
Appendix1

This document provides additional information complementing the main paper. First, we describe2

details pertaining to different distillation procedures used in Sec. 1. Then, in Sec. 2, we detail the3

iterative FGSM [7] used to create adversarial images. Following that, in Sec. 3, we perform more4

analyses to further dissect the distillation process, which corroborates our findings presented in the5

main paper. Finally, we present the top-1 accuracy of all the models, as well as the results shown6

in the main paper with their error bars, in Sec. 4. Additionally, we have provided scripts used for7

evaluation performed in Sec. 4.2 and 4.3; please see readme.txt.8

1 Training details9

ImageNet experiments: We first describe the hyper-parameters used for different distillation objec-10

tives.11

• ResNet50 → ResNet18:12

– KL: γ = 0.5, α = 0.513

– Hint: γ = 1.0, β = 5.014

– CRD: γ = 1.0, β = 0.815

• VGG19 → VGG11:16

– KL: γ = 1.0, α = 0.217

– Hint: γ = 1, β = 0.518

– CRD: γ = 1, β = 0.819

• VGG19 → ResNet18:20

– KL: γ = 0.9, α = 0.121

– Hint: γ = 1, β = 0.222

– CRD: γ = 1, β = 1.223

• ViT → ResNet18:24

– KL: γ = 1.0, α = 0.225

– Hint: γ = 1, β = 126

– CRD: γ = 1, β = 0.227

• Swin-Base → Swin-Tiny:28

– KL: γ = 0.1, α = 0.929

– Hint: γ = 1, β = 130

– CRD: γ = 1, β = 0.831

• ResNet50 (sty) → ResNet18:32

– KL (lower): γ = 0.1, α = 0.933

– KL (higher): γ = 0.9, α = 0.134

– Hint (lower): γ = 1.0, β = 0.235

– Hint (higher): γ = 1.0, β = 100.036

– CRD (lower): γ = 1.0, β = 0.837

– CRD (higher): γ = 1.0, β = 1.238

• ResNet50 (col) → ResNet18:39

– KL: γ = 0.5, α = 0.540

– Hint: γ = 1.0, β = 5.041

– CRD: γ = 1.0, β = 0.842

• ResNet50 → ResNet18 (w/o crop):43

– KL: γ = 0.5, α = 0.544

– Hint: γ = 1.0, β = 0.245

– CRD: γ = 1.0, β = 0.846
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The temperature used in KL (Eq. 1 in main paper) is set to 4, and the temperature used in CRD47

(Eq. 3 in main paper) is set to 0.07. For CRD, the number of negative samples (N in Eq. 3) is48

set to 16384. For the other details, we follow the official PyTorch recommendations for training49

CNN-based classification models on ImageNet.1 We train the independent students for 90 epochs,50

and all the distilled students for 100 epochs on ImageNet. For teacher models, we try to use those51

officially provided by PyTorch, whenever available. For all CNN teachers (except for stylized Res5052

which is taken from here2) and ViT, we take models from PyTorch torchvision model zoo.3 For Swin53

transformer models, we follow the training process and pretrained models given by the authors.4 We54

use one 3090 Ti for training ResNet18, and two 3090 Ti for training VGG11. Each experiment takes55

about 2-3 days. Four A6000 are used to train Swin-T, which takes around 5 days to train.56

When performing distillation using Hint, we need to specify the intermediate layers at which the57

student will mimic the teacher. Following [11], we usually choose layers in the middle for that58

purpose. For ResNets, we choose feature after the second residual block, which has a resolution of59

28×28. For VGG11 and VGG19, we choose feature after 4th and 7th conv layer whose resolution is60

56×56. For Swin, we choose the feature coming after ‘stage 2’ (refer to Fig3 in [9]), which produces61

a feature of 28×28 resolution. In the case of ViT-B-32 → ResNet18, the intermediate layer for62

