
6 Appendix524

6.1 Hosting and maintenance plan525

This dataset will be hosted on MIT servers in perpetuity at https://objectnet.dev/flash/ with526

a backup on dropbox. Our dataset collection toolbox is hosted publicly on github at527

https://github.com/dmayo/MVT-difficulty. A datacard for this dataset will be available at528

https://objectnet.dev/flash/datacard.529

6.2 Object classes530

Test subjects were presented with images from 50 possible object classes and asked to select which531

object they saw. The 50 classes were hand-picked to minimize similarity between classes that could532

be confusing for experiment subjects. The object classes were:533

Band-Aid, T-shirt, backpack, banana, cleaver, clothes iron, coffee mug, computer mouse, digital534

watch, doormat, dumbbell, envelope, hair dryer, hammer, lampshade, lemon, lipstick, match, mobile535

phone, necklace, padlock, paintbrush, paper towel, park bench, pill bottle, pillow, plastic bag, plunger,536

power drill, printer, racket, ruler, safety pin, salt shaker, sandal, screw, shovel, space heater, spatula,537

speaker, strainer, sunglasses, teddy bear, television, umbrella, vase, wallet, waste container, water538

bottle, whistle539

6.3 Image Selection540

After choosing object classes, we selected images for the experiment. We used all 50 images541

belonging to a class in the ImageNet Validation set with no additional selection step. For ObjectNet,542

we collected bounding box data for the images, and then randomly selected 50 images per class such543

that when cropped to the bounding box, the object in the image was centered and clear.544

6.4 Image cropping procedure545

1. We draw a bounding box around the object (we use existing bounding boxes for the ImageNet546

validation set and collect our own bounding boxes for ObjectNet from MTurk).547

2. We initialize the cropping box to be the bounding box.548

3. If the cropping box does not form a square, we extend the shorter side of the rectangular549

cropping box to form a square. If the image is not large enough to extend the shorter side of550

the cropping box, we pad it with black pixels to form a square.551

4. We crop using the cropping box for the image. The cropped image will be a square.552

5. We resize the cropped image to be 224x224 pixels.553

6.5 Mask generation554

The masks were generated following the procedure used by [41]. Specifically, a Fourier transform555

was applied to each image to obtain the magnitude and phase components. Then, a random array556

with elements sampled uniformly from [0, 1] was added to the image phase component after which557

the magnitude and phase components were recombined via an inverse Fourier transform to produce558

the mask. Each image was paired with its particular phase-scrambled mask in the experiments.559

6.6 Experiment Procedure and Payment560

Participants both in the lab and on Mechanical Turk were presented with a document informing561

them of the purpose, privacy, and risks associated with the experiment and soliciting their consent to562

participate (see fig. 10). Participants were then instructed as to how to carry out the experiment and563

were shown an example video as well as the list of image classes for their review before beginning.564

They were informed that they would not need to memorize the classes as the classes would be shown565

15



Table 1: Dataset statistics

number of responses 200,382
number of images 4,771
number of presentaiton durations 6
number of response per image 42
number of objectnet images 2415
number of imagenet images 2356
number of participants 2647

to them after each video. Participants were also encouraged to take breaks should they feel fatigued566

or otherwise uncomfortable. Example instructions are shown in fig. 11567

After giving consent and reading the experiment overview. participants then completed two calibration568

steps for to estimate the size of their monitor and their distance from the screen for us to then size569

the videos appropriately to 8 degrees of visual angle. First, the participants are shown an image570

of a credit card and are asked to use a card of their own to adjust a slider to change the size of the571

card on the screen to the size of their card. Since credit cards are the same size around the world,572

this allows us to measure the pixel-to-inches ratio of the participant’s monitor. Next, the participant573

completes a blind-spot test [37] that allows us to estimate the distance they are sitting from their574

screen. Together, these two measurements are sufficient to compute the desired video eccentricity.575

