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Abstract

Formally verifying deep reinforcement learning (DRL) systems suffers from both
inaccurate verification results and limited scalability. The major obstacle lies in the
large overestimation introduced inherently during training and then transforming
the inexplicable decision-making models i.e., deep neural networks (DNNs), into
easy-to-verify models. In this paper, we propose an inverse transform-then-train
approach, which first encodes a DNN into an equivalent set of efficiently and
tightly verifiable linear control policies and then optimizes them via reinforcement
learning. We accompany our inverse approach with a novel neural network model
called piece-wise linear decision neural networks (PLDNNs), which are compatible
with most existing DRL training algorithms with comparable performance against
conventional DNNs. Our extensive experiments show that, compared to DNN-
based DRL systems, PLDNN-based systems can be more efficiently and tightly
verified with up to 438 times speedup and a significant reduction in overestimation.
In particular, even a complex 12-dimensional DRL system is efficiently verified
with up to 7 times deeper computation steps.

1 Introduction

Deep neural networks (DNNs) have been exhibiting appealing advantages in decision-making and
control for deep reinforcement learning (DRL) systems [1–4]. Nonetheless, the complexity and
inexplicability [5, 6] of DNNs render the formal verification of their hosting systems, quite often
even themselves, inaccurate and unscalable. Most existing approaches [7–10] over-approximate both
embedded DNNs and non-linear environment dynamics to build verifiable models, which inevitably
introduces dual overestimation. In particular, DNN-specific overestimation is extremely unpredictable
due to many factors such as the dimension of system states, the complexity of environment dynamics,
and the size, weight, and activation function of a neural network. For example, the verification results
may deviate significantly even if the DNNs of the same DRL system differ only in their weights (as
we also observed; see Appendix A.4 ). Unsurprisingly, verifying high-dimensional DRL systems
would only exacerbate the problems of large overestimation and limited scalability.

Common practice for formally verifying DRL systems is to train and then transform the embedded
DNNs into easy-to-verify models where, for any input set, output ranges can enclose the outputs of
the over-approximated DNNs [7–10]. Taylor models [11] are widely adopted due to their preservation
of input-output dependencies and less overestimation (accumulated in multiple steps) than the range
analysis approaches such as interval over-approximation [12, 13]. However, they are still prone to
intractable overestimation as the accuracy of verification depends heavily on the weights of DNNs
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whose effects are difficult to quantify. Several other approaches attempt to extract approximated
state-action policies, e.g., decision trees [14, 15], from DNNs via model compression [16] and
distillation [17] techniques. However, no equivalence guarantee is established between DNNs and
the extracted policies. Consequently, verification results are just probably approximately correct [18].

Inspired by recent advances [19–22] in training near-optimal policies even with reduced training
state space imposed by aggregated adjacent states, we propose a novel, inverse transform-then-train
approach: encoding a DNN into an equivalent set of easy-to-verify linear control policies and then
optimizing them by training the DNN using reinforcement learning. We accompany our inverse
approach by devising a novel neural network model called piece-wise linear decision neural networks
(PLDNNs), which make linear decisions on each abstract state. Unlike conventional DNNs which
build a state-action relation for each actual state, a PLDNN defines a linear relationship, called Linear
Control Unit (LCU), between actions and actual states associated with the same abstract state. To this
end, a PLDNN is essentially a set of LCUs for all abstract states. In contrast to DNNs, LCUs are
more explainable and verifiable without any over-approximation. Moreover, PLDNNs are compatible
with most existing DRL training algorithms as both share the same input and output layers for the
same control task.

We extensively assess PLDNN, along with the state-of-the-art tools, with respect to both performance
(in terms of cumulative rewards and system robustness) and verifiability (in terms of overestimation
and time cost for the reachability analysis of trained systems) on a collection of benchmarks, including
a 12-dimensional control task. Our experimental results show that, compared to the DNN-based sys-
tems, the PLDNN-based systems can be verified more precisely, with significantly less overestimation,
and more efficiently, with up to 438 times speedup, while achieving comparable performance. More-
over, compared to the state-of-the-art tools, the complex 12-dimensional control task can be trained
and verified with up to 7 times deeper computation steps, along with notable tightness improvement.

Main Contributions. Overall, we provide: (i) a novel inverse approach for boosting the formal veri-
fication of DRL systems by learning efficiently and directly (without over-approximation) verifiable
piece-wise linear policies with comparable performance; (ii) a novel neural network model to realize
the learned piece-wise linear policies, which is compatible with most existing DRL algorithms; and
(iii) a prototype called LinCon, along with an extensive assessment which demonstrates its tightness
in verification results, outperformance over the state-of-the-art tools (up to 438 times speedup), and
scalability (up to a 12-dimensional control task).

2 Problem Formulation and Motivation
A DRL system is driven by a DNN-implemented controller π, which is trained for decision-making,
and a physical model defined by the ordinary differential equations (ODEs) ṡ(t) = f (s(t), a(t)), with
s the state variables and a a control action. In what follows, we omit the time variable t. Typically,
for DRL systems, continuous time is discretized, and we have a = π(s) at state s and assume ȧ = 0
during a small time step e.g., δ. At the time point kδ, k ∈ N, the decision network receives the current
state sk and outputs an action ak = π(sk). The state variables then evolve according to the physical
model during the time interval [0, δ]. The reachable state sk+1 at δ from sk is sk+1 = sk +

∫ δ
0 f (s, ak)dt

which is called the successor state of sk. Note that the system evolves continuously from sk to sk+1.
The intermediate states can be computed by substituting the time elapses for δ in the above formula.
Definition 1 (Path of DRL systems). Given a DRL system D with an environment dynamics f ,
decision network π, time step size δ and initial state set S 0, a path of D is a finite or infinite state

sequence: [s0, a0]
δ
−→
f

[s1, a1]
δ
−→
f

[s2, a2]
δ
−→
f

[s3, a3]
δ
−→
f
· · · such that:

1. s0 ∈ S 0,
2. si+1 = si +

∫ δ
0 f (s, ai)dt and ai = π(si) for i = 0, 1, 2, . . ..