ResNet18 is chosen after the fourth residual block (right before average pooling), which produces a63

feature of 7×7 resolution. For ViT-B-32, we choose the last layer of the encoder backbone (right64

before classification head), which outputs a feature having 50 dimensions. Here, we remove the65

classification token feature and reshape the rest into a 7×7 representation.66

Note that (i) ResNet50 (sty) denotes the ResNet50 teacher trained on Stylized ImageNet dataset,67

which is used in Section 4.5 in the main paper; (ii) ResNet50 (col) denotes the ResNet50 teacher68

trained with additional color augmentations, used in Section 4.3 (color-invariance experiment); (iii)69

ResNet18 (w/o crop) denotes the students trained without crop augmentations used in Section 4.370

(crop-invariance experiment). Finally, the further bifurcation in ResNet50 (sty) → ResNet18 i.e.,71

lower vs higher, denotes the hyper-parameters used when we put a lower vs higher weight on the72

distillation loss component, relative to the cross-entropy loss.73

MNIST experiments: The architecture of both the teacher and the student, as well as all the74

other training details (e.g. batch size, learning rate) is taken from the standard example given by75

PyTorch: Conv(32) → ReLU → Conv(64) → ReLU → MaxPool(2) → dropout(0.25) →76

Linear(9216, 128) → ReLU → dropout(0.5) → Linear(128, 10).5 The distillation spe-77

cific hyper-parameters are listed below:78

• KL: γ = 0.1, α = 0.9, τ = 879

• Hint: γ = 1.0, β = 2.0, Conv(64) is chosen as the intermediate layer for both the teacher80

and the student.81

• CRD: γ = 1.0, β = 0.1, τ = 0.1, no. of negative samples (N ) = 32.82

2 Process of creating the adversarial images83

In Section 4.2 of the main paper, we mentioned using Iterative-FGSM [4, 7] for converting a clean84

image (I) to its adversarial form (Iadv). Here, we describe that conversion process in detail. First, we85

pass the clean image through the target network (to be fooled). Then we compute the gradient of the86

loss function with respect to the image (∇I ), and then update the image in the opposite way, so as to87

maximize the loss (J(I, ytrue)). The update is bounded to be within a range [I − ϵ, I + ϵ], so that88

the change in the image is imperceptible. This whole process constitutes one step of FGSM, and the89

iterative version of this method does this for k steps (k = 5 in our case). The process can be depicted90

formally through Eq. 1, where α controls the step size:91

Iadv0 = I, Iadvt+1 = ClipI,ϵ
{
Iadvt + α sign

(
∇XJ(IadvN , ytrue)

)}
(1)

1Link can be found here.
2Stylized Res50 can be found here.
3Link can be found here.
4Swin training code and teacher models are taken from here.
5Network’s architecture can be found here.
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Figure 1: Visualizing the effect of data transformations. Top: Altering the color properties of an
image (original) with increasing strengths. Middle: Taking random crops of an image (original) with
different scale size. Bottom: Shifting the image left by different amounts. Color/crop invariance is
studied in Sec. 4.3 of the main paper, and shift invariance is studied in Sec. 3.4.

Figure 2: Centered kernel alignment (CKA) scores for various distillation settings. Left: Comparison
of the teacher’s representations with the independent and two distilled students (KL and Hint).
Right: Comparison of the teacher (Swin-Tiny) with independent and distilled student (KL).

3 More analyses92

3.1 Can distillation work even without increasing student’s performance?93

In the experiments discussed in the main paper, the distillation94

objective increases the performance of the student, compared95

to an independent student. However, it is possible that this does96

not happen, as was discussed in [1]. What do we conclude from97

that phenomenon? Is it that there is no knowledge transferred98

from the teacher to the student? In this section, we discuss such99

scenarios. We perform ResNet50 → ResNet18 distillation us-100

ing all the distillation methods, using different hyper-parameter101

values (α, β, γ in Equation 1 and 2 in main paper), and choose102

the distilled students that are no more accurate than the indepen-103

dent student. The top-1 accuracy of the models are: (i) SInd:104

70.03%, (ii) SKL: 69.23%, (iii) SHint: 70.05% and (iv) SCRD:105

69.79%. Figure on the top shows the results of attacking these students using successful adversarial106

images crafted for ResNet50. Interestingly, the fooling rates for the distilled students are still higher107

compared to the independent student. So, while judging a distillation setup based on the increase in108

student’s performance is fair, it is not that the knowledge distillation does not work if the student’s109

performance is not increasing.110
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3.2 Can any soft label transfer a similar knowledge?111