See fig. 12 for images of the calibration steps.576

The estimated hourly wage for participants on Mechanical Turk and in the lab was $10/hr and $20/hr577

respectively with approximately $15,000 spent in total on participant compensation.578

6.7 In-Lab Experiment Results579

To corroborate our Amazon Mechanical Turk results, we selected 200 images shown to Turk workers580

to conduct the same experiment in a controlled laboratory setting. 12 individuals came to participate581

in the experiment in which they viewed and responded to all 200 images on our 144Hz refresh582

rate monitor with 1ms gray-to-gray time. After conducting the experiment, 3 individuals had seen583

each image at each of the 4 presentation times. When compared to the MTurk results for those584

same 200 images, the comparison is much as we would expect. The In-Lab accuracy with shortest585

image duration (17ms) is less than on MTurk which can likely be contributed to the use of our new,586

high refresh-rate monitor in the controlled environment. It is likely that MTurk workers’ personal587

computers differ in their graphics presentation abilities which may result in the image being visible for588

slightly greater than 17ms on some monitors. On the other end, the in-lab experiments reported higher589

accuracy at the longest image duration (10s) which is also unsurprising as the in-lab participants590

completed the task in a controlled environment with no distractions and are likely more inclined to591

take the task seriously and stay focused. The results show no significant differences in accuracy at the592

intermediate image durations. See fig. 4 for a side-by-side comparison between MTurk and In-Lab593

results.594

6.8 Dataset statistics595

We collected 42 human responses for each of 5,000 images (2,500 from ImageNet and 2,500 from596

ObjectNet). After reviewing response, 229 images were removed due to either being unrecognizable,597

mislabeled, or having been seen by the same worker twice despite safeguards in place to disallow it.598

Additional dataset statistics are listed in table 1.599

6.9 Preliminary COCO MVT Results600

To bolster our claims about the difficulty of current datasets, we conducted the MTurk MVT exper-601

iment on a small subset of the COCO dataset. As COCO is a more visually complex dataset than602
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(a) Human accuracy per timing on COCO.

(b) Difficulty score for COCO images normalized
by number of collected responses per image. A
difficulty score of 1.0 here correspondes to 42 in
figure 1.

many single object classification datasets, it provides a good litmus test for how our conclusions603

generalize to other kinds of datasets.604

6.9.1 Image selection605

To maximize the utility of our results for both computer science and neuroscience research we606

selected 732 images from the Natural Scenes Dataset[42], a subset of COCO for which fMRI data607

was collected from human participants. We used the image crops used in the NSD experiments.608

These crops ensure that the image is square.609

6.9.2 Image classes610

We selected a set of 41 classes such that no image contained more than one of the classes.611

6.9.3 Experimental procedure612

We conducted the MVT experiment as described in the text, asking participants to perform a 1-of-41613

forced-choice single-object recognition task.614

Below, we present preliminary results computed on 340 of the images. The final manuscript will615

include all 732 images. The results in section 6.9.3 are striking in their similarity to those presented for616

ImageNet and ObjectNet in the main text. The accuracy of human workers at each of the presentation617

times while performing the COCO classification task is almost the same as that of the ImageNet618

experiments. Given that both ImageNet and COCO originate from the same online pool of images,619

this is to be expected.620

Similarly, the difficulty scores of COCO images (the counterpart of fig. 1) is skewed toward easy im-621

ages, perhaps more so than either ImageNet or ObjectNet. These results indicate that our conclusions622

about the difficulty distributions of individual object recognition tasks in vision datasets generalizes.623

Of course, COCO has images where multiple object classes are present, which involves visual search624

in addition to recognizing individual image instances, but, for the quantity that we measure here, how625

hard are objects themselves to recognize, it COCO and ImageNet are essentially the same.626

6.10 Finetuned Models627

Here we list details regarding training/finetuning procedures for the model results reported in the628

paper.629
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Figure 10: Informed consent page shown to participants before beginning the experiment.

Figure 11: Instructions given to participants before beginning the experiment.
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Figure 12: Images of the experiment calibration steps. The credit card task was used to measure the pixel-to-
inches ratio of the subject’s screen. The blind spot task provided an estimate of the subjects distance from their
screen.

