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Abstract

The generalization capability of machine learning systems degenerates notably
when the test distribution drifts from the training distribution. Recently, Domain
Generalization (DG) has been gaining momentum in enabling machine learning
models to generalize to unseen domains. However, most DG methods assume that
training and test data share an identical label space, ignoring the potential unseen
categories in many real-world applications. In this paper, we delve into a more gen-
eral but difficult problem termed Open Test-Time DG (OTDG), where both domain
shift and open class may occur on the unseen test data. We propose Compaction
and Disambiguation (CODA), a novel two-stage framework for learning compact
representations and adapting to open classes in the wild. To meaningfully regu-
larize the model’s decision boundary, CODA introduces virtual unknown classes
and optimizes a new training objective to insert unknowns into the latent space by
compacting the embedding space of source known classes. To adapt target samples
to the source model, we then disambiguate the decision boundaries between known
and unknown classes with a test-time training objective, mitigating the adaptivity
gap and catastrophic forgetting challenges. Experiments reveal that CODA can
significantly outperform the previous best method on standard DG datasets and
harmonize the classification accuracy between known and unknown classes.

1 Introduction

The ability to generalize to unseen environments is considered a key signature of human intelli-
gence [12]. While deep neural networks have achieved great success in many machine learning
problems, they are brittle to distribution shifts between training and test domains, which often occur
in real-world applications. For example, when deploying object recognition systems in autonomous
vehicles, the ever-changing weather conditions (e.g. fog, rain, and snow) may deteriorate the per-
formance and raise concerns about their reliability over time. This motivates a challenging scenario
named Domain Generalization (DG) [68, 84], which extrapolates learning machines to related yet
previously unseen test domains by identifying the common factors from available source data.

From the perspective of representation learning, the mainstream paradigm for DG includes invariant
risk minimization [2, 1, 89], domain alignment [31], feature disentanglement [45, 36, 78], meta-
learning [29, 30], and augmentation-based invariant prediction [66, 74, 88]. In spite of the significant
progress in DG, the adaptivity gap [14] between source and target domains naturally exists and
emerges as an inevitable challenge. Therefore, some prior efforts [23, 24, 72, 11] strive to adapt
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the source-trained model through the lens of test-time adaptation [34], which uses unlabeled target
samples in an online manner. While these methods alleviate the adaptivity gap to some extent, there is
still no guarantee for any specific domain, especially if the domain divergence is large [3]. Moreover,
most existing DG methods are designed with the assumption that the label space in the source and
target domain are identical, which is too restrictive to be satisfied in practice.

To enable machine learning systems to be resilient to an open world, we aim at a more practical yet
under-explored problem named Open Test-time Domain Generalization (OTDG), where both domain
shift and open class occur in the unseen target data. The primary challenge of the proposed problem
lies in addressing two critical aspects: (1) model generalization with an incomplete training label
space, and (2) online model adaptation with asymmetric test label space.

Motivated by this, we propose a novel framework for OTDG, termed Compaction and Disambigua-
tion (CODA). Our key idea is to enforce constraints on the decision boundaries during training using
labeled source data and refine them during test time using unlabeled target data. To regularize the
model’s decision boundary and make the model expandable, CODA introduces a set of virtual un-
known classes and optimizes a novel training objective in conjunction with the standard cross-entropy
loss. The response to known- and unknown-class logits will be activated for both real and synthesized
samples. This process embeds unknowns into the latent space by compacting the embedding space
of known source classes, thereby reserving sufficient latent space for target unknown classes. To
disambiguate the decision boundaries between known and unknown classes, we propose a novel
prototype-based test-time adaptation pipeline. Specifically, the test-time classification should be
subjected to three constraints: (1) consistency between the predicted class distributions and the
estimated class conditionals, (2) class-wise sample reliability for ensuring the quality of target pseudo
labels, and (3) semantic consistency between source-trained and present model predictions.

The main contributions are summarized as follows:

• We propose CODA, a simple and effective DG framework to mitigate domain shift and
identify open classes in unseen test environments.