When performing distillation through KL, the student has an additional target of soft labels from112

the teacher to match. In another line of work on ‘label smoothing’, converting the one-hot ground113

truth label into a softer version has also shown to improve a model’s test performance [12, 10, 8, 14].114

Could this mean that using any soft label, and not necessarily obtained through a teacher, can change115

a student’s property e.g., color invariance to the same extent?116

Experimental setup: We use ResNet18 as the student and train it for ImageNet classification using117

KL method. However, for each input image x, instead of zt (eq. 1, main paper) coming from an118

actual teacher, we generate the soft probabilities using x’s ground-truth label y. We first add a random119

Gaussian noise with variance 0.2, and then perform the softmax operation with temperature 0.15 to120

convert it into a probability distribution. This probability vector then acts as the target for the student121

to match. We then evaluate the agreement score of this pseudo-distilled student for color invariance122

(similar to Figure 4(b) in main paper).123

Results: We discuss three models, (i) the independent124

student (Ind): top-1 acc. = 70.04%, (ii) student distilled125

using color-invariant ResNet50 as the teacher (KL): top-1126

acc. = 71.10%, and (iii) student distilled through the soft-127

labels without the teacher (KL∗): top-1 acc. = 70.49%.128

In the figure on the right, we see that while using soft-129

labels does marginally increase the agreement score of130

the student, it does not match the scores obtained by the131

students distilled with the actual color-invariant teacher.132

This reinforces the observation we made in section 4.3,133

that an increase in color invariance is primarily due to134

certain knowledge being inherited from the teacher.135

3.3 Does invariance to random crops transfer during knowledge distillation?136

This section extends the study done in Sec. 4 of the main paper, but for another popular data137

augmentation technique: randomly resized crops.138

Experimental setup (crop invariance): While training the teacher, we randomly crop the images139

as part of data augmentation (in addition to horizontal flips), with crop size between 8% to 100%140

of the image size. So, for example, the teacher can get to see a random 20% region of an image in141

one iteration, and a random 80% region of the same image in a different iteration. While training the142

students (independent or distilled), apart from horizontal flips, we only use center crop and do not143

show random crops of an image.144

Results (crop invariance): During evaluation, we start with a test image145

X from the 50k val set. We then set a crop scale, e.g. 0.2, and generate146

two random crops X1 and X2 so that both cover a random 20% area of147

the original image X . Higher the crop scale, more image content will148

be common between the two crops. Then, we measure how frequently149

a model assigns the same class to X1 and X2. Fig. 4(d) (main paper)150

shows the agreement scores for increasing crop scales, where we again151

observe that the students distilled through KL and CRD become more152

invariant to this operation. Student distilled through Hint, however, does153

not increase its invariance to random crops, just as it did not increase its154

invariance to color jittering to the same extent as other methods in Fig.155

4(b) (main paper).156

3.4 Does shift invariance transfer during knowledge distillation?157

Section 4 (main paper) and 3.3 (appendix) discussed whether invariance to certain data transformations158

can transfer from a teacher to the student during knowledge distillation. Fig. 1 visualizes the effect159

of those transformations. Note that when we generate two random crops (X1, X2) of an image (X)160

with a fixed scale (e.g. 0.4), the aspect ratio of the two crops can still be kept different, which is what161

we do in Fig. 1 (middle) and in the results shown in the previous section. If the aspect ratio is kept162
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the same between X1 and X2, then one can study a more common property of neural networks: shift163

invariance i.e. whether the network’s predictions remain same if we shift an image by certain pixels164