6.10.1 Model training procedure630

Pretrained models weights were instantiated using publicly available model checkpoints, either631

using torchvision or found on the model’s source repository. The models—with the exception of632

CLIP—were then finetuned using subsets of the ImageNet training and validation sets containing633

only the 50 classes we chose to use in the psychophysics experiments. The models were finetuned634

for 90 epochs with an SGD optimizer and initial learning rate of 0.1 with momentum value of 0.9635

and weight decay coefficient of 0.0001. The learning rate decayed by a factor of 2 every 9 epochs.636

Training, finetuning, and inference were performed on a cluster of 8 Nvidia TITAN RTX graphics637

cards.638

6.10.2 Model Performance639

We evaluate our finetuned models on the same cropped images used in our psychophysics experiments.640

See table 4 for model accuracy reports on the image difficulty reported in the paper and table 2 and641

table 3 for model performance on the full ImageNet and ObjectNet subsets of the experiment images.642

6.11 Metric calculation procedure643

In this section, we go through the details in computing c-score, prediction depth, and adversarial644

robustness for our experiment images.645

6.11.1 C-score646

C-score [7] identifies individual image difficulty by characterizing the expected accuracy or a held-out647

image given training sets of varying size sampled from the data distribution. In particular, c-score is648

the frequency of classifying an example correctly when it is omitted from the training set. However,649
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Table 2: Model accuracy on ImageNet per MVT subset. Models are named to include architecture, training
objective, and training dataset where appropriate. ResNet-X-Y% indicates a ResNet with depth X and trained on
a random Y% subset of the ImageNet-1k dataset. Model names ending in 21k were pretrained on ImageNet-21k.
All other models with the exception of SWSL and CLIP models were pre-trained on the full ImageNet-1k
dataset.