• We introduce a virtual unknown optimization process to make the model expandable for
open classes, and a test-time training objective to match the real test data to corresponding
known and unknown class patterns.

• We conduct extensive experiments and demonstrate that CODA outperforms previous
methods on a series of DG benchmarks.

2 Preliminaries

Problem setup. Let us formally define the OTDG problem. We have access to a source domain
Ds = {(xi

s, y
i
s)}

ns
i=1 of ns labeled data points and multiple unseen target domains Dt = {(xj

t )}
nt
j=1

of nt unlabeled data points. Let Cs and Ct be the source and target class sets, respectively. In OTDG,
we have Cs ⊂ Ct and Cut = Ct \ Cs is referred to as unknown classes. Assume that X is the input
space, Z is the latent space, and Y is the output space. The predictor f = h ◦ g is comprised of
a featurizer g : X 7→ Z that learns to extract embedding features, and a classifier h : Z 7→ Y
that makes predictions based on the extracted features. The goal of OTDG is to find a predictor
f : X 7→ Y that generalizes well to all unseen target domains. Although the labeling function ht is
unknown, we assume that we have access to unlabeled instances from Dt at test time. In addition, we
present the comparison of different problem settings in Table 1.

Unknown-aware training. To solve OTDG, a simple baseline is to train a (|Cs|+1)-way classifier [90,
77, 9], where the additional dimension is introduced to identify the unknown. Formally, we define
the standard cross-entropy loss as:

LCE(f(x), y) = − log
exp(fk(x))∑

c∈|Cs|+1 exp(fc(x))
, (1)

where f(x) ∈ R|Cs|+1 denotes the network’s logit and fk(x) is the k-th element of f(x) correspond-
ing to the ground-truth label y. As shown in Figure 1 (a), however, such optimization fails to activate
the network’s response to unknown classes. In this work, we first introduce a simple yet very effective
baseline [9] for OTDG. Their key idea is to directly activate the unknown’s logit by optimizing its

2



Table 1: Comparison of related machine learning problems. DA refers to Domain Adaptation and
OOD stands for Out-of-Distribution. ‘One-pass’ indicates that target domain data only passes the
network once during the whole process including the training and testing phases.

Problem Setting Training Test-time One-pass
Training Data Training Loss Testing Loss Domain shift Open class Adaptivity gap

Open-Set DA xs, ys,xt L(xs, ys) + L(xs,xt) – ✓ ✓ ✓ ×
Source-Free DA xt L(xt) – ✓ × ✓ ×
OOD Detection xs, ys L(xs, ys) – × ✓ × ✓
Test-Time Adaptation xs, ys L(xs, ys) L(xt) ✓ × ✓ ✓
Test-Time DG xs, ys L(xs, ys) L(xt) ✓ × ✓ ✓
Open-Set DG xs, ys L(xs, ys) – ✓ ✓ × ✓
OTDG (Ours) xs, ys L(xs, ys) L(xt) ✓ ✓ ✓ ✓

(a) (b) (c)

Figure 1: The decision boundaries learned by different unknown-aware training objectives: (a) Eq. 1,
(b) Eq. 2, and (c) Eq. 3 + Eq. 4. These toy examples are generated by scikit-learn toolkit. Yellow, blue,
orange, and pink points represent the known-class samples, while black points are unknown-class
samples. Different clusters of back points stand for different unknown classes.

likelihood, without affecting the ground-truth classification. For a source sample (xs, ys) ∈ Ds, we
minimize the negative log-likelihood w.r.t. unknown logit to increase the unknown probability,

LUAT(f(x), y) = LCE(f(x), y)− log
exp(fu(x))∑

c∈|Cs|+1,c ̸=y exp(fc(x))
, (2)

where fu(x) is the unknown’s logit. Eq. 2 makes the unknown class probability respond to any input
sample, irrespective of its class label. Since the learning process is driven by the cross-entropy loss
related to the ground-truth category, Eq. 2 does not hurt the performance of known classes.

