
A Related Work564

The techniques in this paper were inspired by prior research in multiple areas, including neural565

architecture and activation function search, as well as research on the FIM.566

Neural Architecture Search In neural architecture search [NAS; 12, 53, 56], the goal is to design567

a neural network architecture automatically. NAS approaches typically focus on optimizing the568

type and location of the layers and the connections between them, but often use standard activation569

functions like ReLU. This work in complimentary to NAS approaches, because it uses standard570

architectures but optimizes the design of the activation function.571

Zero-cost NAS Proxies Recently, zero-cost NAS proxies have received increased attention [39,572

46, 52]. These approaches aim to accelerate neural architecture search by using cheap surrogate573

calculations in place of expensive full training of architectures. This paper adopts a similar approach,574

using FIM eigenvalues and activation function outputs to predict which activation functions are likely575

to be most promising before dedicating resources to evaluating them.576

Activation Function Search Methods for automatically discovering activation functions include577

reinforcement learning [45], evolutionary computation [3, 5, 6, 33], and gradient-based methods578

[1, 5, 18, 40, 50]. This paper builds upon existing work, focusing on efficient search and on579

understanding the properties that make activation functions effective.580

Other Uses of the FIM This paper used FIM eigenvalues to predict the performance of different581

activation functions. The FIM is an important quantity in machine learning with several uses. One582

important example is optimal experiment design [13], where experiments are designed to be optimal583

with respect some criterion. The criteria vary, but are often functions of the eigenvalues of the FIM,584

such as the maximum or minimum eigenvalue, or the trace of the FIM (sum of the eigenvalues) or585

determinant of the FIM (product of the eigenvalues). Instead of choosing one optimality criterion and586

only considering one summary statistic, this paper keeps all of the eigenvalues of the FIM and learns587

an optimal distribution experimentally.588

Past work has also used the eigenvalues of the FIM to determine suitable values of the batch size589

or learning rate for neural networks [14, 15, 20, 27, 32]. The FIM provides insights to the learning590

dynamics of SGD [25] and the dynamics of signal propagation at different layers in networks with591

and without batch normalization layers [23]. The FIM has also been used to develop second-order592

optimization algorithms for neural networks [19, 35, 36]. Applying it to activation function design is593

thus a compelling further opportunity.594

B Activation Function Search Spaces595

The activation functions in this paper were implemented as computation graphs from the PANGAEA596

search space [5]. The space includes unary and binary operators, in addition to existing activation597

functions [7, 11, 28, 41, 45]. This approach allows specifying families of functions in a compact598

manner. It is thus possible to focus the search on a space where good functions are likely to be599

located, and also to search it comprehensively.600

Benchmark Datasets The benchmark datasets introduced in Section 2 contain every activation601

function of the three-node form binary(unary(x),unary(x)) using the operators in Table 3. The602

result is 5,103 activation functions, of which 2,913 are unique. This space is visualized in Figure 4.603

For Act-Bench-CNN and Act-Bench-ResNet, the accuracies are the median from three runs. For604

Act-Bench-ViT, the results are from single runs due to computational costs.605

New Tasks The experiments in Section 6 utilized a larger search space. Specifically, it was based606

on the following four-node computation graphs: binary(unary(unary(x)),unary(x)),607

binary(unary(x),unary(unary(x))), n-ary(unary(x),unary(x),unary(x)),608

unary(binary(unary(x),unary(x))), and unary(unary(unary(unary(x)))). The609

unary and binary nodes used the operators in Table 3, and the n-ary node used the sum, product,610

13

Table 3: Activation function search spaces were defined through computation graphs consisting of
basic unary and binary operators as well as existing activation functions [5].