(either left/right/top/bottom). We study if this knowledge can be transferred from a teacher to the165

student during the distillation process.166

Experimental setup: For the teacher, we choose a model which has been explicitly made to be shift-167

invariant. A recent work showed that a model’s robustness to input shifts is related with the aliasing168

phenomenon, which refers to signal distorted with a small downsampling rate. To alleviate this169

issue and make CNNs shift invariant, [13] inserts low-pass filters into CNNs before downsampling.170

So, we use an anti-aliased ResNet50# as the teacher (# represents anti-aliased, same for the below).171

The student is the standard ResNet18 (without being anti-aliased). The distillation ResNet50# →172

ResNet18 is done on the standard ImageNet dataset. The shift invariance of a model is evaluated173

across the 50k validation images in ImageNet. We start with a test image X resized into 256x256174

resolution. Then, we define the maximum shift we want in the resulting two images. If, for example,175

that value is 32, then we do a center crop of 256x256 followed by two random 224x224 crops to176

generate X1 and X2, keeping the aspect ratio same for both. If, instead, we desire a maximum shift177

of only 8 between X1 and X2, we would do a center crop of 232x232, followed by by two random178

224x224 crops. Then, we compute how frequently a model gives the same prediction for X1 and X2,179

which is called the agreement score (same as section 4.3).180

Results: In the figure on the right, we see the agree-181

ment scores of different models, and see that the agree-182

ment scores of the ResNet18 students distilled using KL183

and CRD increase relative to the independent ResNet18.184

Note that one can convert ResNet18 (the student) into185

its anti-aliased version as well by inserting low-pass fil-186

ters [13]. The agreement score achieved by this student187

can be thought of as the upper-limit for a ResNet18 model,188

which we show by light green colored plot (denoted as189

Ind#). Given the results of section 4.3 (crop-invariance),190

this result is expected since invariance to image shifts (as-191

pect ratio constant) is a subset of invariance to random192

crops (aspect ratio could be different). Again, we observe that Hint has difficulty in transferring this193

property.194

3.5 Does shape/texture bias get distilled?195

The previous section dealt with knowledge about images from unseen domains, and the section196

before that discussed if certain invariances can be transferred. This section brings together those197

ideas to study an important property: shape/texture bias of neural networks. Prior work has shown198

that convolutional networks tend to overly rely on texture cues when categorizing images [3]. Here199

we study the following: If the teacher is shape biased, and the default (independent) student more200

texture biased, does distillation increase the shape bias of the distilled student?201

Experimental setup: We use the toolbox in [2] to compute the shape vs. texture biases of a model.202

Shape bias is computed by using images with conflicting content and style information: e.g., an203

image with a shape (content) of a cat but texture (style) of an elephant. So, this particular image204

could have two correct decisions, a cat or an elephant. Using such images, the task is to see what205

fraction of correct decisions are based on shape vs. texture information. For the teacher, we choose a206

ResNet50∗ trained on Stylized-ImageNet [3], where the image labels are kept the same, but the style207

is borrowed from arbitrary paintings. This way, the teacher has to focus more on shape information208

and consequently has a high shape bias of ∼0.81. We choose ResNet18 as the student, as it has a209

lower shape bias of ∼0.21. We then perform ResNet50∗ → ResNet18 distillation on the standard210

ImageNet dataset; i.e., the student is trained without any stylized images, while the teacher is, and we211

evaluate whether the student inherits the shape bias of the teacher. We also conduct an experiment212

with a transformer teacher and CNN student: ViT → ResNet18. Since ViT have been shown to be213

inherently more shape-biased, we do not train the ViT teacher on Stylized-ImageNet, and instead214

train both it and the student on standard ImageNet.215

Results: For each distillation method, we show two results: one with lower weight on the distillation216

loss (↓) and one with higher (↑). From (a) in the right figure, we see that both KL and CRD improve217
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the distilled student’s shape bias, with a further jump obtained when using a higher weight, especially218

through KL. Sec. 4 (main paper) already showed that the student can indirectly inherit color219

invariance properties of the teacher. But, it is still interesting to see that, with proper hyperparameters,220

the inherited knowledge includes more subtle properties, like texture invariance as well.221