3 Proposed Method

We propose CODA (Figure 2), a simple two-stage OTDG framework for discovering unknown classes
with the help of known ones. The specific implementation of the two stages is described as follows.

3.1 Training-Time Source Compaction

The source compaction stage preserves sufficient space for the upcoming unknown classes without
using real target data during training. Since we have no a priori knowledge or assumptions about
the characteristics (e.g., number and attribute) of unknown classes, it is prohibitively difficult to
learn meaningful representations beforehand. To begin with, we make a mild assumption that the
unknown classes should be far away from all known classes in the embedding space (category
shift). In practice, there are two choices for accommodating these unknown classes: (1) low-density
region (Figure 1 (b)), and (2) between-class region (Figure 1 (c)). The former is intuitive and could
be achieved via Eq. 2, which naturally corresponds to these regions. However, the multi-modal
structure of unknown-class data is underspecified, i.e., different unknown classes should not occupy
the same region. By contrast, the latter is able to implicitly separate different unknowns and model
the relationships between known and unknown classes. To make the model expandable, our key idea
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Figure 2: Overview of the proposed CODA, which consists of two novel components: (1) Training-
time source compaction to make the model expandable for open classes; (2) Test-time target
disambiguation to discriminate the decision boundaries with a test-time training objective.

is to compact the source embedding space by (i) making real known samples give response to both
known and unknown classes, and (ii) inserting virtual unknown samples between known-class pairs.

Optimization on real known-class samples. In addition to the original source classes, we introduce
a set of virtual classes Cv within the source embedding space to mimic the existence of unknown
classes. To accommodate the virtual unknown classes, we regularize the embedding space by pushing
known-class samples closer to the decision boundaries:

Lreal(f(x), y) = LCE(f(x), y)− log
exp(fû(x))∑

c∈|Cs|+|Cv|,c ̸=y exp(fc(x))
, (3)

where fû(x) is the unknown’s logit, having the largest activation among Cv .

Optimization on virtual unknown-class samples. Despite the activation of the network’s response
to the introduced unknown classes, the “winner-takes-all” nature of softmax-based classification still
leaves the unknown category unable to compete effectively with known ones (cf. Figure 2). To mimic
test environments, we synthesize virtual unknown samples. Technically, we synthesize unknown
samples at the feature level for model regularization, without using external data, i.e., dashed points
in Fig. 1 (c). We introduce manifold mixup [64] for synthesizing unknowns in the between-class
regions, which are less confident for current decision boundaries. For two random samples xi and xj

from different classes, we mix their embedding features as: ẑ = µ · g(xi) + (1− µ) · g(xj), where µ
is the mixing coefficient. The optimization objective for the synthesized unknown ẑ is defined as:

Lvirtual(h(ẑ), ŷ) = LCE(h(ẑ), ŷ)− log
exp(hk′(ẑ))∑

c∈|Cs|+|Cv|,c ̸=ŷ exp(hc(ẑ))
, (4)

where ŷ represents the label of ẑ regarding unknown class, i.e., having the largest activation among
Cv. hk′(ẑ) is the known’s logit, having the largest activation among Cs. The first term in Eq. 4 is a
standard self-training loss. Similar to Eq. 3, the second term activates the response of ẑ to its most
related known class. In essence, apart from the standard classification loss (the first term in Eq. 3 and
Eq. 4), we activate the response of the real known class towards unknowns (Eq. 3) and the response
of the virtual unknown class towards the known ones (Eq. 4).
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3.2 Test-Time Target Disambiguation

Although we have allocated the embedding space for unknown classes, how to deploy the source-
trained model on real test data is yet to be thoroughly studied. In particular, we identify two major
challenges: (i) optimality gap between source and target domains, and (ii) catastrophic forgetting in
open and dynamic test environments. In OTDG, we define the optimality gap as follows.

Definition 1 (Optimality Gap) Let H ⊆ {h|h : Z 7→ Y} be the hypothesis class. εS(·) and
εT (·) denote the expected risk on source and target domains. For any hypothesis h, we have
εT (h

t) < εT (h
∗), where h∗ = argminh∈H εS(h) + εT (h) and ht = argminh∈H εT (h).