Unary Binary

0 erf(x) ReLU(x) x1 + x2

1 erfc(x) ELU(x) x1 � x2

x sinh(x) SELU(x) x1 · x2

�x cosh(x) Swish(x) x1/x2

|x| tanh(x) Softplus(x) xx2
1

x�1 arcsinh(x) Softsign(x) max{x1, x2}
x2 arctan(x) HardSigmoid(x) min{x1, x2}
ex ex � 1 bessel_i0e(x)
�(x) log(�(x)) bessel_i1e(x)

maximum, and minimum operators. Together, these computation graphs create a search space with611

1,023,516 functions, of which 425,896 are unique. This space is visualized in Figure 9.612

C Fisher Information Matrix Details613

In order to calculate the FIM, this paper uses the K-FAC approach [19, 35, 36]. This technique is614

summarized in this Appendix, with notation similar to that of Grosse and Martens [19].615

Preliminaries A feedforward neural network maps an input a0 = x to an output aL = f(x;✓)616

through a series of L layers. Each layer l 2 {1, . . . , L} is comprised of a weight matrix Wl, a bias617

vector bl, and an element-wise activation function �l. With W̄l = (bl Wl) and āl =
�
1 a>

l

�>,618

each layer implements the transformation619

sl = W̄lāl�1, (4)
al = �l(sl). (5)

Let ✓ =
�
vec(W̄1)> · · · vec(W̄L)>

�> represent the vector of all network parameters. Parameter-620

ized by ✓ and given inputs x drawn from a training distribution Qx, the neural network defines the621

conditional distribution Ry|f(x;✓). The Fisher information matrix associated with this model is622

F = E
x⇠Qx

y⇠Ry|f(x;✓)

⇥
r✓L(y, f(x;✓))r✓L(y, f(x;✓))>

⇤
. (6)

As usual in deep learning, the loss function L(y, z) represents the negative log-likelihood associated623

with Ry|f(x;✓) and quantifies the discrepancy between the model’s prediction z = f(x;✓) and the624

true label y. The network is trained to minimize the loss by updating its parameters according to the625

gradient r✓L(y, f(x;✓)).626

Approximations For ease of notation, write Dv = rvL(y, f(x;✓)). Recalling that ✓ =627 �
vec(W̄1)> · · · vec(W̄L)>

�>, the FIM can be expressed as an L⇥ L block matrix:628

F =

0

B@
E
⇥
vec(DW̄1)vec(DW̄1)>

⇤
· · · E

⇥
vec(DW̄1)vec(DW̄L)>

⇤

...
. . .

...
E
⇥
vec(DW̄L)vec(DW̄1)>

⇤
· · · E

⇥
vec(DW̄L)vec(DW̄L)>

⇤

1

CA . (7)

Note that DW̄l = Dslā>l�1, and recall that vec(uv>) = v ⌦ u. Each block of the FIM can be629

written as630

Fi,j = E
⇥
vec(DW̄i)vec(DW̄j)

>⇤ (8)

= E
⇥
vec(Dsiā

>
i�1)vec(Dsj ā

>
j�1)

>⇤ (9)

= E
⇥
(āi�1 ⌦Dsi)(āj�1 ⌦Dsj)

>⇤ (10)

= E
⇥
(āi�1 ⌦Dsi)(ā

>
j�1 ⌦Ds>

j
)
⇤

(11)

= E
⇥
āi�1ā

>
j�1 ⌦DsiDs>

j

⇤
. (12)

14

Figure 9: Low-dimensional UMAP representation of the 425,896 function search space. The
activation functions are embedded according to their outputs; each point represents a unique function.
The larger points represent activation functions that were evaluated during the searches; they are
colored according to their validation accuracy. Although the space is vast, the searches require only
tens of evaluations to discover good activation functions.

15

Two approximations are necessary in order to make representation of the FIM practical. First, assume631

that different layers have uncorrelated weight derivatives. The FIM can then be approximated as632

a block diagonal matrix, with Fi,j = 0 if i 6= j. Second, if one approximates the pre-activation633

derivatives Dsl and activations ā>
l�1 as independent, then the diagonal blocks of the FIM can be634

further decomposed into the Kronecker product of two smaller matrices:635

Fl,l = E
⇥
āl�1ā

>
l�1 ⌦DslDs>

l

⇤
⇡ E

⇥
āl�1ā

>
l�1

⇤
⌦ E

⇥
DslDs>

l

⇤
. (13)

Let ⌦l = E
⇥
ālā>l

⇤
and �l = E

⇥
DslDs>

l

⇤
. The approximate empirical FIM is then written as636

F̂ =

0

B@
⌦0 ⌦ �1 0

. . .
0 ⌦L�1 ⌦ �L

1

CA . (14)

