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Supplemental Methods and Results 
 
 
 
 
 
Supplemental Video Captions 
 
 
Supplemental Video 1: Online decoder comparison. Example trials from Monkey N using an 
LSTM, FNN, TFM, and KF to control the virtual hand. All decoders were trained using 400 
trials of random targets, and then tested online during the same experimental session.  
Video corresponds to main text Results 3.1. 
 
 
Supplemental Video 2: LSTM movement memorization. An LSTM decoder was trained on a 
reduced target dataset, and then tested online on the same set of targets (Monkey N). Example 1: 
2 degrees-of-freedom with 4 target postures. Example 2: 1 degree-of-freedom with 7 target 
postures. In both cases, the decoder reaches the same performance as able-bodied control, with 
minimal overshooting or movement error. 
Video corresponds to main text Results 3.2. 
 
 
Supplemental Video 2: Performance recovery through memorization. First, we show 
Monkey N using an LSTM trained on random targets, which has poor online control of the index 
finger. Second, we train an LSTM on a modified task with random targets for MRS fingers but 
only 3 targets for index finger. This allows for memorization of the index finger movements 
while maintaining fully continuous control of MRS fingers, resulting in an improved success 
rate. Video corresponds to main text Results 3.3. 
 
 
 
 
 
 
  



Neural Network Architectures 
 

 
 

Supplemental Figure 1: Neural network architectures. Each decoder takes in binned neural features 
(RNN – the most recent bin, FNN & TFM – the most recent five bins) and predicts the current position 
and velocity of one or two finger groups. The FNN is a time-convolutional network introduced by 
Willsey et al. 2022 which learns convolutional features over the neural inputs for each channel and uses 
several feedforward layers. The TFM is a feedforward transformer (Vaswani 2017) network using 
positional encoding, multi-head attention, and standard feedforward layers.  
 
 
  



Decoder Hyperparameters 
 
To optimize decoder hyperparameters, we used the Optuna Python library to perform Bayesian 
optimization. For each monkey, optimization was independently performed for two datasets 
(from 2-3 months apart) and the final chosen hyperparameters minimized the MSE of position 
and velocity predictions for both days. All decoders were generally robust to the specific 
parameter choice (a large range of parameters achieved high offline performance). In the table 
below, “scheduler patience” corresponds to the learning rate scheduler and sets the number of 
training steps without loss improvement before reducing the learning rate. 
 

  Monkey N  Monkey W 

  
LSTM GRU FNN TFM  LSTM GRU FNN TFM 

Number of 
Input Neural 

Time Bins 
 1 1 5 5 

 

1 1 5 5 

Convolutional 
Features 

 n/a n/a 16 n/a 
 

n/a n/a 16 n/a 

Num Layers  1 2 3 4 layers,  
8 heads 

 
1 1 3 5 layers, 

8 heads 

Hidden Size  300 250 400, 400, 100 1000 
 

250 250 300, 100, 300 1400 

Dropout  n/a 0.5 0.5 0.1 
 

n/a n/a 0.06 0.14 

Learning Rate  2.00E-04 2.00E-04 2.00E-04 2.00E-04 
 

2.00E-04 4.00E-04 8.00E-04 1.00E-04 

Weight Decay  0.003 0.004 0.03 0.002 
 

0.003 0.003 0.01 1.00E-04 

Scheduler 
Patience 

 800 800 1000 800 
 

800 800 600 800 

 
Supplemental Table 1: Decoder hyperparameters for each monkey. 

 
 
 
 
 
 
 
Decoder Number of Parameters 
 
 

  LSTM GRU FNN TFM KF 

Number of 
Parameters 479K 639K 821K 923K 9.7K 

 
Supplemental Table 1: The number of parameters used for each decoding architecture,  

as optimized for Monkey N. 
  



Decoder Training Optimizations 
 
As noted in the main results (“Training Optimizations”), we found several techniques for 
improving online performance and are detailed here. 
 