Definition 1 suggests that it is not feasible to find a universal optimal classifier that applies to
both source and target domains. In that sense, the classifier, initially trained on source data, needs
additional refinement to adapt effectively to the target patterns. Technically, we resort to TTA [34] to
mitigate the above issues using unlabeled test data in an online manner. Conventional training-based
TTA methods [67] usually need batches of data for self-training (e.g. entropy minimization) and/or
heuristic self-supervision tasks [10]. On the other hand, training-free methods [23] require expensive
tweaking of the threshold and only bring a marginal performance gain. Moreover, these approaches
struggle to handle open-class scenarios, making them susceptible to negative transfer (i.e. semantic
misalignment). To address these challenges, our proposed target disambiguation stage aligns the
unlabeled target samples to their corresponding class patterns through the following process.

We construct a memory bank S = {S1, · · · ,S|Cs|+|Cv|} for memorizing the embedding z and logits
f(x) (or h(z)) of target samples. We compute a set of class prototypes {pk}|Cs|+|Cv|

k=1 based on logits
in S. Following [23, 24], the memory bank is initialized with the weights of the linear classifier. Let
N (x) be the Nearest Neighbor (NN) of x in S. For each test sample x3, we search its NN in S by:
N (x) := {z ∈ S|sim(g(x), z) ≤ θNN}, where sim(·) is the cosine similarity and θNN is a threshold
to control the number of NN. The model predictions would be given by the similarity between sample
embedding and the class prototype, i.e., p(y|x) ∝ sim⟨pk, z⟩. Formally, for z ∈ N (x), the likelihood
of the prototype-based classifier assigning z to the k-th class can be calculated as follows:

p(y = k|z) = exp(−sim(h(z),pk)/τ)∑
c exp(−sim(h(z),pc)/τ)

, k = 1, 2, ..., |Cs|+ |Cv|, (5)

where τ is a temperature scaling parameter. We estimate the class conditionals with N (x) as:

p̂k =
1

|N (x)|
∑

z∈N (x)

1(argmax
c

p(c|z) = k), (6)

where 1(·) is an indicator function. Then, we can update the global class prototype computed from
the whole S in a moving-average style,

pk ← µpk + (1− µ)p̂k, (7)

where µ ∈ [0, 1] is a preset scalar and p̂k can be regarded as the local class prototype. Given a
batch of test samples Bt, we use self-training for model updating (g and h), i.e., minimizing the
cross-entropy loss between classifier’s prediction f(x) and the estimated class prior distribution pk:

LST(x) =
1

|Bt|
∑
x∈Bt

LCE(pk, f(x)), (8)

Semantic consistency. To resist catastrophic forgetting during the online adaptation process, we
enforce semantic consistency between the output of f0 (source-trained model) and fI (target model)
by optimizing the cross-entropy loss between their predictions:

LSC(x) = −σ(f0(x)) log σ(fI(x)), (9)

where I represents the number of iterations and f0 is fixed throughout the testing phase.

Reliable sample selection. In the early stage of training, the estimation of target pseudo labels may
be unreliable and thus is risky to error accumulation. To improve the quality of pseudo labels and

3We omit the subscript t for simplicity.
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reduce the influence of false class estimations, we introduce an entropy-based weighting strategy to
select reliable samples. Specifically, we define the scoring function as follows:

S(x) = 1(H(x) < θ0) exp(θ0 −H(x)), (10)

where H(·) is the Shannon entropy of sample and θ0 is a pre-defined threshold. In this way, we can
allocate larger weights to target samples with lower uncertainties and smaller weights to those with
higher uncertainties, effectively prioritizing more confident predictions.

Test-time training objective. Formally, the overall optimization objective can be formulated as:

LTTT(x) = S(x)LST(x) + λLSC(x), (11)

where λ is a trade-off parameter. The proposed LTTT embraces the complementary strengths of
parametric (softmax-based) and non-parametric (prototype-based) classifiers.