Layer-Specific Implementation The above example illustrates FIM approximation for a simple637

feedforward network. However, most modern architectures contain several different kinds of layers.638

Some layers like pooling, normalization, or dropout layers do not have trainable weights, and therefore639

these layers are not included in the FIM [24, 48].640

Each diagonal entry ⌦l�1⌦�l corresponds to one layer with weights. The calculation differs slightly641

depending on the layer type, but otherwise the example above can be straightforwardly extended to642

more complicated networks. Calculations for three common layer types are presented below.643

Dense Layers For dense layers, the matrices ⌦l�1 and �l can be readily computed with one644

forward and backward pass through the network using a mini-batch of data. The eigenvalues are then645

computed using standard techniques.646

Convolutional Layers Convolutional layers require special consideration to calculate ⌦l�1 and647

�l. For a given layer, let M represent the batch size, T the set of spatial locations (typically a648

two-dimensional grid), � the set of spatial offsets from the center of the filter, and I and J the number649

of output and input maps, respectively. The activations are represented by the M ⇥ |T |⇥ J array650

Al�1. The weights are represented by the I ⇥ |�|⇥ J array Wl which is interpreted as an I ⇥ |�|J651

matrix. The expansion operator J·K extracts patches around each spatial location and flattens them652

into vectors that become the rows of a matrix: JAl�1K is a M |T |⇥ J |�| matrix.653

Similar to the feedforward networks, the bias (if used) can be prepended to the weights matrix as654

W̄l = (bl Wl) and a homogeneous column of ones to the expanded activations as JAl�1KH =655

(1 JAl�1K). This constructions allows the forward pass to be written as656

Sl = JAl�1KHW̄>
l
, (15)

Al = � (Sl) , (16)

from which the factors are computed as657

⌦l = E
⇥
JAlK>HJAlKH

⇤
, (17)

�l =
1

|T |E
⇥
DS>

l
DSl

⇤
. (18)

Depthwise Convolutional Layers Depthwise convolutional layers utilize separate kernels for each658

channel. In this case, JAl�1K is a M |T |J ⇥ |�| matrix. Otherwise, the factors ⌦l�1 and �l are659

calculated in the same way as they are for standard convolutional layers.660

Eigenvalue Calculation Because F̂ is a block-diagonal matrix, its eigenvalues are simply the661

combined eigenvalues of each block: �(F̂) = {�(F̂l)}Ll=1. The eigenvalue calculation for one block662

F̂l = ⌦l�1 ⌦�l is further simplified by first computing the eigenvalues �(⌦l�1) and �(�l) for each663

Kronecker factor separately and then returning all pairwise products from the two sets of eigenvalues.664

For numerical stability, the eigenvalues can first be log-scaled and then all pairwise sums from the665

two sets are returned. Calculating the eigenvalues requires one forward and backward pass through666

the network with a mini-batch of data. The computational cost is therefore relatively cheap, especially667

compared with the cost of fully training a network from scratch.668

16

It is possible for the FIM eigenvalues to be invalid. For example, if the forward propagated activations669

or backward propagated gradients explode or vanish, then the diagonal entries ⌦l�1 ⌦ �l may be670

undefined. Such invalid values result from activation functions that are unstable. Therefore, invalid671

FIM eigenvalues provide a good way to filter out bad activation functions.672

D Features and Surrogate Details673

This section describes how the activation function features were implemented and how the surrogate674

was constructed.675

Calculating FIM Eigenvalues The FIM eigenvalues were calculated for each activation function676

as discussed in Section 3. The eigenvalues were log-scaled for numerical stability. By definition, the677

number of eigenvalues is the same as the number of weights in the neural network. To save space,678

the eigenvalues were binned to histograms. For a layer l with |✓l| weights, b|✓l|/100c equally sized679

bins from �100 to 100 were used. One histogram was computed for each layer in a network, and680

all of the histograms were concatenated together into a single feature vector for a given activation681

function. In this manner, the total dimensionality was 13,692 for All-CNN-C, 16,500 for ResNet-56,682

and 11,013 for MobileViTv2-0.5.683

Calculating Activation Function Outputs The activation function outputs y = f(x) were calcu-684

lated for each activation function f by sampling n =1,000 values x ⇠ N (0, 1) and truncating to the685

range [�5, 5]. The same random inputs were used for all activation functions.686

Per-Layer FIM Eigenvalues In Figure 5, the eigenvalues for the entire network are shown for687

completeness. However, the UMAP representations shown in Figure 4 were produced by keeping the688

eigenvalues at each layer separate and computing a weighted distance between them (according to689