Subset <= 17 <= 50 <= 100 <= 150 <= 250 <= 10000

ResNet-18 94.4 91.8 81.1 77.2 61.3 49.0
ResNet-18-20% 81.9 77.2 63.7 58.2 39.8 34.9
ResNet-18-40% 84.4 85.0 67.8 63.5 50.5 46.2
ResNet-18-60% 87.5 88.3 72.6 70.4 53.8 46.2
ResNet-18-80% 88.1 86.5 76.7 68.8 54.8 48.6
ResNet-50 94.4 95.5 85.2 84.7 79.6 64.7
ResNet-50-20% 86.9 82.9 72.2 65.1 48.4 41.0
ResNet-50-40% 93.8 89.1 74.1 74.1 60.2 48.2
ResNet-50-60% 91.2 90.2 78.5 79.4 60.2 59.4
ResNet-50-80% 90.6 91.5 83.0 80.4 68.8 59.0
ResNet-101 95.0 95.2 90.0 87.8 79.6 71.5
ResNet-101-20% 86.2 85.4 70.0 66.1 50.5 48.2
ResNet-101-40% 90.6 90.0 78.1 77.8 63.4 50.6
ResNet-101-60% 93.1 89.9 84.4 77.2 62.4 59.0
ResNet-101-80% 92.5 94.1 83.0 82.5 64.5 61.8
ResNet-152 93.8 96.4 93.7 86.8 78.5 72.7
ResNet-152-20% 86.9 84.4 73.0 71.4 52.7 44.2
ResNet-152-40% 93.1 88.4 76.3 76.7 62.4 52.6
ResNet-152-60% 93.1 90.4 82.2 78.8 66.7 59.4
ResNet-152-80% 90.6 91.9 86.3 85.7 76.3 60.6
CORNet-S 93.8 92.6 81.9 78.8 58.1 52.2
VOneNet-Resnet50 93.8 94.4 84.4 82.5 67.7 56.6
VOneNet-CORNet-S 91.9 92.3 82.2 77.2 63.4 53.4
VGG-19 91.9 90.2 80.7 79.4 62.4 55.4
Noisy Student (EfficientNet-L2) 95.0 93.3 87.8 86.8 68.8 65.5
DenseNet-121 94.4 93.3 83.3 80.4 72.0 58.6
MSDNet Classifier 0 78.8 76.0 60.0 54.0 40.9 33.7
MSDNet Classifier 1 89.4 86.2 73.7 67.7 53.8 45.8
MSDNet Classifier 2 91.9 89.9 77.8 72.5 62.4 51.4
MSDNet Classifier 3 91.9 90.4 79.3 69.8 63.4 51.4
MSDNet Classifier 4 94.4 91.3 79.3 78.8 62.4 52.2
SimCLR ResNet50 88.1 86.3 73.7 69.8 60.2 54.6
SimCLR ResNet101 93.1 89.6 79.3 83.6 72.0 57.8
SimCLR ResNet152 93.8 92.1 83.7 81.0 72.0 63.9
CLIP-ViT-B/32 95.6 90.8 79.3 74.6 67.7 48.6
CLIP-ViT-B/16 97.5 94.7 83.3 81.0 80.6 52.2
CLIP-ViT-L/14 98.1 97.1 92.6 91.0 86.0 72.3
CLIP-ViT-L/14@336px 98.1 96.9 91.5 92.6 89.2 73.9
CLIP-ResNet-50 92.5 84.4 69.6 67.7 55.9 34.5
CLIP-ResNet-101 94.4 88.1 71.9 68.8 67.7 41.0
CLIP-ResNet-50x4 93.8 88.8 75.6 72.5 71.0 41.8
CLIP-ResNet-50x16 94.4 91.5 81.1 77.2 68.8 43.8
CLIP-ResNet-50x64 98.8 95.9 87.0 85.2 77.4 59.0
EfficientNet-S 91.2 92.5 84.1 78.3 64.5 62.2
EfficientNet-M 90.6 91.5 80.7 73.5 69.9 61.4
EfficientNet-L 95.0 93.0 87.4 83.6 75.3 64.3
EfficientNet-S-21 96.9 95.6 92.6 87.8 81.7 71.5
EfficientNet-M-21 97.5 97.0 93.7 88.9 84.9 72.3
EfficientNet-L-21 98.1 96.7 93.0 90.5 86.0 73.5
ViT-T/16 67.5 72.3 57.8 54.5 38.7 34.5
ViT-S/16 95.0 94.5 82.6 85.2 68.8 58.6
ViT-B/16 96.2 95.6 85.2 87.3 67.7 63.5
ViT-L/16 98.8 97.5 97.4 96.8 84.9 80.7
MoCo-V3 92.5 92.6 85.6 84.7 75.3 64.7
SWSL-ResNext101-32x16d 96.9 98.1 97.4 95.8 87.1 85.5
SWSL-ResNet50 96.2 97.7 96.7 95.2 84.9 77.9
MAE-ViT-B/16 94.4 95.6 88.9 89.9 77.4 75.1

computing c-score for each image by brute force is computationally infeasible since we must train650

a separate model for each image. Instead, we computed the learning speed proxy as recommended651

by the authors. Learning speed measures the epoch at which an image is correctly classified by a652

model. Intuitively, a training example that is consistent with the training set should be learned quickly653

because the gradient step for all consistent examples should be similar. The authors found high654

Spearman rank correlation between c-score and cumulative learning speed based proxies.655

We trained a ResNet-50 [43] from scratch on ImageNet1k [16] for 90 epochs with an SGD optimizer656

and initial learning rate of 0.1 with momentum value of 0.9 and weight decay coefficient of 0.0001.657

The learning rate decayed by a factor of 2 every 9 epochs and the batch size was 256. The standard658

ImageNet transforms were applied to all images, and the network was initialized randomly. We then659

evaluated our experiment images at each epoch and used the average of correct predictions as an660

estimated c-score for each image. fig. 13 shows the average c-scores for ImageNet and ObjectNet661
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Table 3: Model accuracy on ObjectNet per recognition time subset.
Subset <= 17 <= 50 <= 100 <= 150 <= 250 <= 10000