4 Experiments

4.1 Setup

Benchmarks. We conduct extensive experiments on four standard DG benchmarks to verify the
effectiveness of CODA. (1) PACS [28] has 9,991 images and presents remarkable distinctions in
image styles. It is comprised of four domains each with seven classes, i.e., Photo, Art Painting,
Cartoon, and Sketch. Dog, elephant, giraffe, and guitar are used as Cs while the remaining 3
classes are Cut . (2) Office-Home [63] is gathered from both office and home environments, and its
domain shifts originate from variations in viewpoint and image style. It has 15,500 images of 65
classes from four domains, i.e., Artistic, Clipart, Product, and Real World. Arranged in alphabetical
order, the initial 15 classes are designated as Cs, and the remaining 50 classes are assigned to Cut . (3)
Office-31 [48] encompasses 31 classes harvested from three distinct domains: Amazon, DSLR, and
Webcam. The 10 classes shared by Office-31 and Caltech-256 [18] are used as Cs. In alphabetical
order, the final 11 classes, combined with Cs, constitute Ct. (4) Digits, a dataset varying in background,
style, and color, encompasses four domains of handwritten digits, including MNIST[26], MNIST-
M[17], SVHN[42], USPS[22], and SYN [17]. We utilize MNIST as the source domain, while the other
datasets serve as target domains. Numbers from 0 to 4 make up Cs.

Evaluation Protocols. In line with prior works [5, 90, 77], we utilize the H-score (hs) [16] as our
main evaluation criterion. The hs score balances the significance between known and unknown
classes, emphasizing that both groups should have high and equivalent accuracy. Additionally, the hs
score circumvents the trivial solution where a model would predict all samples as known classes. The
classification accuracy for both known (acck) and unknown (accu) classes are also reported.

Implementation Details. For PACS, Office-Home, and Office-31, we employ ResNet-18 [19],
pre-trained on ImageNet, as the backbone network. For Digits, we employ the LeNet [25] with the
architecture arranged as conv-pool-conv-pool-fc-fc-softmax. The training is performed using SGD
with a momentum of 0.9 for 100 epochs, and we set the batch size to 64. Our experiments are built
upon Dassl [87] (a PyTorch toolbox developed for DG), covering aspects of data preparation, model
training, and model selection. We report the means over 5 runs with different random seeds.

4.2 Baselines

In experiments, we empirically compare CODA against five types of baselines: (1) OSDG: CM [90]
and One Ring-S [77]. (2) OSDA: OSBP [49] and ROS [5]. (3) OD: MSP [20], LogitNorm [71],
and DICE [56]. (4) SFDA: SHOT [35] and AaD [76]. (5) TTA: TTT [58], Tent [67], MEMO [80],
TAST [24], and FAU [69]. Since TTA methods are incapable of directly handling unknown-class
samples, we adopt the approach from [90], using the entropy of the softmax output as the final
prediction. For ERM [60], we follow the same strategy for identifying unknowns.

4.3 Results

Our results are summarized in Table 2. For each dataset, CODA outperforms all compared methods
by a considerable margin in terms of hs. For instance, in comparison to the previous best-performing
OSDG baseline [77], CODA achieves increases in hs by 16.8% for PACS, 4.0% for Office-Home,
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Table 2: Accuracy (%) on PACS, Office-Home, Office-31, and Digits datasets.