A DRL system is essentially a DNN-controlled hybrid system. Definition 2 gives a formal definition
of regular hybrid systems. The state space of a hybrid system is the Cartesian product of a set L
of discrete locations and state space of n real-valued variables Vc. At each location l ∈ L, the n
continuous variables evolve continuously according to a dynamical law v̇ = fl(v). When the guard
condition on the transition between locations (l1, l2) ∈ T is triggered, the system moves to l2, and the
continuous variables are reset by R. There are two steps involved in the state transition from (li, vi)
to its successor state (li+1, vi+1): first, from (li, vi) to its time successor (li, φ fli (vi, ti)), and then, to
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(li+1, vi+1) that is the transition successor of (li, φ fli (vi, ti)), where φ fli is the solution of fli with initial
condition v(0) = vi, mapping the initial state vi to the state φ fli (vi, t) (i.e., the reachable state at time t
from vi). Accordingly, the state of a hybrid system can be changed in two ways [23]: (i) by a time
delay that changes only the value of continuous variables according to the dynamics of the current
location defined in F; and (ii) by a discrete and instantaneous transition that changes both location
and continuous variables according to the rules in T .

Definition 2 (Hybrid Automata [9]). A hybrid automaton is an 8-tuple H = ⟨L,Var, Inv, F,T,G,R, I0⟩,
where:

• L is a finite set of discrete locations;
• Var is a finite set of n real-valued variables with state space Vc ⊆ Rn;
• Inv : L→ 2Vc is a function assigning to each location an invariant condition;
• F : L → (Vc → Rn) is a function associating each location l to a continuous dynamics

v̇ = fl(v);
• T ⊆ L × L is a set of transitions between locations;
• G : T → 2Vc is a function assigning each transition (l1, l2) ∈ T a guard condition G(l1, l2) ⊆

Inv(l1);
• R : T → 2Vc is a function assigning each transition (l1, l2) ∈ T a reset R(l1, l2) ⊆ Inv(l2);
• I0 ⊆ L × Vc is an initial state set.

Definition 3 (Path of Hybrid Automaton [23]). Let H = ⟨L,Var, Inv, F,T,G,R, I0⟩ be a hybrid
automata. A path of H is a finite or infinite sequence of location and state value pairs, starting from
an initial pair (l0, v0) ∈ I0, i.e., (l0, v0)

t0
−−→
fl0

(l1, v1)
t1
−−→
fl1

(l2, v2)
t2
−−→
fl2

(l3, v3)
t3
−−→
fl3
· · · such that:

1. ∀0 ≤ t ≤ ti, φ fli (vi, t) ∈ Inv(li)
2. (li, li+1) ∈ T ∧ φ fli (vi, ti) ∈ G(li, li+1) ∧ vi+1 ∈ R(li, li+1)

Theorem 1 (Modeling DRL Systems as Hybrid Automata). A DRL system with an environment
dynamics f , decision network π, time step size δ, and initial state set S 0, state space S , can be
equivalently modeled as the following hybrid automaton:

• Var: state variable s, action a, and clock variable tc • I0: {(l0, (s ∈ S 0, a = 0, tc = δ))}
• L: {l0} • Inv: Inv(l0) = {s ∈ S , tc ≤ δ} • F: F(l0) = {ṡ = f (s, a), ȧ = 0, ṫc = 1}
• T : {(l0, l0)} • G: G(l0, l0) = {tc = δ} • R: R(l0, l0) = {tc = 0, a = π(s)}

Proof. We first analyze the path of the modeled hybrid automaton H. For an arbitrary initial state
(l0, [s0, 0, δ]), s0 ∈ S 0, since tc = δ, the only transition with guard condition {tc = δ} will be triggered
and transition to (l0, [s0, a0, 0]) where a0 = π(s0). Then (l0, [s0, a0, 0]) will move to its time successor
(l0, [s1, a0, δ]) where s1 = s0 +

∫ δ
0 f (s, a0)dt. Next, the transition with guard condition {tc = δ} will

be made and conduct the reset operation tc = 0, a = π(s1) in R to obtain the transition successor
(l0, [s1, a1, 0]) in which a1 = π(s1). Repeating the evolution to the time successor and the transition
successor yields the following sequence:

(l0, [s0, 0, δ])
0
−→
f

(l0, [s0, a0, 0])
δ
−→
f

(l0, [s1, a1, 0])
δ
−→
f

(l0, [s2, a2, 0])
δ
−→
f
· · ·

According to Definition 1, there exists the same transition relation si+1 = si +
∫ δ

0 f (s, ai)dt with
ai = π(si) inD and the modeled hybrid automaton H at each time point iδ. Thus, given an arbitrary
initial state s0, the value of state variable and action of D and H remain the same at each δ. Then
with the same state-action pair and dynamics f at each δ,D and H also have the same state-action
value during each time interval [iδ, (i + 1)δ).

Figure 1 depicts the hybrid automaton defined in Theorem 1. There exists only one location l0.
The invariants in Inv claim that any state belongs to the state space S and the clock variable tc is
less than or equal to the time step size δ. The flow in F defines the dynamics f of the system. The
only transition is triggered when tc = δ, updating the action a and resetting tc as defined in R. The
continuous change happens during the time interval [iδ, (i + 1)δ], with i ∈ N, and the discrete change
of actions occurs at each δ.