Equation 2). As pointed out in the main text, FIM eigenvalues are informative but noisy features. In690

preliminary experiments, keeping the eigenvalues separate at each layer reduced some of this noise,691

resulting in a more informative Figure 4 and consequently improving the performance of the search692

algorithms.693

FIM Eigenvalue Features Preliminary experiments aimed to predict activation function perfor-694

mance using common features in the literature, including maximum eigenvalue, minimum eigenvalue,695

sum of the eigenvalues, and product of the eigenvalues [13]. More recently proposed features, such696

as (second moment) / (first moment)2, were also considered [44]. Ultimately, learning the relevant697

features from the entire eigenvalue distribution was found to be the most flexible and powerful698

approach.699

UMAP Settings UMAP exposes a number of parameters that can be used to customize its be-700

havior [37]. The metric parameter determines how distances are computed between points, the701

n_neighbors parameter adjusts the tradeoff between the local and global structure of the data, and702

the min_dist parameter controls the minimum distance between points in the embedding space.703

The plots in Figure 4 were produced by computing the distances between FIM eigenvalues and acti-704

vation function outputs. For the FIM eigenvalues UMAP(metric=‘manhattan’, n_neighbors=3,705

min_dist=0.1) was used, and for the activation function outputs UMAP(metric=‘euclidean’,706

n_neighbors=15, min_dist=0.1) was used. The distance metrics were chosen to implement707

Equations 2 and 3.708

In preliminary experiments, decreasing n_neighbors from the default of 15 down to 3 for the709

FIM eigenvalues qualitatively improved the embedding for the combined features. The com-710

bined features were visualized with a union model, i.e. umap_combined = umap_fim_eigs +711

umap_fn_outputs [37].712

E Experiment Details713

This section specifies the details for the experiments in the main text of the paper. Several variations714

to the approach presented in the main text were also evaluated in preliminary experiments. The715

17

Figure 10: UMAP projections of FIM eigenvalues using the default hyperparameter of
n_neighbors=15. The embedding is informative but also noisy. Using n_neighbors=3, as shown
in the main text, improved performance.

approach turned out to be robust to most of them, but the results also justify the choices used for the716

main experiments.717

Training Details For CIFAR-10 and CIFAR-100, balanced validation sets were created by sampling718

5,000 images from the training set. Full training details and hyperparameters are listed in Table 4.719

Search Implementation In order to predict performance for an unevaluated activation function, the720

function outputs and FIM eigenvalues must first be computed. Thus, the searches in Section 6 were721

implemented in three steps. First, activation function outputs for all 425,896 activation functions in722

the search space were calculated. This computation is inexpensive and easily parallelizable. Second,723

eight workers operated in parallel to sample activation functions uniformly at random from the search724

space and calculate their FIM eigenvalues. Third, once the number of activation functions with725

FIM eigenvalues calculated reached 5,000, seven of the workers began the search by evaluating the726

functions with the highest predicted performance. The eighth worker continued calculating FIM727

eigenvalues for new functions so that their performance could be predicted during the search. This728

setup allowed taking best advantage of the available compute for the regression-type search methods.729

The experiments on ImageNet required substantially more compute than the experiments on CIFAR-730