Regime Method PACS Office-Home Office-31 Digits
acck accu hs acck accu hs acck accu hs acck accu hs

OSDA OSBP [49] 40.6 49.5 44.6 47.1 66.9 55.3 75.8 84.3 77.7 35.6 70.6 40.5
ROS [5] 35.6 66.4 46.4 50.8 77.5 60.8 71.7 80.0 75.6 20.1 48.6 34.9

OD
MSP [20] 38.9 62.5 46.4 52.7 75.6 62.0 49.7 89.2 63.8 17.2 87.1 28.8

LogitNorm [71] 35.1 47.6 38.3 56.3 56.5 56.1 41.0 71.2 52.1 26.8 51.2 35.2
DICE [56] 44.0 53.4 49.2 61.5 58.8 59.9 72.8 61.1 66.4 35.0 47.6 40.3

SFDA SHOT [35] 51.2 34.9 40.8 52.5 32.4 44.3 84.8 60.2 70.4 27.4 20.3 23.3
AaD [76] 45.1 40.0 42.0 59.4 58.7 58.9 70.1 85.3 76.9 25.6 26.9 26.2

TTA
TTT [58] 36.9 44.6 38.9 52.0 45.9 47.2 35.4 79.6 49.0 40.1 41.1 40.6
Tent [67] 25.2 43.1 31.7 33.6 45.9 38.7 56.0 85.1 67.5 27.2 41.1 32.7

MEMO [80] 37.9 52.3 44.5 49.0 55.6 52.1 59.8 72.7 65.6 21.7 56.1 31.3

OSDG

ADA [66] 54.2 30.9 36.4 67.9 25.4 36.2 85.6 25.2 38.7 57.2 15.1 20.1
ADA+CM [90] 56.4 45.6 43.0 65.0 40.4 48.5 83.0 34.5 48.5 49.2 52.1 39.9
MEADA [81] 54.1 31.4 36.2 67.6 25.7 36.4 85.8 25.1 38.6 57.6 29.8 30.4

MEADA+CM [90] 54.3 46.6 42.7 64.9 40.5 49.6 82.8 41.1 54.7 52.3 46.1 38.7
One Ring-S [77] 43.7 49.4 41.5 56.9 69.0 62.3 67.3 77.0 71.3 33.2 51.3 40.3

OTDG ERM [60] 52.3 27.0 36.1 66.9 23.7 34.3 85.1 27.0 40.7 56.4 13.0 18.0
CODA (ours) 54.3 63.8 58.3 59.7 74.6 66.3 87.5 75.4 81.0 31.5 60.1 41.3
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Figure 3: Performance comparisons of different methods as testing proceeds on the PACS dataset.

9.7% for Office-31, and 1.0% for Digits. If we focus on the hard generalization tasks, such as
PACS, CODA exhibits larger performance gains than on other tasks. Moreover, three trends can be
observed: (1) Compared to OSDA and SFDA methods that usually optimize with target data offline,
CODA achieves superior performance in an online adaptation manner. (2) The acck and accu of
Tent [67] and LogitNorm [71] exhibit significant imbalance as both methods tend to predict all data as
known-class samples (i.e. shortcut learning). This verifies the benefits of CODA in mitigating shortcut
learning. (3) OD methods achieve very competitive results compared to other types of baselines.
The rationale is that they usually do not involve test-time adjustment and thus have better stability.
(4) The performance of different types of baseline methods varies across benchmarks. For instance,
MEMO (TTA) achieves the second-best result in PACS but has relatively inferior performance in
Office-Home and Digits. Instead, CODA exhibits consistent improvements on all benchmarks.

Figure 4:Top: ERM. Bottom: CODA.

In addition, we provide performance comparisons of dif-
ferent methods (i.e., ERM [60], MSP [20], TAST [24],
and our CODA) as testing proceeds on the PACS dataset
(trained on domain Art Painting). To facilitate a fair com-
parison, both MSP and TAST will apply to the models
that have been trained by our source compaction stage.
Figure 3 shows that ERM and TAST substantially increase
acck and maintain it at a very high level, which severely
impedes the improvements of hs. Interestingly, as the
number of testing epochs increases, TAST underperforms
compared to ERM. By contrast, CODA dynamically harmonizes the relations between acck and accu
(i.e., suppresses acck and hence allows accu to grow), which is reflected by the monotonic increase
of hs. Figure 4 shows Grad-CAM [52] visualizations of baseline (ERM) and our method (CODA)
on the PACS dataset. We can see that the hot zones activated by CODA are more complete and
reasonable, providing a reliable semantic understanding of the foreground object.
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Figure 5: Predictions from models trained with and without target disambiguation.