Unfortunately, the hybrid automaton of a DRL system cannot be verified by using existing hybrid
automata model checkers such as Flow* [24], Ariadne [25], and CORA [26]. The reason is that
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the action a in R depends on the uninterpretable DNN π by a := π(s), and ṡ = f (s, a) can not be
expressed in a known closed-form, which however is required by regular hybrid automata supported
by these tools [27]. Hence, almost all reachability-based verification methods for DRL systems such
as Polar [10], Sherlock [7], and ReachNN [28] inevitably over-approximate π using a Taylor model,
at the cost of large overestimation and time overhead.

3 Piece-Wise Linear Control Policies

l0, s
ṡ = f (s, a)
ȧ = 0
ṫc = 1

G

Inv F

R

s ∈ S
tc ≤ δ

a := π(s)
tc := 0

tc = δ

Figure 1: Hybrid automaton
for a DRL system.

To bypass the crux of over-approximating DNNs, we devise a novel,
alternative neural network model which essentially realizes a set of
linear control policies. Our approach bases on the common assump-
tion that there exists a near-optimal linear control policy for every
small region of the entire state space [29, 30, 21, 31]. Our objec-
tive is then to discretize the state space S of a DRL system and to
train a linear control policy for each discretized region. Specifically,
given an n-dimensional DRL system with m-dimensional control
input, we train a DNN which implements a linear control function
a j = b j+c j

1x1+c j
2x2+· · ·+c j

nxn for each control dimension 1 ≤ j ≤ m
and each discretized region.

3.1 Abstracting State Space via Abstract Interpretation

Abstract Interpretation [32] is an effective technique for scaling up formal verification of complex
systems or programs by reducing the system space while preserving the soundness of verification
results. For instance, an infinite state space [−2, 0] × [0, 2] can be abstracted to be an abstract state
represented as (−2, 0, 0, 2), when all the states in [−2, 0] × [0, 2] share a same property. In general,
given a system state space S , we denote S ϕ as a finite set of abstract states (each abstract state
represents a possibly infinite set of actual system states in S ). Let ϕ : S → S ϕ be an abstraction
function that maps each actual state s in S to the corresponding abstract state in S ϕ, and ϕ−1 : S ϕ → 2S

be the inverse concretization function such that ϕ−1(sϕ) = {s|s ∈ S , ϕ(s) = sϕ}.

For state space abstraction, we choose the very primitive but effective abstraction approach which
abstracts actual system states as intervals. It is known as interval abstract domain and has been
well studied for system [33] and program verification [34] and even the approximation of neural
networks [35]. Specifically, let Li and Ui be the lower and upper bounds for the i-th dimension value
of S . We first define the abstraction granularity as an n-dimensional vector γ = (d1, d2, . . . , dn). Then
the i-th dimension will be divided evenly into (Ui − Li)/di intervals which means each abstract state
can be represented as a 2n-dimensional vector (l1, u1, . . . , ln, un).
Definition 4 (Interval-Based Abstraction Function). Given an n-dimensional continuous state space
S and an abstract state space S ϕ which discretizes S based on abstraction granularity γ, ϕ : S → S ϕ
is called an interval-based abstraction function such that, for every actual state s = (x1, . . . , xn) ∈ S
and abstract state sϕ = (l1, u1, . . . , ln, un) ∈ S ϕ, we have ϕ(s) = sϕ if and only if li ≤ xi < ui holds for
each dimension 1 ≤ i ≤ n.
Example 1 (Running Example). Consider a 2-dimensional system in [36] with state space [−2, 2) ×
[−2, 2). The dynamics f is defined by following ordinary differential equations (ODE) i.e., ẋ1 = x2−x3

1
and ẋ2 = a. The sign a means the control action. The objective is to train a DNN for determining
action a based on (x1, x2) so that the agent can move from the initial region x1 ∈ [0.7, 0.9] and
x2 ∈ [0.7, 0.9] to the goal region x1 ∈ [−0.3, 0.1] and x2 ∈ [−0.35, 0.05] as soon as possible.

Suppose that the abstraction granularity is γ = (2, 2). The continuous state space [−2, 2) × [−2, 2)
is then partitioned into four regions, corresponding to four abstract states represented by S ϕ =
{(−2, 0,−2, 0), (−2, 0, 0, 2), (0, 2,−2, 0), (0, 2, 0, 2)}, respectively.

3.2 Piece-Wise Linear Decision Neural Networks

We devise an alternative DNN model called piece-wise linear decision neural networks (PLDNNs).
Unlike conventional DNNs, a PLDNN contains an abstraction layer between the input layer and the
first hidden layer. The abstraction layer is used to convert an actual system state into its corresponding
abstract state. Then the output of a PLDNN is the control action that is the dot product result of state
variables of the actual state and the linear coefficients determined by the corresponding abstract state.
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Algorithm 1: The Training Procedure based on the DDPG algorithm
1 Input: State space S , abstraction granularity γ. Output: A PLDNN π
2 ϕ← discretize S according to γ; // obtain abstraction function, Sec3.1
3 Initialize actor network π as a PLDNN by encoding ϕ into the coefficient network πc; // Sec3.2
4 Initialize critic network Q, target networks π′ ← π,Q′ ← Q;
5 DDPG(π,Q, π′,Q′) ; // train π based on DDPG algorithm
6 return π

Figure 2 exemplifies the architecture of the PLDNN π for a two-dimensional DRL system. The
decision-making of π is based on a coefficient network πc that outputs the linear coefficients. The sec-
ond layer of πc is the inserted abstraction layer which consists of the blue neurons and the red neurons.

1

x1

x2

•
a

b

c1

c2

πc(s)

x1

x2

w=1
w=1 w=0

Abstraction Layer

a = π(x1, x2) = πc(x1, x2) · (1, x1, x2)
Figure 2: The arch. of the PLDNN for Example 1.

