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Abstract

Estimation of the complete distribution of a random variable is a useful primitive1

for both manual and automated decision making. This problem has received exten-2

sive attention in the i.i.d. setting, but the arbitrary data dependent setting remains3

largely unaddressed. Consistent with known impossibility results, we present com-4

putationally felicitous time-uniform and value-uniform bounds on the CDF of the5

running averaged conditional distribution of a real-valued random variable which6

are always valid and sometimes trivial, along with an instance-dependent conver-7

gence guarantee. The importance-weighted extension is appropriate for estimating8

complete counterfactual distributions of rewards given controlled experimentation9

data exhaust, e.g., from an A/B test or a contextual bandit.10

1 Introduction11

What would have happened if I had acted differently? Although as old as time itself, successful12

companies have recently embraced this question via offline estimation of counterfactual outcomes13

using data from existing randomized experiments or contextual bandits. The problem is important in14

diverse domains such as software testing [Lindon et al., 2022, Wang and Chapman, 2022], portfolio15

management [Liu, 2021], and medicine [Shen et al., 2022]. These experiments are run in the real16

(digital) world, which is rich enough to demand non-asymptotic statistical techniques under non-17

parametric and non-stationary models. Although recent advances admit characterizing counterfactual18

average outcomes in this general setting, counterfactually estimating a complete distribution of19

outcomes is heretofore only possible with additional assumptions: see Table 1 for a summary and20

Section 5 for complete discussion of related work.21

Intriguingly, this problem is provably impossible in the data dependent setting without additional22

assumptions [Rakhlin et al., 2015]. Consequently, our bounds always achieve non-asymptotic23

coverage, but may converge to zero width slowly or not at all, depending on the hardness of the24

instance. We call this design principle AVAST (Always Valid And Sometimes Trivial).25

In pursuit of our ultimate goal, we derive factual distribution estimators which are useful for estimating26

the complete distribution of outcomes from direct experience.27

Contributions28

1. In Section 3.2 we provide a time- and value-uniform upper bound on the CDF of the averaged29

historical conditional distribution of a discrete-time real-valued random process. