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1 Appendix A Feature Engineering

In this section, we explain how we generate features. Features are generated on partitioned grid cells
and at different time intervals.
Temporal Features FT Such calendar features and Weather features are generated from the date of
Vehicle Crash or Crime Records, where all grid cells share a vector of temporal features in a time
interval. calendar features include the day of the year, the month of the year, holidays, and so on.
Weather features include temperature, precipitation, snowfall, wind speed, etc.
Spatial Features FS are generated based on each grid cell and remain the same over different time
intervals. First, POI features are the number of POI data in each grid cell for different categories.
For example, one of the POI types is shopping, we count the number of shopping instances in each
grid cell. Second, basic road condition features are extracted from road network data, in which we
calculate the summation or average of provided data for road segments in each grid cell. Third, we
use top eigenvectors of the Laplacian matrix of road networks as spatial graph features[12], which
represent the topological information for each grid cell.
Spatio-Temporal Features FST such as real-time traffic conditions are estimated by taxi GPS data
and Bus GPS data. Spatio-temporal features include pick-up volumes, drop-off volumes, traffic speed,
etc.

Feature Summary In total, 36 features are extracted, including 12 temporal features, 18 spatial
features, and 6 spatial-temporal features for each location s and time interval t.
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2 Appendix B Methodology

2.1 Symbol Table

Symbol Table

Symbol Explainations

S Spatial filed, study area

s A partitioned location, grid cell

T Temporal filed, study period

t Time interval (e.g. hours, days)

FT Temporal features (weather, time)

FS Spatial features (e.g. POI)

FST Spatiotemporal features (e.g. traffic conditions)

Z Discounted Cumulative Gain (DCG) score

a Pearson correlation coefficient

NDCG Normalized Discounted Cumulative Gain

L-NDCG Local Normalized Discounted Cumulative Gain

Prec top-K precision

r() Ranking function

N Neighbour querying

3 Appendix C Experiments

Parameter Configuration. For each method, we train the network for 100 epochs and save the
model with the best performance on the validating set. We use the Adam optimizer [4] with settings
α = 0.0001, β1 = 0.9, β2 = 0.999, and ϵ = 10−8. We tune trade-off hyperparameter σ with value 0,
0.05, 0.1, 0.2, and 0.3. The R in the spatial neighbor definition is set as 2 grid cells for computation
efficiency. We use an initial warm-up strategy by optimizing cross-entropy at the first 20 epochs to
obtain a good initial solution because merely optimizing NDCG might land in the local minimum if a
poor initial solution is given. The same warm-up process is also applied to optimization baselines.
The learning rate is set at 0.001 in the warm-up and changed to 0.0001 afterward. The batch size is
64.

Data. For the state of Iowa, we collect data from 2016 to 2018. 80% of data from the year 2016 and
year 2017 is randomly selected as a training set, and the remaining data is used as the validating set.
The data from the year of 2018 is used as the testing set. The area is partitioned by 5 km × 5 km
cells. The grid size is 128× 64. Normalization is used to transform data into the range [0, 1].

Platform. We run the experiments on a High-Performance Computer system where each node runs
has an Intel Xeon E5 2.4 GHz and 256 GB of Memory. We use a GPU node with Nvidia Tesla V100
Accelerator Cards with the support of Pytorch library [10] to train the deep learning models.

Baselines. First, we compare our methods with daily Historical Average (HA). Next, we consider
popular machine-learning methods. Long Short-term Memory (LSTM) [3] is a recurrent neural
network architecture with feedback connections, we stack two fully-connected LSTM layers. Convo-
lutional LSTM Network (ConvLSTM) [8] is a recurrent neural network with convolution layers
for spatial-temporal prediction. We use a stacked two-layer network. Thirdly, we compare with
recent methods designed to tackle the traffic accident occurrence prediction problem. GSNet [11]
is a deep-learning method utilizing complicated graph information. Hetero-ConvLSTM [12] is an
advanced deep-learning framework to address spatial heterogeneity. It applies multiple ConvLSTM
on pre-defined sub-regions with size 32× 32. We use the same parameter setting in the experiments.
HintNet [1] is a recent work capturing heterogeneous accident patterns by a hierarchical-structured
learning framework. Finally, using our proposed network, we compared our optimization approach
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TABLE 1: PERFORMANCE COMPARISON

IOWA
K=30 K=40 K=50

NDCG PREC L-NDCG NDCG PREC L-NDCG NDCG PREC L-NDCG

HA .314±0 .167±0 .326±0 .326±0 .134±0 .261±0 .333±0 .111±0 .231±0
LSTM .503±3‰*.278±3‰*.573±3‰*.522±1‰*.209±1‰*.518±3‰*.519±5‰*.187±1‰*.474±1‰*

CONVLSTM .490±3‰*.282±2‰*.583±1‰*.507±3‰*.207±1‰*.513±4‰*.511±3‰*.189±3‰*.474±8‰*

GSNET .493±2‰*.265±1‰*.569±3‰*.509±3‰*.222±3‰*.527±3‰*.526±5‰*.207±1‰*.510±3‰*

HETERO-CONVLSTM .518±1‰*.289±2‰*.617±4‰ .523±5‰*.258±1‰*.589±5‰*.543±3‰*.226±1‰*.534±5‰*

HINTNET .512±5‰ .289±3‰*.617±1‰ .542±5‰ .243±4‰*.590±9‰ .556±3‰*.209±2‰*.534±8‰*

SPATIALRANK # .530±3‰ .300±2‰ .617±4‰ .556±3‰ .264±2‰ .594±3‰ .571±3‰ .223±1‰ .552±4‰

SPATIALRANK .540±3‰ .309±2‰ .618±3‰ .563±6‰ .268±3‰ .600±3‰ .585±3‰ .232±2‰ .550±6‰

* β = 0.5 ‰: ×10−3

TABLE 2: OPTIMIZATION COMPARISON

IOWA
K=30 K=40 K=@50

NDCG PREC L-NDCG NDCG PREC L-NDCG NDCG PREC L-NDCG

CE .531±4‰ .306±4‰ .554±2‰ .555±1‰ .246±2‰ .556±2‰ .548±2‰ .205±1‰ .502±1‰

APPROXNDCG .528±4‰ .304±3‰ .561±1‰ .551±3‰ .250±4‰ .557±6‰ .554±6‰ .212±2‰ .508±3‰

SONG .529±3‰ .308±2‰ .618±1‰ .563±3‰ .264±4‰ .584±1‰ .581±3‰ .227±4‰ .536±6‰

SPATIALRANK .540±3‰ .309±2‰ .618±3‰ .563±6‰ .268±3‰ .600±3‰ .585±3‰ .232±2‰ .550±6‰

‰: ×10−3

with other NDCG optimization solutions. Cross Entropy (CE) is a well-accepted objective function.
ApproxNDCG [6] approximates the indicator function in the computation of ranks. SONG [7] is an
efficient stochastic method to optimize NDCG.

3.1 Performance Comparison

We compare the results between SpatialRank and the baselines on the Iowa traffic accident dataset
and observe that our full version of SpatialRank still outperforms other compared baselines in
all three metrics. The results are shown in Table 1. SpatialRank# with β pre-defined (as 0.5)
rather than automatically learned is the second best. Consistent with the results on the other two
datasets, SparkRank outperforms all the baselines and the dynamic convolution layers are effective in
improving the model’s performance.

3.2 Optimization Comparison

We perform the comparison of optimization methods on the Iowa traffic accident data. We use the
same network architecture but with different optimization solutions including Cross Entropy (CE),
ApproxNDCG, and SONG. The results are shown in Table 2. Methods designed to optimize NDCG
consistently perform better than Cross Entropy. SpatialRank substantially outperforms SONG and
ApproxNDCG and made a noticeable improvement on L-NDCG as it is considered in the objective
function.

3.3 Computation Cost Comparison

We conduct comparisons with SOTA methods on average training time in seconds per epoch and
inference time on the testing dataset in Table 3. The Chicago crime dataset and the Chicago accident
dataset have the same input feature; thus, have equivalent training costs. In summary, SpatialRank
trains faster than two SOTA baselines HintNet and GSNet on both datasets. It is only slower than
HeteroConvLSTM but the training times of the two are on the same order of magnitude. The training
phase of SpatialRank is slow because of computing nested L-NDCG loss function. Without extra
cost on proposed optimization techniques, SpatialRank is significantly faster than all baselines in the
inference phase. Given the improvement in prediction performance, we believe the cost of training
time is acceptable, which will not affect the predicting efficiency of the proposed method.
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TABLE 3: COMPUTATION COST