The output layer of πc contains n + 1 neurons
that output the n + 1 linear coefficients depicted
as purple neurons. As for the weights setting
between the input layer and the abstraction layer,
the weights of the connections between the i-th
neuron in the input layer and the (2i − 1)-th
and 2i-th neurons in the abstraction layer are
set to 1 which are represented by blue lines and
red lines, respectively. While the weights of
other connections denoted by the black dashed
lines are set to 0. Under this setting of weights,
the inputs to both (2i − 1)-th and 2i-th neurons
in the abstraction layer are xi. Moreover, the
activation function of the (2i − 1)-th neuron in
the abstraction layer is set to ϕu with the responsibility of computing the upper bound ui, and that
of the 2i-th neuron is set to ϕl for calculating the lower bound li. Specifically, for a continuous state
space partitioned by the abstraction granularity γ = (d1, . . . , dn), the activation functions for the
(2i − 1)-th and 2i-th neurons in the abstraction layer can be formulated as follows:

ϕi
l(xi) = Li + ⌊

(xi − Li)
di

⌋di ϕi
u(xi) = Li + ⌊

(xi − Li)
di

⌋di + di

With the above activation functions, the abstraction layer can output the same abstract state sϕ =
(l1, u1, . . . , ln, un) for ∀s ∈ ϕ−1(sϕ). The abstract state sϕ is then propagated to the fully connected
layers of πc to generate the linear control coefficients (b, c1, c2) denoted by πc(s).

To obtain the final output of action a, an additional dot product operation between πc(s) and [1, s]
is performed with the result of the operation as the control action a where [·, ·] is the concatenation
operation. For multiple dimensional control action a = (a1, · · · am), we only need to modify the
output dimension of πc to m(n + 1), such that each n + 1 neurons output the linear coefficients of one
dimension of a. More specifically, we can obtain a j as follows:

a j = π(s) j = πc(s)[(n + 1)( j − 1) : (n + 1) j] · [1, s], 1 ≤ j ≤ m.

where vector[start : end] denotes the slicing operation that extracts the elements of vertor from
index start up to but not including index end.

With the additional abstraction layer that can output an identical vector into the fully connected layers
of πc for ∀s ∈ ϕ−1(sϕ), we can ensure that πc always produces the same coefficients for all actual
states located in the same abstract state. Consequently, we can extract a piecewise linear decision
function with this structure of π on each abstract state.

3.3 The Training Procedure

Training a PLDNN can be achieved by extending existing deterministic policy gradient algorithms
such as Deep Deterministic Policy Gradient (DDPG) [37] and Twin Delayed Deep Deterministic
Policy Gradient [38] since the modifications made stay inside neural networks and are invisible to
the DRL algorithms. The pseudo code of the training procedure is given in Algorithm 1, where we
take the DDPG algorithm as an example. The training procedure starts with defining the abstraction
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function ϕ according to γ (Line 2), initializing PLDNN with an abstraction layer based on ϕ (Line 3),
and, following [37], initializing the critic network and the two target networks (Line 4). The procedure
then invokes the DDPG algorithm with the networks as arguments (Line 5) since the PLDNN has
the same input and output as the actor network implemented by DNN. During this procedure, we
freeze the parameters between the input and the abstraction layers of π. The parameters in the fully
connected layers are trained based on backpropagation [39] and gradient descent optimization [40].

4 Equivalent Policy Extraction and Verification

After training, we can extract |S ϕ| LCUs based on the learned coefficients of linear control policies
for the abstract states in S ϕ. Specifically, we choose an arbitrary actual state s ∈ ϕ−1(sϕ) for
each abstract state sϕ and feed it to a PLDNN to obtain the coefficients defined on the abstract
state. For instance, we can feed (−1,−1) to the PLDNN in Example 1 and obtain the coefficients
(−0.16610657,−1.7437580,−1.8227874) of the linear control policy for the region [−2, 0) × [−2, 0).
Figure 3 shows the LCUs extracted from a trained PLDNN in Example 1. They are depicted by planes
with different colors in Figure 3. These four planes denote the following linear control functions:

π(x1, x2) = −0.16610657 − 1.7437580x1 − 1.8227874x2, x1 ∈ [−2, 0), x2 ∈ [−2, 0) (LCU1)
π(x1, x2) = −0.20400035 − 1.8006037x1 − 1.8679885x2, x1 ∈ [−2, 0), x2 ∈ [0, 2) (LCU2)
π(x1, x2) = −0.27547930 − 1.8884722x1 − 1.9342268x2, x1 ∈ [0, 2), x2 ∈ [−2, 0) (LCU3)
π(x1, x2) = −0.29549897 − 1.9022338x1 − 1.9436346x2, x1 ∈ [0, 2), x2 ∈ [0, 2) (LCU4)

The underlying x1 × x2 plane in Figure 3 is the projection of the four LCUs. Under the control of
these four LCUs, the agent can reach the goal region (orange box). The two sequences of purple
boxes represent the range of reachable states from corresponding initial regions to the goal region.

Figure 3: The LCUs extracted from a trained
PLDNN for Example 1.

With exacted LCUs from a PLDNN, we can build a
verifiable hybrid automaton for the system by substi-
tuting equivalently the neural networks using corre-
sponding LCUs. Theorem 2 formulates the hybrid
automaton after a decision network π is substituted
by LCUs. The differences from Theorem 1 include
the definitions of transitions T , guard condition G
and reset formula R. For the PLDNN controlled sys-
tems, We use |S ϕ| transitions each of which contains
a guard condition and a reset formula to update the
action a to πc(s) · [1, s] at each δ. Notice that, πc(s) is
a determined vector since ∀s ∈ ϕ−1(si

ϕ), the outputs
of πc are the same according to the dedicated struc-
ture of πc. Thus, the reset formula for a is simplified
to an affine mapping.