For ViT (shape bias = 0.615) → ResNet18, the222

shape bias of the distilled students do not change223

much (b). This follows a general trend where224

distilling knowledge from a transformer into a225

CNN turns out to be difficult. The implicit bi-226

ases introduced due to architectural differences227

between the teacher and student, seem too big to228

be overcome by current distillation methods.229

3.6 Distillation makes internal representations to become similar230

We hypothesize the following: when mimicking the teacher at a particular layer, the student’s231

intermediate representations before that layer become similar as well. That is, rather than predicting232

the activations in the target layer (e.g., output layer) in a very different way (e.g., the student233

classifying an image based on color features while the teacher classifies it based on shape), the234

student learns to behave more like the teacher throughout its network. However, the degree to235

which this happens depends both on which layer the student mimics, and how similar the student’s236

architecture is to that of the teacher. To study these aspects, we use centered kernel alignment (CKA)237

[6], a popular method for measuring the similarity of two neural networks. Given two representations,238

X ∈ Rn×p1 and Y ∈ Rn×p2 of the same n inputs, CKA(X, Y) ∈ [0, 1] indicates how similar (close239

to 1) or dissimilar (close to 0) the two are.240

Experimental setup: We consider three settings: (i) ResNet50 → ResNet18 using KD; (ii) ResNet50241

→ ResNet18 using Hint (distillation after the default second convolutional stage); and (iii) Swin-tiny242

→ ResNet18 using KD. For each setting, we consider representations from (roughly) corresponding243

locations in the network (e.g., after the last layer in each convolutional stage). Seven corresponding244

locations are chosen from the teacher and student (for ResNets, the same layers used in the Hint245

ablation study, Fig. 4d). We take 100 random images from the ImageNet validation set and compute246

their representations from those layers to construct a 7 x 7 similarity matrix. We compare the teacher247

to both the independent and distilled student to get two similarity matrices.248

Results: Figure 2 shows the similarities between the teacher and the independent/distilled students.249

First, we see that the scores are higher between the corresponding feature representations (along250

the diagonal entries) of the distilled student and teacher networks for ResNet50 → ResNet18, with251

KD resulting in a more significant gain than Hint. Second, we see very similar and low overall252

scores (except for the target F7 layer) for the independent and distilled students for Swin-tiny →253

ResNet18. These support our hypothesis that the student learns similar intermediate representations254

as the teacher before the target layer, if the student and teacher’s architectures are of the same family255

(e.g., both are ResNets). Moreover, mimicking the output class probabilities (KD) leads to the256

student learning more similar representations as those of the teacher than mimicking an earlier layer257

(Hint). Finally, when the architectures are very different (Swin-tiny and ResNet18), the intermediate258

representations do not become similar (despite a performance gain of the distilled student) because259

their inductive biases lead to different ways of learning the task. Overall, our analysis shows that260

there is a correlation between the degree to which a student inherits the teacher’s general properties261

and learned representation similarities.262

4 Supporting quantitative results263

Finally, we report the performance of different models on ImageNet 50k validation set. Table 1 lists264

the top-1 accuracies of different models used in the main paper. Overall, we have tried to use the265

hyper-parameters which improve the distilled student’s performance compared to the independent266

student. In every case, we use a single teacher to perform distillation into two students trained with267

different random seeds i.e. Teacher → Student1 and Teacher → Student2, for each method. We then268