100. For this reason, all eight workers evaluated activation functions once the number of functions731

with FIM eigenvalues reached 7,000.732

Computing FIM eigenvalues took approximately 26 seconds, 84 seconds, and 37 seconds per733

activation function for All-CNN-C, ResNet-56, and MobileViTv2-0.5, respectively. This cost is not734

trivial, but it is well worth it, as the experiments in the main paper show.735

Unique Activation Functions Different computation graphs can result in the same activation736

function (e.g. max{x, 0} and max{0, x}). In the benchmark dataset and in the larger search space737

of Section 6, repeated activation functions were filtered out. 1,000 inputs were sampled N (0, 1)738

and truncated to [�5, 5]. Two activation functions were considered the same if their outputs were739

identical.740

Improving the Combined UMAP Projection Figure 10 displays a projection of FIM eigenvalues741

using default UMAP hyperparameters. The plots show the eigenvalues organized in multiple distinct742

one-dimensional manifolds. Again, FIM eigenvalues are noisy features; there are some clusters of743

activation functions achieving similar performance, but there are also regions where performance744

varies widely. As mentioned in the main text, this issue was addressed by reducing the UMAP745

parameter n_neighbors to 3. This change reduced the connectivity of the low-dimensional FIM746

eigenvalue representation, resulting in a space with many distinct clusters (as seen in Figure 4).747

On its own, this setting did not improve the search on the benchmark datasets. However, it did748

improve performance when the FIM eigenvalues were combined with activation function outputs749

(as was discussed in Section 4). The reason is that the UMAP model for the activation function750

outputs did not decrease n_neighbors, and so the combined UMAP model relied more on the751

18

Table 4: Training details and hyperparameter values used in the experiments.
All-CNN-C on CIFAR-10 and CIFAR-100

Batch Size 128
Dropout 0.5
Epochs 25 for Act-Bench-CNN and search (Figure 7), 50 for full evaluation (Table 1)
Image Size 32⇥ 32
Learning Rate Linear warmup to 0.1 for five epochs, then linear decay
Mean/Std. Normalization Yes
Momentum 0.9
Optimizer SGD
Random Crops 32⇥ 32 crops of images padded with four pixels on all sides
Random Flips Yes
Weight Decay 1e�4

Weight Initialization AutoInit [4]

ResNet-56 on CIFAR-10 and CIFAR-100

Batch Size 128
Dropout 0.0
Epochs 25 for Act-Bench-ResNet and search (Figure 7), 50 for full evaluation (Table 1)
Image Size 32⇥ 32
Learning Rate Linear warmup to 0.1 for five epochs, then linear decay
Mean/Std. Normalization No
Momentum 0.9
Optimizer SGD
Random Crops 32⇥ 32 crops of images padded with five pixels on all sides
Random Flips Yes
Weight Decay 1e�4

Weight Initialization AutoInit [4]

MobileViTv2-0.5 on Imagenette and ImageNet

Batch Size 256
CutMix Alpha [54] 1.0
Epochs 105
Evaluation Center Crop 95%
Image Size 160⇥ 160
Learning Rate Linear warmup from 1e�4 to 4e�3 for five epochs, then cosine decay to 1e�6

Mixup Alpha [55] 0.1
Optimizer AdamW [34]
RandAugment [9] Magnitude six, applied twice
Random Resized Crop [49] Minimum 8% of the original image
Weight Decay 0.02⇥ current learning rate

ResNet-50 on ImageNet

Batch Size 256
CutMix Alpha [54] 1.0
Epochs 105
Evaluation Center Crop 95%
Image Size 160⇥ 160
Learning Rate Linear warmup from 1e�4 to 2e�3 for five epochs, then cosine decay to 1e�6

Mixup Alpha [55] 0.1
Optimizer AdamW [34]
RandAugment [9] Magnitude six, applied twice
Random Resized Crop [49] Minimum 8% of the original image
Weight Decay 0.02⇥ current learning rate
Weight Initialization AutoInit [4]

19

activation function outputs than it did on the FIM eigenvalues. As Figure 4 shows, the activation752

function outputs are reliable but sometimes project good activation functions to distinct regions in753

the search space. Introducing extra connectivity into the fuzzy topological representation via the754