Theorem 2. Given a DRL system with environment dynamics f , PLDNN π, time step size δ and
initial state set S 0, it can be equivalently modeled as a hybrid automaton defined as follows:

• Var: state variable s, action a, clock variable tc • I0: {(l0, (s ∈ S 0, a = 0, tc = δ))}
• L: {l0} • Inv: Inv(l0) = {s ∈ S , tc ≤ δ} • F: F(l0) = {ṡ = f (s, a), ȧ = 0, ṫc = 1}
• T : {(l0, l0), · · · , (l0, l0)} where |T | = |S ϕ|
• G: G(T [i]) = {tc = δ, s ∈ ϕ−1(si

ϕ)} where 0 ≤ i < |T | ∧ si
ϕ ∈ S ϕ

• R: R(T [i]) = {tc = 0, a = πc(s) · [1, s]} where 0 ≤ i < |T | ∧ s ∈ ϕ−1(si
ϕ)

Proof. We prove that the path of hybrid automaton H1 in Theorem 1 is the same as the corresponding
hybrid automaton H2 in Theorem 2 for an arbitrary initial state (l0, [s0, 0, δ]). The path of H2 can be
described by the following sequence:

(l0, [s0, 0, δ])
0
−→
f

(l0, [s0, a0, 0])
δ
−→
f

(l0, [s1, a1, 0])
δ
−→
f

(l0, [s2, a2, 0])
δ
−→
f
· · ·

where si+1 = si +
∫ δ

0 f (s, ai)dt and ai = πc(si) · [1, si]. With the dedicated structure of PLDNN π, we
have π(s) = πc(s) · [1, s]. Thus, at each δ, the discrete transitions of H1 and H2 change both location
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and continuous variables in the same way. We can conclude that the paths of H1 and H2 are exactly
the same. By Theorem 1, it is obvious thatD, H1 and H2 produce the same state-action value for the
same initial state.

According to Theorem 2, we can build a hybrid automaton that is equivalent to the DRL system in
Example 1. Assuming the trained system has four linear control units as shown in Formulas (LCU1-
LCU4) and δ = 0.2, we construct the corresponding hybrid automaton as depicted in Figure 4. The
four transitions in the automaton correspond to the four LCUs, respectively. The guard of each
transition represents the condition of triggering the corresponding policy.

l0, x1, x2

a := LCU2
tc := 0

G2
I

F

R2

a := LCU3
tc := 0

a := LCU4
tc := 0

a := LCU1
tc := 0

G4

G3

G1

R1

R3

R4

tc = 0.2
x1 ∈ [−2, 0]
x2 ∈ [−2, 0]

tc = 0.2, x1 ∈ [−2, 0], x2 ∈ [0, 2]

tc = 0.2, x1 ∈ [0, 2], x2 ∈ [0, 2]

ẋ1 = x2 − x3
1

ȧ = 0 ṫc = 1
ẋ2 = a

x1 ∈ [−2, 2]

tc ≤ 0.2
x2 ∈ [−2, 2]

tc = 0.2
x1 ∈ [0, 2]
x2 ∈ [−2, 0]

Figure 4: The hybrid automaton of the DRL system with
the trained piece-wise linear controllers in Figure 3.

Thanks to the linearity of control policies in
R, a hybrid automaton built for a PLDNN-
controlled system can be efficiently veri-
fied by state-of-the-art tools. For instance,
Flow* [24] is a representative tool for the
reachability analysis of hybrid systems. In
this paper we are focused on the verifica-
tion of both goal-reach and reach-avoid
properties. The former means that given
a set of initial states, a system must even-
tually reach the goal region from any ini-
tial state. The latter means that the system
never enters unsafe regions within a spe-
cific time horizon. Both properties can be
verified via reachability analysis.

5 Experimental Evaluations

We prototype our approach into a tool called LinCon, with DDPG as the backend DRL algorithm
and Flow* as the verification engine. We extensively assess it, along with the state-of-the-art tools.
Our goal is to show, for the PLDNN-based training, (i) the reduction in the number of partitions with
comparable cumulative rewards, robustness, and time overhead with respect to conventional DNN-
based training; (ii) its high verification performance including the tightness of over-approximation
sets and the efficiency of verification; and (iii) its scalability for large-sized neural networks and
systems with complex dynamics and high-dimensional state space.

Experimental Setup. All experiments were conducted on a workstation equipped with a 32-core
AMD Ryzen Threadripper CPU @ 3.6GHz and 256GB RAM, running Ubuntu 22.04.

Benchmarks. We choose eight benchmarks, including six regular benchmarks from Verisig 2.0 [9]
(B1-B5 and Tora) and two complex benchmarks (CartPole with extreme complex dynamics from
OpenAI Gym [41] and quadrotor (QUAD) with 12-dimensional state space and 3-dimensional action
space from [10]). For fair comparisons, we use the same training configuration and guarantee that
all trained systems reach the specified reward threshold. See Appendix A.1 for the detailed setting.
For B1-B5 and Tora the environment dynamics are the same with [9]. The dynamics of QUAD are
the same with [10]. We omit their detailed definition here. However, the dynamics of CartPole are
originally represented as a discrete-time model in [41] by difference equations. In our experiment,
we consider its dynamics as a continuous-time model and formalize it with the following ODEs:

ẋ1 =x2, ẋ3 = x4,

ẋ2 =(a + 0.05x2
4sin(x3))/1.1 − (0.05((9.8sin(x3) − cos(x3)((a + 0.05x2

4sin(x3))/1.1))/

(0.5(4.0/3.0 − (0.1cos2(x3)/1.1))))cos(x3))/1.1,

ẋ4 =9.8sin(x3) − cos(x3)((a + 0.05x2
4sin(x3))/1.1)/0.5(4.0/3.0 − (0.1cos2(x3)/1.1)).

5.1 Performance Evaluation
We assess the performance of PLDNN, together with the conventional DNNs, in terms of cumulative
reward, robustness, and training time under the same training configuration. We also measure the
number of abstracted states required for training linear control policies and constant policies [21].
Due to space limitations, we present the experimental results only for B1, B2, and two complex cases
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Figure 5: Performance and robustness comparison between PLDNNs and DNNs. The number in the
parentheses is the base of σ, e.g., when the abscissa is 50 in B1, we have σ = 50 × 0.0004 = 0.02.