ResNet-18 76.1 65.1 49.1 41.2 25.3 20.6
ResNet-18-20% 46.2 44.8 29.6 27.5 11.5 12.5
ResNet-18-40% 58.1 53.8 43.0 35.2 20.7 16.2
ResNet-18-60% 67.5 60.0 43.3 37.9 19.5 17.4
ResNet-18-80% 66.7 63.4 45.7 37.4 26.4 17.1
ResNet-50 80.3 79.7 62.9 53.3 44.8 27.0
ResNet-50-20% 58.1 51.1 36.4 35.2 24.1 15.7
ResNet-50-40% 70.1 61.7 45.4 42.9 29.9 20.3
ResNet-50-60% 70.9 70.1 54.0 45.1 33.3 19.7
ResNet-50-80% 76.9 70.4 53.3 49.5 31.0 22.0
ResNet-101 86.3 81.0 68.7 54.9 47.1 29.6
ResNet-101-20% 50.4 53.3 41.2 33.0 21.8 13.6
ResNet-101-40% 66.7 61.5 47.4 35.7 27.6 18.3
ResNet-101-60% 76.9 70.3 52.9 46.7 36.8 22.6
ResNet-101-80% 75.2 75.2 62.9 46.2 34.5 25.2
ResNet-152 85.5 83.8 68.7 60.4 46.0 30.7
ResNet-152-20% 58.1 53.7 39.2 34.6 19.5 13.6
ResNet-152-40% 66.7 65.1 49.5 42.9 25.3 19.1
ResNet-152-60% 72.6 68.4 57.0 41.8 35.6 22.6
ResNet-152-80% 74.4 73.5 55.7 50.0 35.6 24.6
CORNet-S 75.2 71.5 53.6 45.1 36.8 20.3
VOneNet-Resnet50 77.8 75.7 59.1 45.6 35.6 20.9
VOneNet-CORNet-S 72.6 67.0 51.9 42.9 31.0 16.5
VGG-19 76.1 66.3 50.9 46.7 34.5 18.3
Noisy Student (EfficientNet-L2) 76.9 68.7 54.3 45.1 26.4 20.9
DenseNet-121 77.8 74.9 57.0 49.5 33.3 22.3
MSDNet Classifier 0 45.3 39.0 31.3 28.0 17.2 10.7
MSDNet Classifier 1 62.4 56.4 41.9 36.3 23.0 15.9
MSDNet Classifier 2 70.9 64.3 52.9 44.0 28.7 22.3
MSDNet Classifier 3 76.9 68.7 51.5 46.7 29.9 21.7
MSDNet Classifier 4 73.5 70.9 51.5 47.3 37.9 22.3
SimCLR ResNet50 60.7 61.0 49.8 45.6 27.6 17.4
SimCLR ResNet101 75.2 70.3 59.5 55.5 32.2 25.8
SimCLR ResNet152 78.6 70.3 57.0 55.5 35.6 28.7
CLIP-ViT-B/32 88.9 80.5 61.2 61.0 43.7 33.6
CLIP-ViT-B/16 92.3 88.2 78.0 69.8 50.6 48.4
CLIP-ViT-L/14 97.4 93.8 88.7 81.3 78.2 70.1
CLIP-ViT-L/14@336px 96.6 94.2 91.1 85.2 80.5 70.1
CLIP-ResNet-50 78.6 73.5 58.1 54.9 34.5 27.5
CLIP-ResNet-101 86.3 76.9 63.6 58.2 41.4 32.5
CLIP-ResNet-50x4 83.8 79.3 67.4 64.8 43.7 36.8
CLIP-ResNet-50x16 92.3 85.0 74.2 69.2 52.9 48.7
CLIP-ResNet-50x64 89.7 90.3 84.2 81.9 69.0 55.9
EfficientNet-S 68.4 66.2 52.9 40.1 23.0 20.6
EfficientNet-M 71.8 66.3 47.8 39.0 20.7 18.8
EfficientNet-L 75.2 71.5 54.0 45.1 31.0 23.2
EfficientNet-S-21 94.0 83.9 72.9 64.8 41.4 30.4
EfficientNet-M-21 88.9 87.5 71.1 67.0 46.0 34.2
EfficientNet-L-21 89.7 86.2 70.1 68.7 50.6 36.5
ViT-T/16 43.6 43.4 29.6 25.3 10.3 10.7
ViT-S/16 83.8 76.8 57.7 52.2 31.0 23.5
ViT-B/16 86.3 80.2 65.6 58.2 37.9 26.4
ViT-L/16 96.6 92.5 84.9 81.3 58.6 44.9
MoCo-V3 82.9 73.3 59.1 54.9 34.5 24.6
SWSL-ResNext101-32x16d 94.0 94.5 89.3 85.7 62.1 57.4
SWSL-ResNet50 94.0 89.4 83.8 72.0 52.9 47.2
MAE-ViT-B/16 84.6 82.7 69.4 63.2 37.9 32.5