Modified loss function:  
See section below. 
 
Single-finger movements:  
The 2-DoF random target task typically involves both fingers simultaneously moving to their 
respective targets. However, the task lacks examples of one finger holding still while the other 
moves to the target, which could be useful as decoder training examples. To provide more 
training examples of independent movement, we modified the task such that on 50% of trials 
only one finger had to move. When trained on this modified task, the resulting decoders had 
qualitatively more independent control of each finger. 
 
Positional perturbations:  
When using a BMI decoder, the user often has to make small correctional movements near the 
target in order to precisely land on the target. When training on able-bodied movement, however, 
movements are typically very precise and lack examples of these fine-tuning movements. To 
encourage more adjustment movements in the training dataset, we added perturbations to the 
position of the virtual fingers during offline training. Perturbations occurred on 50% of trials 
with a magnitude slightly larger than the target radius and a randomly chosen direction for each 
finger group. On perturbation trials, the perturbation was applied at 100 ms (near movement 
onset), 300 ms (during movement), or 1000 ms (during the hold period) from trial start, chosen 
with equal probability. 
 
Neural Noise:  
Willet et al. 2021 found that adding a small amount of noise to the neural data during training 
improved robustness to small shifts in neural tuning and magnitude over time. Here, we similarly 
added a random bias (std. of 0.1, normalized units; held constant across the multiple timesteps of 
each example) and random noise (std. of 0.2, normalized units) to each training example. Noise 
was drawn from a zero-mean normal distribution. 
 
 
  



Loss Function to Penalize Finger Co-Dependence 
 
In initial online tests with RNN decoders we found that the fingers tended to move together and 
were visually correlated (despite strong offline accuracy). To encourage finger independence, we 
used the standard MSE loss with an additional term to penalize finger correlations: 
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where 𝑦 contains the true positions and velocities (matrix of shape [number of samples, number 
of fingers*2]), 𝑦" contains the predicted position and velocities, 𝑁 is the number of samples, 𝑀 is 
the number of output variables (number of fingers*2), 𝑘 is a hyperparameter to control the 
degree of correlation penalty, and 𝜌!,# is the correlation between the 𝑗 − 𝑡ℎ and 𝑚 − 𝑡ℎ output 
variables of 𝑦". Qualitatively, for offline predictions, adding the correlation penalty acts to 
smooth out small-amplitude, high-frequency prediction noise that occurs across both fingers. The 
final decoder predictions were robust across a range of k values (0.01 to 100), so a value of 1 
was used for decoder training. 
 
 
 
 
 
 
RNN Hidden State Visualization 
 
In Figure 4 we visualized the hidden states of an RNN decoder over time. To train the decoder, 
we trained a GRU (1 layer, 300 hidden units) on a simulated dataset with 100 neural channels, 
1000 seconds of data, and 2 degrees of freedom where one DoF had 3 targets and the second 
DoF had random targets. We used a 1-layer GRU since its hidden state is a simple vector, 
whereas multi-layer GRUs or LSTMs have multiple hidden state vectors. To visualize the hidden 
state, we performed a principal component analysis (PCA) on the hidden state vector over time 
and plotted the first 3 components with highest variance. As in Figure 4, each point represents 
the hidden state at one time step, and the component axes with highest variance visually 
correspond with the decoder’s position output. 
 