(i.e., CartPole and QUAD). The associated conclusions (from Table 1 and Figure 5) also apply to the
other four cases; see Appendix A.2 for the detailed experimental results.

Table 1: Training time and number of partitions

Task B1 B2 CartPole QUAD
Training

Time
PLDNN 14.3 7.9 428.2 871.1

DNN 11.0 6.6 403.6 781.5

#partitions LCU 1 4 16 1
Const. 4 100 254 412

Cumulative Reward. Figure 5 plots the
system cumulative reward (the average of
five trials) during the training process. The
solid lines and shadows refer to the aver-
age reward and 95% confidence interval,
respectively. Apparently, the trends of ac-
cumulative rewards by PLDNNs and DNNs
are comparable. Despite slightly more time required for training with PLDNN due to its additional
conversion from actual state to abstract state (see Table 1, “Training Time”), we can, however, obtain
a significant advance in the efficiency and tightness of verification (see Section 5.2).

Robustness. We also evaluate the robustness of PLDNNs as training the linear controller on each
partition may lead to discontinuity of control decisions in the boundaries of partitions. For a
current state s = (x1, . . . , xn), we add a Gaussian noise X1, ...Xn to s and obtain a perturbed state
s′ = (x1 + X1, . . . , xn + Xn) for calculating the control action, where Xi ∼ N(µi, σ

2
i ) with 1 ≤ i ≤ n

and µi = 0. For each benchmark, we train 10 different policies and evaluate their robustness under
100 different perturbation levels to obtain the average and 95% confidence interval of the cumulative
reward. Figure 5 depicts the reward trend with the increasing perturbation level. As σ increases, the
decline ratio of the system with PLDNNs is comparable to that with DNNs, which implies that both
achieve similar robustness.

Reduction in the Number of Partitions. We measure the effect of reducing the number of partitions
by utilizing a linear policy, instead of the constant action on each partition, which is adopted by the
work [21]. In both cases, we start training from a coarse-grained abstraction granularity (with only
one partition) and gradually increase the number of partitions until the preset reward threshold can be
reached by the trained PLDNN. As shown in Table 1, linear policies significantly reduce the number
of partitions required for reaching the reward threshold, which benefits both the verification efficiency
and accuracy as we will see in the next section.

5.2 Verification Efficiency and Tightness
We evaluate the verification efficiency and tightness for the PLDNN-based and DNN-based DRL
systems, respectively. Regarding tightness, we choose two state-of-the-art tools, i.e., Polar [10]
and Verisig 2.0 [9], for the reachability analysis of DNN-controlled systems. We do not consider
ReachNN* which both Polar and Verisig 2.0 have been demonstrated to outperform [9, 10]. For
efficiency, we employ Flow* to perform reachability analysis, which is used by both Polar and Verisig
2.0 as the backend reachability analysis tool.

Efficiency. Table 2 presents the comparison results for the verification efficiency. For each regular
case, we choose four different network configurations: two smaller networks (e.g., Tanh2×20) from [10]
and two larger networks (e.g., Tanh3×100). Our approach LinCon can handle all 26 instances including
the two complex instances, while Polar succeeds only in 20 cases. Verisig 2.0 is not applicable to
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Table 2: Verification results and time in seconds.
Task Dim Network LinCon Polar Verisig 2.0

1 Core V.R. 1 Core Impr. V.R. 1 Core Impr. 20 Cores Impr. V.R.

B1 2

Tanh2×20 2.31 ✓ 17 7.4× ✓ 45 19.5× 38 16.5× ✓
Tanh3×100 2.28 ✓ 125 54.8× ✓ 413 181.1× 123 53.9× ✓
ReLU2×20 2.11 ✓ 3 1.4× ✓ — — — —

✗c
ReLU3×100 2.59 ✓ — — ✗b — — — —

B2 2

Tanh2×20 0.57 ✓ 5 8.8× ✓ 5 8.8× 4 7.0× ✗a

Tanh3×100 0.56 ✓ — — ✗b — — — — ✗b

ReLU2×20 0.64 ✓ 3 4.7× ✓ — — — —
✗c

ReLU3×100 0.60 ✓ — — ✗b — — — —

B3 2

Tanh2×20 2.69 ✓ 18 6.7× ✓ 36 13.4× 28 10.4× ✓
Tanh3×100 3.57 ✓ 91 25.5× ✓ 357 100.0× 88 24.6× ✓
ReLU2×20 3.05 ✓ 8 2.6× ✓ — — — —

✗c
ReLU3×100 2.92 ✓ 14 4.8× ✓ — — — —

B4 3

Tanh2×20 1.44 ✓ 5 3.5× ✓ 7 4.9× 5 3.5× ✓
Tanh3×100 1.45 ✓ 27 18.6× ✓ 114 78.6× 31 21.4× ✓
ReLU2×20 1.43 ✓ 2 1.4× ✓ — — — —

✗c
ReLU3×100 1.43 ✓ 5 3.5× ✓ — — — —

B5 3

Tanh3×100 3.24 ✓ 38 11.7× ✓ 157 48.5× 44 13.4× ✓
Tanh4×200 3.29 ✓ 157 47.7× ✓ 1443 438.6× 191 58.1× ✓
ReLU3×100 3.28 ✓ 7 2.1× ✓ — — — —

✗c
ReLU4×200 3.29 ✓ 49 14.9× ✓ — — — —

Tora 4

Tanh3×20 1.57 ✓ 45 28.7× ✓ 69 43.9× 46 29.3× ✓
Tanh4×100 1.75 ✓ — — ✗b — — — — ✗b

ReLU3×20 1.58 ✓ 30 19.0× ✓ — — — —
✗c

ReLU4×100 1.62 ✓ 53 32.7× ✓ — — — —
CartPole 4 Tanh3×64 151 ✓ — — ✗b — — — — ✗b

QUAD 12 Tanh3×64 1054 ✓ — — ✗b — — — — ✗b

Remarks. Impr.: time speedup of LinCon compared to Verisig or Polar (Verisig or Polar/LinCon).
Tanh/ReLUn×k: a DNN with the activation function Tanh/ReLU, n hidden layers, and k neurons
per hidden layer. VR: verification result. ✓: the reachability problem is successfully verified.
✗type: the reachability problem cannot be verified due to type: (a) large over-approximation error,
(b) the calculation did not finish, (c) not applicable. —: no data available due to ✗b or ✗c.