report the results shown in the main paper with their respective error bars, in Tables 2-9.269
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Teacher Ind KL Hint CRD
ResNet50 → ResNet18 76.13 70.04±0.01 70.98±0.01 70.56±0.16 70.73±0.02
VGG19 → VGG11 72.37 68.88±0.01 69.74±0.10 69.38±0.15 69.74±0.07
VGG19 → ResNet18 72.37 70.04±0.01 70.62±0.02 70.21±0.30 70.42±0.07
ViT → ResNet18 75.91 70.04±0.01 70.39±0.02 70.59±0.07 70.58±0.03
Swin-Base → Swin-Tiny 83.50 81.13±0.08 81.23±0.04 81.33±0.11 81.27 ±0.21
ResNet50 (sty) → ResNet18 ↑ 60.18 70.04±0.01 61.45±0.07 68.82±0.12 69.56±0.07
ResNet50 (sty) → ResNet18 ↓ 60.18 70.04±0.01 70.65±0.03 70.45±0.07 69.96±0.05
ResNet50 (col) → ResNet18 75.32 70.04±0.01 71.01±0.06 70.41±0.20 70.97±0.19
ResNet50 → ResNet18 (w/o crop) 76.13 64.84±0.02 68.75±0.01 64.81±0.14 67.41±0.07

Table 1: Top-1 accuracy (in %) of different models on 50k ImageNet validation images.

Teacher Ind KL Hint CRD
ResNet50 → ResNet18 84.82 44.16±0.19 51.98±2.44 48.34±0.34 50.46±0.29
VGG19 → VGG11 87.22 62.29±0.36 69.74±0.67 79.78±0.08 70.51±0.78
VGG19 → VGG11 (R18) 87.22 69.02±0.48 70.54±0.90 70.68±0.62 70.59±0.62
ViT → ResNet18 85.84 21.93±0.24 21.57±0.49 23.34±0.14 23.47±0.31
VGG19 → ResNet18 87.22 36.19±0.01 43.02±0.06 47.68±0.47 48.99±0.05

Table 2: Adversarial fooling rates (in %), corresponding to Figure 3 in the main paper.

ResNet50 (col) ResNet50
Ind 71.27±0.21 71.27±0.21
KL 82.10±0.07 74.02±0.23
Hint 72.22±0.14 72.42±0.39
CRD 79.44±0.20 71.27±0.25

Table 3: Table corresponding to Figure 4(a) in main paper. Knowledge transfer about color informa-
tion from two teachers: color invariant ResNet50 (T) and default ResNet50 (T∗).

0.3 0.4 0.5 0.6
Ind 60.77±0.10 52.32±0.21 45.55±0.20 39.56±0.31
KL 75.32±0.17 68.56±0.36 61.93±0.33 55.15±0.37
Hint 61.96±0.00 53.34±0.41 47.72±0.51 42.00±0.53
CRD 71.83±0.48 64.31±0.14 57.26±0.47 49.90±0.48

Table 4: Table corresponding to Figure 4(b) in main paper. Illustration of knowledge transfer in,
ResNet50 → ResNet18, if the two images have increasingly different color properties.

0.3 0.4 0.5 0.6
Ind 60.77±0.10 52.32±0.21 45.55±0.20 39.56±0.31
KL 62.49±0.09 54.18±0.15 47.68±0.50 41.92±0.48
Hint 61.68±0.04 53.63±0.19 47.37±0.32 41.76±0.50
CRD 60.85±0.65 52.80±0.76 46.91±1.29 42.00±1.31

Table 5: Table corresponding to Figure 4(c) in main paper. Illustration of knowledge transfer in,
Swin-Tiny → ResNet18, if the two images have increasingly different color properties.

0.3 0.4 0.5 0.6
Ind 50.30±0.21 61.27±0.10 68.20±0.50 73.30±0.33
KL 56.26±0.00 66.06±0.02 72.06±0.19 76.79±0.04
Hint 50.23±0.27 61.14±0.11 68.04±0.14 73.36±0.08
CRD 55.10±0.12 65.36±0.43 71.55±0.26 76.57±0.43

Table 6: Table corresponding to Figure 4(d) in main paper. Illustration of knowledge transfer in,
ResNet50 → ResNet18, if the two images are random crops of increasing scales.
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images used from each race.
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