FIM eigenvalues was sufficient to address this issue, bringing good activation functions to common755

regions of the space.756

Increasing the Dimension of the UMAP Projections The UMAP plots show two-dimensional757

projections of FIM eigenvalues and activation function outputs. Regression algorithms were also758

trained on five and 10-dimensional projections. These runs resulted in comparable or worse perfor-759

mance. Therefore, the two-dimensional projections were selected in the paper for simplicity and for760

consistency between the algorithm implementation and figure visualizations.761

Gaussian Process Regression As an alternative search method, Gaussian process regression (GPR)762

was evaluated in activation function search. Several different acquisition mechanisms were used,763

including expected improvement, probability of improvement, maximum predicted value, and upper764

confidence bound. The approach worked well, but the results were inconsistent across the different765

acquisition mechanisms. GPR was also more expensive to run compared to the algorithms in the766

main text (KNR, RFR, SVR), and so those algorithms were used instead for simplicity and efficiency.767

Adjusting k in KNR The initial experiments with the KNR algorithm used k = 3. Experimenting768

with k = {1, 5, 8} did not reliably improve performance, so k = 3 was kept.769

Uniformly Spaced Inputs for Activation Function Outputs In an alternative implementation,770

equally spaced inputs from �5 to 5 were given to the activation functions instead of normally771

distributed inputs. This variation did not noticeably change the quality of the embeddings nor the772

performance of the search algorithms. Therefore, normal inputs were used for consistency with773

Equation 3. Figure 3 is the only exception; it used 80 inputs equally spaced from �5 to 5 and increased774

the UMAP parameter min_dist to 0.5. These settings improved the quality of the reconstructed775

activation functions in the plot.776

F Future Work777

This paper demonstrated that FIM eigenvalues and activation function outputs are efficient and778

reliable features that can predict performance of activation functions accurately. This finding enabled779

discovering better activation functions for various tasks, improving the state of the art in machine780

learning. Because the technique is efficient, it was possible to scale it up to large datasets such as781

ImageNet. These discoveries inspire several avenues for future research, discussed below.782

New Search Spaces The PANGAEA search space was used in this paper because it is known to783

work well for deep architectures [5]. In the future it will be interesting to explore search spaces with784

different unary, binary, and n-ary operators. Beyond computation graphs, it may also be possible to785

apply techniques in this paper to optimize continuous vector representations of activation functions786

[1, 40].787

Exploration vs. Exploitation The KNR approach was utilized to search for new activation788

functions because it performed well on the benchmark datasets (Section 5). In the future, it will789

be interesting to consider other algorithms and analyze their tradeoffs between exploration and790

exploitation. For example, in a resource-constrained environment where improvement is needed791

quickly, a more exploitative approach could be used to find an improved activation function in a short792

time. On the other hand, if substantial compute is available, an approach that focuses on exploration793

could be used to discover activation functions that perform well but are maximally different from794

functions used in modern architectures (Figure 8b). Novelty search [30] could serve as a suitable795

approach, and such discoveries could further understanding of how neural networks utilize different796

kinds of activation functions to learn.797

Optimizing Multiple Activation Functions In a typical neural network design, the same activation798

function is used throughout the network. However, recent work has shown that it may be beneficial799

to have different activation functions at different locations, and further, that it may be useful to800

20

have different activation functions in the early and late stages of training [5]. Indeed, many hybrid801

architectures use Swish in convolutional layers and ReLU in attention layers [38]. Unfortunately, it is802

difficult to design these strategies manually, and so practitioners often use a single activation function803

for simplicity.804

The techniques proposed in this paper may provide an avenue toward optimizing multiple activation805

functions in tandem. For example, the features for multiple candidate activation functions could806

be concatenated into a single feature vector, and this vector could be projected with UMAP to a807

low-dimensional space where performance prediction is more straightforward.808

Optimizing Parametric Activation Functions Parametric activation functions have learnable809

parameters that allow them to refine their shape via gradient descent. In some tasks, this extra810

flexibility results in better performance over fixed activation functions [5]. The techniques introduced811

in this paper can be readily extended to optimizing the design of parametric activation functions as812

well. Because the surrogate considers the state of the network and activation function at initialization,813

it is possible to predict the performance by treating the activation function parameters as fixed to their814

initial values.815

However, it may be possible to extend this idea further. Because the activation function parameters are816

implemented as neural network weights, each parameter will have a corresponding FIM eigenvalue.817