experiment images split by whether the ResNet-50 correctly predicted the image. C-score serves as662

an efficient predictor for human recognition difficulty only for images classified by the model in both663

ImageNet and ObjectNet. C-scores for images misclassified by the model do not reveal information664

about the human recognition difficulty and remain consistently low across all difficulty subsets.665

6.11.2 Prediction depth666

Prediction depth [8] represents the number of hidden layers after which the network’s final prediction667

is already determined. The authors showed that prediction depth is larger for examples that visually668

appear to be more difficult and is consistent between architectures and random seeds.669

We trained a linear decoder at the end of each block of a ResNet-50 on the 50 experiment classes using670

the ImageNet training and validation set. We used the same ResNet-50 used to calculate c-scores to671

ensure consistency of our results. There are 16 convolutional layers in a ResNet-50; and each linear672

decoder follows a convolution layer and consists of a pooling layer, flatten layer, and fully-connected673

layer. We use the same hyperparameters as section 6.11.1 and only updated the weights of the linear674

decoder.675
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Figure 13: Top: left and right are average c-score over subsets for experiment ImageNet and ObjectNet images
respectively. Orange shows the images that are correctly predicted by the ResNet-50 while blue shows the
images that are incorrectly predicted. Bottom: prediction depth plots shown in the same way as top.

A prediction is defined to be made at depth L = l if the linear classifier after layer L = l � 1 is676

different from the network’s final prediction, but the classification of the linear decoder after every677

layer L � l are equal to the final classification of the network. Images classified by all decoders678

are said to be predicted at layer 0. Note that prediction depth is independent of whether the final679

prediction is correct or not. It measures the layer at which an image’s prediction converges.680

Figure 13 shows the average c-scores for ImageNet and ObjectNet experiment images split by whether681

the ResNet-50 correctly predicted the image. Like c-score, prediction depth serves as an efficient682

predictor for human recognition difficulty only for images classified by the model in both ImageNet683

and ObjectNet.684

6.11.3 Adversarial robustness685

We measured an image’s distance to the decision boundary of a network using fast gradient sign686

method (FGSM) [9]. FGSM creates an modified example that maximizes the loss using the gradients687

of loss with respect to the input image:688

modx = x+ ✏ · sign(rxJ(✓, x, y))

where advx is the modified image, x is the original image, y is the original input label, ✏ is a multiplier689

adjusted accordingly to control the size of modification step, ✓ is the model parameters, and J is the690

loss function. Note that gradients are taken with respect to the input image, and model parameters691

remain constant.692

For an image classified by a model, we define its distance to the closest decision boundary of the693

model as the minimum ✏ needed for the model to misclassify the modified image. On the other hand,694

for an image misclassified by a model, we define its distance to the closest decision boundary of the695

model as the minimum ✏ needed for the model to classify the modified image.696

We used the same ResNet-50 used to calculate c-scores to ensure consistency of our results. We697