 
  



Simulated Datasets 
 
For some analyses we also created simulated offline datasets of a virtual user performing the 
same target acquisition task. The goal of these simulations was to test the relative impact of 
amount of training data, number of DoFs, and number of inputs on decoder performance, rather 
than measuring absolute performance. The simulated user moved with a velocity proportional to 
the distance to the target along each DoF, with a random reaction time of 32-96 ms at trial onset. 
We generated artificial neural activity such that each channel had a random relationship with 
position, velocity, and acceleration, using the log-linear approximation suggested in Truccollo et 
al. 2008: 
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where 𝑌$%& is a vector of average neural channel values, 𝑋 is a vector of the current positions, 𝑊 
is a matrix of uniform random values between -1 to 1 and defines the random tuning of each 
channel, and 𝑘 is scaling constant adjusting the level of nonlinearity. At each time bin, the value 
of each channel was sampled from a normal distribution: 
 

𝑌(	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝑌$%&, 	𝑑𝑖𝑎𝑔(𝑌$%&/𝑆)) 
 
where 𝑌( is a vector of values for each neural channel, and 𝑆 is a constant that scales the noise 
standard deviation. Each channel has independent noise from other channels. We chose a value 
of 𝑆 = 10 such that the resulting LSTM decoding had similar accuracy to Monkey N (correlation 
of ~0.8 at 100 channels). An additional lag of 32 ms was added to the final positions and 
velocities relative to the artificial neural data. To account for random variation in simulated 
channel tuning, we ran 5 simulations for each analysis with a separate decoder trained on each 
dataset. 
 
 
 
 
 
  



Offline Decoder Performance for Monkey N and Monkey W 
 

 
 
Supplemental Figure 2: Offline performance for each decoder. Top: Monkey N. Bottom: Monkey W. 
Correlation and MSE were calculated between the ground truth and predicted positions/velocities. 
Performance was averaged across ten datasets for each monkey performing a 2-DoF random task. Error 
bars denote the standard error of the mean. 
 
 
 
Online Decoder Comparisons – Monkey N 
 

Monkey Date DoF LSTM GRU FNN TFM KF 

N 7/27/22 2 - - 2.33 100% 1.77 100% - - - - 

N 10/18/22 1 2.33 100% 2.16 100% 1.77 100% 1.9 100% 1.73 100% 

N 10/20/22 2 3.04 99% 2.78 99% 2.77 100% 2.1 100% 1.98 89% 

N 3/15/23 2 2.31 97% - - 1.93 99% - - - - 

   
Average 
Bitrate 

Success 
Rate         

 
Supplemental Table 2: Online decoder performance for Monkey N. All decoders were tested on random 
targets. 



LSTM Performance on Simulated Datasets with Varied Task Parameters 
 

 
 
Supplemental Figure 3: Simulated decoder performance for varied task parameters. Simulated 
datasets were generated for each parameter combination and a GRU decoder was trained to predict 
positions and velocities. By default, each generated dataset used 2-DoF, 7 targets, 1000 seconds of 
training data, 50 ms bins, and 10 trials of each combination. In each plot we varied the number of neural 
channels and an additional parameter. The Pearson correlation was computed between the true and 
predicted kinematics, with higher values being better. (a) Varied amount of training data. Performance 
improves with additional training data and with additional channels. (b) Varied number of targets. 
Performance drops as more targets are added (requiring additional movements to be learned). (c) Varied 
number of DoF. There is only a small performance drop from adding more DoFs. All error bars denote 
the standard error of the mean. 
 
 
 
  



LSTM Generalization to a More Complex Task 
 

 
 
Supplemental Figure 4: Generalization to more complex tasks online. LSTM decoders were trained 
on a 1-DoF, 2-target (left) or 3-target (right) task and then tested online on the same task and the more 
complex random target task (see main text Results 3.4). “Pos Control” indicates the decoder used 50% 
position & 50% integrated velocity. “Vel Control” indicates the decoder used 1% position & 99% 
integrated velocity. Data corresponds to main text Results 3.4. 
 
 
 
 
 

Transformer Performance vs Time History 
 

 
 
Supplemental Figure 5: Transformer performance drops with more time history. Separate 
transformer (TFM) decoders were trained with a time history (sequence length) of 3, 5, 10, and 15 bins 
(96 to 480 ms using 32 ms bins), on a 2-DoF random target task with Monkey N. During online trials, 
success rate drops as more time history is added. 
 