TRAINING TIME
COST IN SECONDS

SPATIALRANK HINTNET HETEROCONVLSTM GSNET

CHICAGO 88.2 132.1 47.7 98.8
IOWA 76.5 117.5 41.6 83.5

INFERENCE TIME
SPATIALRANK HINTNET HETEROCONVLSTM GSNET

CHICAGO 5.6 51.2 41.4 21.1
IOWA 5.1 41.7 12.3 16.2

TABLE 4: ABLATION STUDY ON WEIGHTING

CHICAGO ACCIDENT
K=30 K=40 K=50

NDCG PREC L-NDCG NDCG PREC L-NDCG NDCG PREC L-NDCG

NO-WEIGHT 0.255 0.441 0.622 0.265 0.417 0.613 0.274 0.401 0.595
SPATIALRANK 0.257 0.444 0.621 0.268 0.420 0.614 0.278 0.403 0.599

IOWA
NDCG PREC L-NDCG NDCG PREC L-NDCG NDCG PREC L-NDCG

NO-WEIGHT 0.531 0.304 0.617 0.557 0.264 0.591 0.573 0.225 0.546
SPATIALRANK 0.540 0.309 0.618 0.563 0.268 0.600 0.585 0.232 0.550

CHICAGO CRIME
NDCG PREC L-NDCG NDCG PREC L-NDCG NDCG PREC L-NDCG

NO-WEIGHT 0.364 0.484 0.660 0.379 0.466 0.642 0.390 0.450 0.649
SPATIALRANK 0.373 0.491 0.665 0.380 0.467 0.647 0.392 0.446 0.644

3.4 Ablation study

We perform an ablation study on the parameter σ on the Iowa traffic accident dataset. The results are
shown in Table 5. For K=30, 40, and 50, σ = 0.05 always gives the best performance. For K=50 there
is a tie in Precision@K between σ = 0.05 and σ = 0.1. Compared with the Chicago datasets, the
best σ changed from 0.1 to 0.05, suggesting that local ranking might be less challenging in the Iowa
data. This makes sense as the Iowa data has a coarser resolution (5km), making it easier to separate
potential hotspots from surrounding grid cells.

3.5 Cross-K function

We use the Cross-K function[2] with Monte Carlo Simulation[9] to evaluate the accuracy of predicted
locations. The Cross-K function measures the spatial correlation between the predicted accident
locations and true locations in our case. Specifically, we calculate the average density of predictions
within every distance d of a true event in each day as shown in Eq.1:

TABLE 5: ABLATION STUDY

IOWA
K=30 K=40 K=50

NDCG PREC L-NDCG NDCG PREC L-NDCG NDCG PREC L-NDCG

σ = 0.0 0.532 0.305 0.610 0.560 0.261 0.597 0.578 0.228 0.554
σ = 0.05 0.539 0.311 0.626 0.559 0.267 0.597 0.579 0.231 0.560
σ = 0.1 0.532 0.307 0.603 0.560 0.264 0.572 0.578 0.229 0.555
σ = 0.2 0.528 0.303 0.585 0.561 0.262 0.566 0.580 0.227 0.526
σ = 0.3 0.523 0.300 0.579 0.559 0.263 0.572 0.580 0.227 0.530
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Figure 1: Case Study on Chicago Jan. 25th, 2021.

Figure 2: Comparison of Cross-K function for Chicago Crime.

Figure 3: Comparison of Cross-K function for Iowa accident data.
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K̂(d) = λ−1
j

∑
i̸=j

I(dij ≤ d)/n, (1)

where λ is global density of event j, and I() is an identity function which equals one if real distance
dij is smaller than d, else equals zero. n is the number of events i. The results on the Chicago crime
data and Iowa accident datasets are shown in Figure 2 and Figure 3, respectively. The grey curve
represents the complete spatial randomness and we use it as a reference baseline. Higher curves are
better. Our SpatialRank (blue) achieves the best predictions in both datasets, which indicates that the
predictions of SpatialRank are significantly spatially correlated with ground truth.

3.6 Case Study

We present a successful prediction on Chicago using SpatialRank on Jan 25th 2021 in Figure 1. There
was a severe winter storm in the area of Chicago and 147 people were injured [5] and 99 severe
crimes occurred. We compare predictions of SpatialRank with ground truth, Hetero-ConvLSTM,
and LSTM. The top 50 riskiest locations in the predictions are chosen and labeled on the map. For
easier visualization, the number of events greater than three in the ground truth map is changed to
three, representing the riskiest location. To understand how those methods prioritize the riskiest
locations, We define locations with events greater than 1 as high-risk areas. The blue circle indicates
this high-risk location is predicted correctly. Missing High-risk location is indicated as an orange
circle. We can observe that SpatialRank captures most High-risk locations, while others are not able
to find the potential risk near the downtown area. As a result, the overall NDCG score is improved in
SpatialRank.
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