finetuned the ResNet-50 on the 50 experiment classes using the ImageNet training and validation698
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set. We used the same hyperparameters as section 6.11.1 and only updated the weights of the final699

pooling, flatten, and fully-connected layer. We used this finetuned ResNet-50 as the backbone for700

adversarial perturbation and correction.701

While perturbing each classified image, we searched for the smallest ✏, from 0 to 0.02 incrementing702

by 1.25e-5 and from 0.02 to 2.5 incrementing by 0.005, that would result in a misclassification. We703

only applied only one gradient step when perturbing. While correcting each misclassified image,704

we searched for the smallest ✏, from 0 to 0.001 incrementing by 1.25e-6 and from 0.001 to 0.05705

incrementing by 1.25e-5. We applied two gradient steps when correcting because correction requires706

finer and more steps.707

Note that the search range depends on the backbone model and the dataset. One must choose them708

through manual trial-and-errors to yield interesting and significant results. Recall that after removing709

images that were incorrectly annotated, incorrectly cropped, etc section 3, we reduced to 4,771710

images from the original 5,000. Of these, 3,296 and 1,475 images were classified and misclassified by711

the finetuned ResNet-50 respectively. We were not able to find an ✏ for every image while perturbing712

and correcting in the corresponding search range. We omitted these images in our analysis. We713

were able to successfully perturb 2,815 out of 3,296 classified images and correct 1,114 out of 1,475714

misclassified images.715

We hypothesized that difficult images that are classified and misclassified would be closer and further716

from the decision boundary respectively. fig. 8 confirms the prior hypothesis. We could not confirm717

the latter hypothesis due to the smaller number of misclassified images across all subsets, as shown718

through the higher error bars in fig. 14719

Figure 14: Average ✏ magnitude required to correct misclassified images back to their correct class per subset

720

6.12 What factors effect MVT? Imagenet-x analysis721

We found no clear trends across MVT subsets for the 16 dimensions labeled in the imagenet-x dataset.722

The results of our analysis can be found in table 5.723

6.13 Constructing a metric for image difficulty724

We propose two metrics:725

1. Difficulty score which provides an exact ranking from most difficult to recognize to least726

difficult to recognize based on each response727

2. six minimum viewing time (MVT) subsets that quantify the minimum amount of time728

required for the majority of participants to reliably recognize an image.729
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Figure 15: Distribution of difficulty score for each MVT subsets in ImageNet (left) and ObjectNet (right).

Difficulty score is a value from 0 to 42 that represents the number of incorrect predictions given by730

participants in our experiment across all timings for a particular image. Each image in our experiment731

was seen an equal number of times per timing and and only rarely were images that were recognizable732

at shorter timings also recognizable at longer timings. This results in a low difficulty score indicating733

that an image is easy to recognize and a high difficulty score indicating that an image is hard to734

recognize. These scores correlate well with the MVT difficulty subsets as shown in fig. 15. Difficulty735

score varies significantly by object class as well (see fig. 16).736

6.14 Difficulty score distribution by object class737
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Figure 16: Difficulty distribution by object class sorted in order of increasing mean
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Table 4: Model accuracy on the ImageNet and ObjectNet subsets of our 4,771 images.