These extra eigenvalues will provide the surrogate with additional information that may help predict818

the performance more accurately.819

For simplicity, current parametric activation functions usually initialize their parameters either to be820

1.0 or to approximate some existing activation function, and the initialization is usually the same821

throughout the network. This method is likely suboptimal; the surrogate introduced in this paper822

could provide a smarter approach. By adjusting the initial parameter values and observing the change823

in predicted performance, the surrogate can be used to find better initializations, including different824

ones at different layers in the network. This contribution could make parametric activation functions825

even more powerful.826

Optimizing Other Aspects of Neural Network Design By fixing the neural network architecture827

and varying the activation function, this paper showed that it is possible to use FIM eigenvalues828

to infer future performance. As the FIM is a fundamental quantity in machine learning, it may829

be possible to apply a similar strategy to optimize other aspects of neural network design, such as830

normalization layers, loss functions, or data augmentation strategies [8, 16, 17, 33]. If a meaningful831

distance metric between such objects can be defined, then UMAP could be used to map them to a832

low-dimensional space where performance prediction is much simpler.833

Similarly, one could use the FIM eigenvalues to optimize alternate objectives beyond accuracy.834

Robustness is a particularly interesting objective, because the FIM can be used to describe a neural835

network’s robustness to small parameter perturbations. Other objectives, such as interpretability, fair-836

ness, or inference cost, could also be considered. For example, one could consider a multidimensional837

regression approach where instead of just predicting accuracy, the surrogate would predict each of838

these quantities separately. Such a method could present the user with a Pareto front of activation839

functions involving tradeoffs between these quantities.840

Reverse Engineering Activation Functions UMAP was used to project activation functions to a841

low-dimensional space, and regression algorithms to predict the performance of activation functions842

in this space, i.e. to serve as a fitness function for the search. However, it is possible that there is no843

activation function that maps to the optimum of this fitness landscape. Indeed, because such search844

spaces are finite, the activation functions do not completely fill them. For example, there are empty845

regions in Figure 4, corresponding to activation functions outside of the predefined search space.846

What should be done if an empty region of the embedding space has a higher predicted fitness847

than any of the candidate activation functions? In the paper, these regions were simply ignored,848

and the activation function with the highest predicted fitness was used. However, in the future,849

it may be possible to create activation functions that map to these empty spaces, an in so doing850

improve performance. One approach could be based on inverse transforms: Given a coordinate in the851

low-dimensional embedding space, UMAP can apply an inverse transform and return an object that852

would have mapped to those coordinates. This technique was already used for visualization in Figure853

21

3. Using this approach, UMAP could generate a hypothetical desired FIM eigenvalue distribution, or854

a list of activation function outputs.855

There are two challenges to this approach. First, because UMAP is a dimensionality-reduction856

algorithm, different activation functions can map to the same location in the embedding space. Thus,857

the mapping from embedding space back to activation functions is not well defined. Second, even if858

UMAP prescribes a FIM eigenvalue distribution that is predicted to result in good performance, it859

may be difficult to manually design an activation function to satisfy that distribution.860

However, a generated list of prescribed activation function outputs is already a good start. From this861

list, it is possible to construct an activation function that interpolates through these points, either in862

a piecewise linear fashion, with splines, or using some other standard technique. Even without the863

corresponding FIM eigenvalues, such an approach could potentially improve the efficiency of novel864

activation function discovery, and lead to better designs for activation functions in the future.865

G Compute Infrastructure866

The experiments in this paper were implemented using an AWS g5.48xlarge instance with eight867

NVIDIA A10G GPUs. The total compute cost for the search experiments in Section 6 was 14.49868

GPU-hours for All-CNN-C on CIFAR-100, 21.67 GPU-hours for ResNet-56 on CIFAR-100, and869

196.25 GPU-days for MobileViTv2-0.5 on ImageNet. This cost includes the time to train the eight870

baseline activation functions and then to evaluate 100 additional functions. The instance ran in Oregon871

(us-west-2) and was powered by renewable energy, so the experiments for this paper contributed872

no carbon emissions.873

22