ReLU networks (marked by ✗c) and succeeds only in 9 instances. Overall, LinCon outperforms both
Polar (up to 47.7× speedup) and Verisig 2.0 (up to 438.6× speedup). In particular, LinCon achieves
even up to 58.1× speedup compared to Verisig 2.0 accelerated by 20-core parallelization. For our
approach LinCon, the only time overhead for encoding networks stems from extracting LCUs from
PLDNNs, which is polynomial and negligible (less than 0.05s). Consequently, LinCon can scale up
to large-sized neural networks.

Tightness. We compare the tightness of the over-approximation sets computed by different ap-
proaches. Figure 6 plots the experimental results, along with the corresponding simulation trajecto-
ries. For B2 and Tora, LinCon has a significant tightness improvement over Polar: the range of the
over-approximation sets (red boxes) calculated by Polar far outreaches the range of the reachable
states obtained from the simulation. Verisig 2.0 terminates prematurely in Tora since the range of the
action reaches 107 during the calculation which is too large to proceed. We defer to Appendix A.3
the experimental results for the remaining four cases where all three tools obtain similar tightness
results.

Discussion on CartPole and QUAD. We discuss the verification results of the two complex cases,
namely CartPole and QUAD. Both Polar and Verisig 2.0 fail to verify them. As shown in Figure 6,
Polar and Verisig 2.0 abort after 20 steps due to the huge over-approximation error in CartPole.
In contrast, such a complex policy trained with our approach can be efficiently and tightly verified.
In particular, the trajectories diverge first and finally merge. The computed reachable states tightly
over-approximate these trajectories, and the computation takes only 151 seconds. Regarding the
12-dimensional QUAD case, Polar and Verisig 2.0 time out (two hours) after only two steps, while
LinCon produces a very tight set of reachable states in 1054 seconds even after 15 steps, which is
7 times deeper than Polar. To the best of our knowledge, this is the first time that QUAD can be
formally verified more than ten steps under various decision networks. Note that the trained policies
used in the comparison differ due to different decision networks, and thus agents may follow different
paths to the goal region (see the simulated trajectories in Figure 6). Hence, for a fair comparison,
we conduct more evaluations, from which we can draw the same conclusion as from Figure 6. The
results are given in Appendix A.3.
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Figure 6: Tightness comparison with respect to the DRL systems with larger decision networks (red
box: over-approximation sets; green lines: simulation trajectories; blue box: goal region).

6 Related Work

Policy Synthesis. Several works adopt programmatic policies (e.g., decision trees and program
controllers) which are more interpretable and amenable to formal verification than neural policies.
Bastani et al. [15] construct a decision tree to represent a DNN policy based on imitation learning [42].
Verma et al. [43, 44] follow a similar routine, distilling neural network policies into predefined
program templates. Trivedi et al. [45] use a two-stage learning scheme to synthesize programmatic
policies. Some efforts are dedicated to exploring the combination of training and verification. Zhu et
al. [30] propose an inductive framework for synthesizing a deterministic policy program from neural
policies. Wang et al. [31] learn programmatic controllers based on verification feedback to avoid
safety violations. Our proposed PLDNN is essentially a DNN-based implementation of programmatic
controllers, which could be integrated with these verification-guided synthesis approaches.

Reachability Analysis. Our work is also built atop the approaches for reachability analysis of neural-
network-controlled systems. NNV [46] utilizes star set [47] to perform range analysis of decision
networks. JuliaReach [48] uses zonotope propagation to cover the output of a decision network.
Verisig [49, 9] models a decision network with differentiable activation functions (e.g., Tanh) as a
hybrid system and analyzes its reachability for over-approximating the network. ReachNN* [28, 8]
abstracts the input-output mapping of a decision network with a Bernstein polynomial, together with
an error bound on the approximation. Sherlock [7] focuses on ReLU-based networks and computes
tight Taylor models via rule generation. Polar [10] integrates the Taylor and Bernstein approximation
techniques for building a Taylor model which over-approximates decision networks. All these efforts
over-approximate the embedded DNNs, which limit their scalability and verification accuracy.

7 Conclusion and Future Work
We have presented PLDNN that seamlessly integrates DNN and programmatic controls via state
abstraction for boosting the reachability analysis of DRL systems. Unlike traditional train-then-
transform approaches, PLDNN accompanies a novel inverse training and verification method, in
which a DNN is first transformed into an equivalent set of linear control policies and then trained
to optimize them. Experimental results have shown that PLDNN-controlled systems can be more
efficiently and tightly verified than DNN-based systems, with up to 438 times speedup and 7 times
deeper computation steps for a 12-dimensional control task.

Our work sheds light on a promising direction towards developing dependable DRL systems: learning
easy-to-verify and high-performance control policies via DRL and abstraction techniques. Given the
encouraging results of linear control policies, our work would also stimulate a passion for substituting
them with, e.g., polynomial control policies, for training and verifying more complex DRL systems.
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A Appendix

A.1 Benchmarks Setting

We first present the goal region and unsafe region of each benchmark in Table 3.