4.4 Ablation Studies

Table 3: Ablation of CODA on four classification
benchmarks. hs (%) is reported.

SC TD PACS Office-Home Office-31 Digits

× × 36.1 34.3 40.7 18.0
✓ × 51.2 64.8 75.3 39.0
× ✓ 49.8 61.7 72.3 37.5
✓ ✓ 58.3 66.3 81.0 41.3

Ablations of key components in CODA. We
carry out ablation studies in Table 3, evaluating
the effect of source compaction (SC) and target
disambiguation (TD) proposed in CODA. When
we exclude SC from CODA, model predictions
are made based on the entropy of the output in
conjunction with a predetermined threshold [90].
From the table, we can observe that adding SC
and TD could improve the generalization per-
formance, which verifies their individual contributions for solving domain shifts and open classes.
Moreover, our method that integrates both SC and TD achieves the best performance, revealing the
synergistic effect between the two components.

Analysis on target disambiguation. In Figure 5, we plot the predictions on known- and unknown-
class test samples from the models trained with and without target disambiguation. The left image is
a battery (known), and the right image is a clipboard (unknown). For the known classes, a model
lacking disambiguation often makes uncertain predictions, especially for hard samples that bear high
resemblance to other classes. For the unknown class, a model without disambiguation tends to give a
high response to an incorrect class and suppress responses to other classes. In contrast, our target
disambiguation stage can achieve more accurate predictions by recovering the semantic relationships
among classes from unlabeled data, thereby enhancing the model’s generalization performance under
both domain shift and open classes. In Figure 6 (a)-(b), we investigate the the impact of varying
the test batch size on three methods, TAST [24], FAU [69], and CODA (ours). As the batch size
varies, CODA consistently delivers superior performance compared to TAST and FAU, revealing the
advantages of the proposed online adaptation strategy.

Table 4: Analysis on unknown-aware training objective.

Method PACS Office-Home Office-31 Digits

Eq. 1 36.1 34.3 40.7 18.0
Eq. 2 41.1 58.9 63.0 39.3
Eq. 3 46.8 62.4 72.6 38.6
Eq. 4 43.2 60.3 70.7 37.4

Eq. 3 + Eq. 4 51.2 64.8 75.3 39.0

Analysis on unknown-aware training
objective. We empirically compare dif-
ferent unknown-aware training objec-
tives discussed in Section 2 and Sec-
tion 3.1, i.e., Eq.(1)-(4) and their com-
binations. For a fair comparison, we do
not involve any TTA strategies including
our target disambiguation. The results
are reported in Table 4. We can observe
that our full source compaction is clearly better than its variants, revealing the superiority of our
optimization procedures on both real known-class samples and virtual unknown-class samples.

Analysis on unknown classes. In Figure 6 (c)-(d), we study the impact of varying the number of
known classes on three methods, ERM [60], One Ring-S [77], and CODA (ours). Note that the total
number of classes (i.e. |Cs ∪ Ct|) remains unchanged. Even when the number of known classes is
small, CODA still exhibits superior performance. This advantage remains consistent as the number
of known classes changes. Consequently, CODA is capable of handling extreme scenarios.

Feature visualization. We use t-SNE [59] to visualize the features of four models on Office-31
dataset, i.e., ERM, One Ring-S, Source Compaction, and CODA (full). The results are depicted
in Figure 7, where various colors, excluding gray, signify different known classes, and gray points
represent all unknown classes. It is noteworthy that the embedding features learned by two baselines
(ERM and One Ring-S) fail to present a clear separation, resulting in ambiguous boundaries among
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Figure 6: (a)-(b) The influence of test batch size. (c)-(d) The influence of varying the number of
known classes. Figures (a) and (c) are plotted based on the Office-Home dataset, while figures (b)
and (d) are derived from the PACS dataset.