ResNet-18 80.4 48.8
ResNet-18-20% 65.0 31.1
ResNet-18-40% 71.5 39.9
ResNet-18-60% 75.3 43.6
ResNet-18-80% 75.6 45.2
ResNet-50 87.1 60.0
ResNet-50-20% 71.0 38.3
ResNet-50-40% 77.7 46.4
ResNet-50-60% 80.4 51.6
ResNet-50-80% 82.9 52.6
ResNet-101 89.2 62.7
ResNet-101-20% 73.2 37.8
ResNet-101-40% 79.5 45.0
ResNet-101-60% 81.9 52.7
ResNet-101-80% 84.6 56.7
ResNet-152 90.3 64.5
ResNet-152-20% 73.4 38.5
ResNet-152-40% 78.7 47.9
ResNet-152-60% 82.3 51.4
ResNet-152-80% 84.6 54.8
CORNet-S 81.6 52.6
VOneNet-Resnet50 84.0 54.8
VOneNet-CORNet-S 81.3 48.8
VGG-19 81.1 50.2
Noisy Student (EfficientNet-L2) 86.2 51.2
DenseNet-121 83.7 55.7
MSDNet Classifier 0 62.8 29.3
MSDNet Classifier 1 74.6 41.6
MSDNet Classifier 2 78.6 49.6
MSDNet Classifier 3 78.9 51.6
MSDNet Classifier 4 81.0 52.8
SimCLR ResNet50 76.4 46.1
SimCLR ResNet101 82.1 55.4
SimCLR ResNet152 84.3 56.0
CLIP-ViT-B/32 80.0 63.3
CLIP-ViT-B/16 84.5 73.6
CLIP-ViT-L/14 92.1 85.8
CLIP-ViT-L/14@336px 92.0 86.9
CLIP-ResNet-50 71.6 56.8
CLIP-ResNet-101 75.3 61.4
CLIP-ResNet-50x4 77.5 64.6
CLIP-ResNet-50x16 80.1 72.4
CLIP-ResNet-50x64 87.1 79.4
EfficientNet-S 83.1 48.6
EfficientNet-M 81.7 47.2
EfficientNet-L 85.8 52.7
EfficientNet-S-21 90.2 66.4
EfficientNet-M-21 91.4 68.2
EfficientNet-L-21 91.5 68.8
ViT-T/16 59.4 29.9
ViT-S/16 84.4 57.1
ViT-B/16 86.5 61.3
ViT-L/16 94.1 78.1
MoCo-V3 85.5 56.6
SWSL-ResNext101-32x16d 95.1 82.3
SWSL-ResNet50 93.4 75.4
MAE-ViT-B/16 89.5 65.2
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Table 5: ImageNet-x factors as a % of MVT subset. Each table entry represents the percentage of the images
in MVT subset (row) that were labeled as containing a feature (column). This analysis is over the ImageNet
images in our dataset.

multiple objects background color brighter darker style larger smaller
MVT subset

17 ms 0.00 20.69 22.76 0.69 0.69 0.00 0.00 0.00
50 ms 0.15 25.23 20.39 0.00 0.15 0.15 0.15 3.32
100 ms 0.00 28.23 16.13 0.00 0.00 0.00 0.00 5.65
150 ms 0.00 25.56 16.67 0.00 1.11 0.00 0.56 4.44
250 ms 0.00 29.89 12.64 0.00 0.00 0.00 0.00 3.45
10 sec 0.00 27.27 16.94 0.00 1.24 0.00 0.41 4.13

object blocking person blocking partial view pattern pose shape subcategory texture
MVT subset

17 ms 0.00 0.00 0.69 27.59 21.38 3.45 1.38 0.69
50 ms 0.00 0.00 1.06 23.26 21.75 1.36 2.27 0.76
100 ms 0.40 0.00 1.61 20.56 20.97 2.42 3.63 0.40
150 ms 0.56 0.00 1.67 22.78 20.56 3.89 1.11 1.11
250 ms 0.00 1.15 4.60 22.99 19.54 1.15 3.45 1.15
10 sec 0.00 0.00 2.07 19.42 22.73 4.13 0.83 0.83
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Figure 17: Robustness gap for our finetuned models on two randomly sampled subsets of our experiment data,
balanced between ImageNet and ObjectNet. Lines connect model families with arrows pointing in direction of
increasing model capacity. Compare with fig. 7.
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Figure 18: Robustness gap for our finetuned ResNets trained on varying percentages of the ImageNet training
set. Lines connect the same architectures with arrows pointing in direction of increasing dataset percentage.
Compare with fig. 7.
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Figure 19: Human accuracy vs Image presentation time from Mechanical Turk results. Time is log-scale with a
sigmoid fit
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