As for the training settings, for the 6 regular benchmarks, the target is training a policy to guide the
agent to reach the goal region. Therefore, we set a negative reward when the agent is not in the goal
region. Once the agent reaches the goal region, it will be awarded a positive reward. In CartPole, the
target of training is to prevent the pole from falling over, namely the pole angle −0.2 ≤ x3 ≤ 0.2. We
modify the original discrete reward function to a continuous reward function −|x3| to try to balance
the pole to stay upright. As for QUAD, we aim to control the altitude of the quadrotor above 0.6
(x3 ≥ 0.6). Thus we set a continuous reward function −|x3 − 0.8| for training a policy that drives the
quadrotor to ascend above 0.6.

Table 3: Benchmarks Setting
Task Initial Region Goal Region Unsafe Region

B1 x1 ∈ [0.8, 0.9]
x2 ∈ [0.5, 0.6]

x1 ∈ [0, 0.2]
x2 ∈ [0.05, 0.3] —

B2 x1 ∈ [0.7, 0.9]
x2 ∈ [0.7, 0.9]

x1 ∈ [−0.3, 0.1]
x2 ∈ [−0.35, 0.5] —

B3 x1 ∈ [0.8, 0.9]
x2 ∈ [0.4, 0.5]

x1 ∈ [0.2, 0.3]
x2 ∈ [−0.3,−0.05] —

B4
x1 ∈ [0.25, 0.27]
x2 ∈ [0.08, 0.1]
x3 ∈ [0.25, 0.27]

x1 ∈ [−0.05, 0.05]
x2 ∈ [−0.05, 0] —

B5
x1 ∈ [0.38, 0.4]
x2 ∈ [0.45, 0.47]
x3 ∈ [0.25, 0.27]

x1 ∈ [−0.4,−0.28]
x2 ∈ [0.05, 0.22] —

Tora x1 ∈ [−0.1, 0.2]
x2 ∈ [−0.9,−0.6]

x1 ∈ [−0.25, 0.10]
x2 ∈ [0.2, 0.7] —

CartPole x1, x2, x4 ∈ [0.02, 0.02]
x3 ∈ [0.02, 0.021] — x2 ∈ [26, 29]

x3 ∈ [−0.2, 0.2]

QUAD x1, . . . , x6 ∈ [0.35, 0.4]
x7, . . . , x12 ∈ [0, 0] x3 > 0.6 —

A.2 Comparison on cumulative reward and robustness

In this section, we provide the comparison results on cumulative reward and robustness of B3-B5 and
Tora in Figure 7. The solid lines and shadows refer to the average reward and 95% confidence interval,
respectively. For these four cases, it is obvious that there are comparable trends in the cumulative
rewards of PLDNNs and DNNs during training and under perturbation. Therefore, we can conclude
that using PLDNNs will not affect the training efficiency and the robustness of trained systems.

A.3 Comparison on the tightness of over-approximation sets

Tightness results of regular cases. We present the tightness comparison results of B1 and B3-B5 in
Figure 8. For these four regular cases, both Polar and Verisig 2.0 can produce tight over-approximation
for decision networks, thus all three methods achieve similar tightness results and successfully verify
the goal-reach properties.

Multiple evaluations on CartPole and QUAD. Since the trained policies used in the comparison
differ due to different decision networks, we conduct more evaluations on these two complex
cases. For each case, we train three more decision networks with the same configuration and the
corresponding results are shown in Figure 10. For CartPole, Polar did not finish the calculation under
three different networks as depicted in Figure 10(d-f). Additionally, on the basis of the result of
dealing with divergent traces as shown in Figure 10(d), we can see that Polar is not suitable for dealing
with the DNN-controlled systems with divergent traces. As for QUAD, we record the computation
results within 12 hours and obtain the results as shown in Figure 10(j-l). We can observe that only

14



(a) B3 (b) B4 (c) B5 (d) Tora

(e) B3 (f) B4 (g) B5 (h) Tora

Figure 7: Performance (a-d) and robustness comparison (e-h) of the pldnn and DNN under the same
settings. The number in the parentheses is the base of σ. For example, in B3 when the abscissa is
equal to 50, σ = 50 × 0.0005 = 0.025.

a few time steps are completed by Polar, while LinCon can accomplish more than 10 steps within
about 1000 seconds under multiple evaluations.

(a) B1 by LinCon (b) B3 by LinCon (c) B4 by LinCon (d) B5 by LinCon

(e) B1 by Polar (f) B3 by Polar (g) B4 by Polar (h) B5 by Polar

(i) B1 by Verisig 2.0 (j) B3 by Verisig 2.0 (k) B4 by Verisig 2.0 (l) B5 by Verisig 2.0

Figure 8: Tightness comparison on the DRL systems with larger decision networks (red box: over-
approximation sets; green lines: simulation trajectories; blue box: goal region.)

A.4 Evaluation on Verisig 2.0 with Big Weights

Verisig 2.0 produces large over-approximation error when dealing with neural networks with big
weights. To demonstrate this, we initialize the weights of the neural network with larger values
(random numbers wl ∼ N(µ, σ2) with µ = 0, σ = 0.1) and show the experimental results in Figure 9.
We observe that the calculated over-approximation sets contain large over-approximation error except
for B4. In Tora, Verisig 2.0 fails to calculate the complete reachable sets due to too large over-
approximation error. Hence, it is fairly to say that Verisig 2.0 is sensitive to the DNNs with big
weights.
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(a) B1 (b) B2 (c) B3

(d) B4 (e) B5 (f) Tora

Figure 9: Assessing Verisig 2.0 on the larger networks with big weights. red box: over-approximation
set; green lines: simulation trajectories; blue box: goal region; purple dashed box: unsafe region.
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Figure 10: Multiple evaluations on CartPole (CP) and QUAD. red box: over-approximation set; green
lines: simulation trajectories;
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