 128. Since this blocked14

convolution is no longer surjective, it is no longer right-invertible. However, its corresponding layer in15

the decoding transform can be make surjective and right-invertible. Thus, we make its corresponding16

layer in the decoding transform surjective, and use the null-space enhancement on the encoding side.17

Coupling structure [Dinh et al., 2016] used in coupling enhancement (c-enhance) and coupling GDN18

(c-GDN) is illustrated in Fig. 2(a). For c-enhance, the scale s(·) and translation t(·) are convolution.19

For c-GDN, the scale s(·) and translation t(·) are GDN [Ballé et al., 2015]. Following the usage20

guideline in [Dinh et al., 2016], we concatenate two coupling structure with the opposite way of21

splitting in one c-enhance/c-GDN.22

In the ablation study, we test what will happen if all the blocked convolution are changed from23

right-invertible to invertible. To do this, we increase the output dimension of blocked convolution to24

its input dimension. Specifically, the output channel number is set to 4 times the input channel number,25

since the blocked convolution has a stride of 2. The changed setting for the blocked convolutions are26

(3, 12), (12, 48), (48, 192), (192, 768), respectively.27

We include the implement of other codecs as follows. For codecs that have open-source implementa-28

tions, we use that implementation. For codecs that do not have open-source implementations, we29

either use the data provided in the paper, or re-implement by ourselves if the detailed architecture is30

provided.31

• Implementations from CompressAI [Bégaint et al., 2020]: Balle2017[Ballé et al., 2017],32

Balle2018[Ballé et al., 2018], Cheng2020[Cheng et al., 2020], JPEG2000Taubman et al.33

[2002], BPG444Sullivan et al. [2012], VTM444[Bross et al., 2021]34

• Data from the original papers: Helminger2021[Helminger et al., 2021], Cai2022[Cai et al.,35

2022]36

• Our re-implementation: Kim2020[Kim et al., 2020]. Specifically, we re-implement the FI37

loss proposed in this work on Balle2018 [Ballé et al., 2018].38
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Figure 1: Detailed encoding and decoding transform for the proposed idempotent and near-
idempotent framework. blocked refers to the proposed block-rearranged convolution. The (input,
output) channels are annotated in the brackets, and stride is annotated using down-arrow. NE refers
to the proposed null-space enhancement, and f is learned parametric function. Here RBU/RBD are
the residual block used for upsampling/downsampling (Fig. 2(b)), respectively. c-enhance refers
to the proposed coupling enhancement using coupling structure (Fig. 2(a)). The kernel size of the
convolution is annotated in the brackets. c-GDN refers to the proposed right-invertible normalization
using coupling structure (Fig. 2(a)). Blanked rectangular refer to the right-inverse/inverse of the
corresponding layer, and has no additional weights.
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(b) Residual block used in null-space enhancement

Figure 2: Submodules used in the proposed framework: (a) coupling structure used in c-enhance and
c-GDN; (b) residual block downsampling (RBD) and residual block upsampling (RBU) used in the
f(·) of null-space enhancement.
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B.2 More Quantitative & Qualitative Results39

See Fig. 3-7 for more quantitative results.40

See Fig. 8-11 for more qualitative results.41

C More Discussion42

C.1 Limitation43

In this work, the surjective encoding transform is constructed using function composition of simple44

surjections. This construction strategy limits the latent dimension to be non-increasing throughout45

the encoding transform. This limitation contradicts the mainstream design logic of neural network,46

and is harmful to expressiveness.47

A function composition of surjections is always a surjection, but a surjection needs not to be a48

function composition of surjections [Mac Lane, 2013]. Thus this restriction could be lifted by more49

advanced construction strategy of surjection.50

C.2 Broader Impact51

Improve the rate-distortion of re-compression has positive social impact. Re-compression constantly52

happens in the transmission and redistribution of image data. Reducing the bitrate can save the53

resources, energy and the carbon emission during these processes.54

C.3 Reproducibility Statement55

All theoretical results are proven in Appendix. A. For experimental results, all the datasets used are56

publicly available, and the implementation details are provided in Appendix. B. Furthermore, the57

source code for reproducing experimental results are provided in supplementary materials.58
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Figure 3: PSNR-BPP curve on Tecnick. Note that Balle17 [Ballé et al., 2017] and Balle18 [Ballé
et al., 2018] are NOT idempotent and plotted here only for reference.
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Figure 4: MSSSIM-BPP curve on Kodak. All models are optimized for minimizing MSE. Note that
Balle17 [Ballé et al., 2017] and Balle18 [Ballé et al., 2018] are NOT idempotent and plotted here
only for reference.
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Figure 5: PSNR-BPP curve on Kodak. First-time compression performance is plotted in dotted line,
and re-compression performance (upto 50 times) is plotted in solid line.
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Figure 6: MSSSIM-BPP curve on Kodak. All models are optimized for minimizing MSE. First-time
compression performance is plotted in dotted line, and re-compression performance (upto 50 times)
is plotted in solid line.
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Figure 7: MS-SSIM drop upto 50 re-compression of near-idempotent codecs on Kodak. First-time
MS-SSIM is annotated in (·). All models are optimized for minimizing MSE.
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Ground-truth JPEG2000(50-th). BPP=0.798, PNSR=31.98

Balle2018(50-th). BPP=0.784, PNSR=18.25 Ours idempotent(50-th). BPP=0.953, PNSR=35.01

Figure 8: Qualitative comparison on reconstructed kodim06 image after 50 times re-compression.

Ground-truth JPEG2000(50-th). BPP=0.800, PNSR=32.86

Balle2018(50-th). BPP=0.590, PNSR=17.75 Ours idempotent(50-th). BPP=0.856, PNSR=35.12

Figure 9: Qualitative comparison on reconstructed kodim11 image after 50 times re-compression.
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Ground-truth JPEG2000(50-th). BPP=0.800, PNSR=26.12

Balle2018(50-th). BPP=1.949, PNSR=8.87 Ours idempotent(50-th). BPP=1.806, PNSR=32.91

Figure 10: Qualitative comparison on reconstructed kodim13 image after 50 times re-compression.

Ground-truth JPEG2000(50-th). BPP=0.798, PNSR=30.08

Balle2018(50-th). BPP=0.844, PNSR=17.40 Ours idempotent(50-th). BPP=1.129, PNSR=34.11

Figure 11: Qualitative comparison on reconstructed kodim24 image after 50 times re-compression.
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