(a) ERM (b) One Ring-S [77] (c) Source Compaction (d) CODA (full)

Figure 7: t-SNE visualization of the learned features on the Office-31 dataset.

different classes particularly between known and unknown ones. Instead, CODA can learn the intrinsic
structure (“manifold”) of the target samples, providing more discriminable clustering patterns.

5 Related Work

Domain Generalization (DG). DG is concerned with the training of a model using data from either
multiple or a single source domain, with the goal of achieving good generalization to previously
unseen target domains. Mainstream approaches usually involve invariant learning and robust learning
with elaborate training objectives. Based on the focus of this paper, we classify existing methods
into three categories and provide descriptions as follows. (1) Closed-set DG. Existing methods can
be roughly divided into four categories: feature matching-based [32, 31, 40, 91, 83], decomposition-
based [46, 45, 13, 39, 54, 36, 78], augmentation-based [65, 85, 86, 74, 41, 88, 8], and meta-learning-
based approaches [29, 33, 30, 37, 7]. (2) Open-set DG. It is worth noting that very few works have
delved into the exploration of DG in open-set scenarios. A handful of recent studies [53, 90, 77, 9]
started to consider the existence of both known and unknown classes in novel DG settings, such as
Open-Set DG (OSDG) [90, 77]. For example, Yang et al. [77] hold the view that any category other
than the ground-truth can be considered as part of the unknown classes. Chen et al. [9] first activate
the unknown’s logit via an unknown-aware training loss and then introduce a test-time adjustment
strategy to refine the model prediction. Zhu et al. [90] rely on heuristic thresholding mechanisms
to distinguish known- and unknown-class samples. (3) DG by test-time adaptation. According to
Dubey et al. [14], a model trained solely on source data will inevitably experience an “adaptivity gap”
when it is directly employed on target domains, emphasizing the necessity of on-target adaptation.
Grounded on this insight, several recent works [79, 73, 72, 11] resort to TTA for mitigating the
adaptivity gap, such as adaptive risk minimization [79], energy-based sample adaptation [72], and
improved self-supervised learning tasks [11].

Test-Time Adaptation (TTA). TTA [34] is an emerging paradigm that has demonstrated immense
potential in adapting pre-trained models to unlabeled data during the testing phase. A plethora of
approaches [35, 58, 67, 23, 43, 10, 80, 69] have been developed to improve the predictions of source-
trained models on target domain with online training/adaptation strategies. TTT [58] introduces
self-supervised learning tasks (e.g. rotation classification) to both source and target domains. Tent [67]
leverages the batch statistics of the target domain and optimizes the channel-wise affine parameters
by entropy minimization. T3A [23] proposes to use class prototypes for adjusting predictions and
introduces a support set to memorize representative and reliable samples. TAST [24] improves T3A
by proposing a nearest neighbor information induced self-training framework.
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Out-of-Distribution Detection (OD). OD [75], which seeks to identify novel instances that the
model has not encountered during training, is close to OTDG setting. Prevailing OD methods center
on creating OOD scoring functions, for example, confidence-based techniques [4, 20, 21], distance-
based scores [27, 51, 57], and energy-based scores [38, 55]. Although promising, the OD approach is
limited to binary classification problems and lacks the capability to effectively explore domain shift
and open class challenges in the test data.

There are also other topics related to open-world machine learning [44] that bear certain relevance
to our work, including open-set recognition [50, 62], novel class discovery [15, 61], zero-shot
learning [47, 70], and class-incremental learning [6, 82], to name a few. Compared to previous
methods, our work addresses two types of open-world situations (i.e., domain shift and open class),
supporting generalization capabilities consistently throughout the training and inference phases.

6 Conclusion
In this paper, we solve the problem of OTDG where both domain shift and open classes may
concurrently arise on the unseen test data. We introduce a two-stage framework (CODA) for efficiently
learning what we don’t know in the wild. At the training stage, we compact the embedding of source
known classes and thus reserve space for target unknown classes. In the testing phase, we introduce
a training objective to mitigate the optimality gap between domains while avoiding catastrophic
forgetting. Empirically, CODA achieves superior performance on standard DG benchmarks.
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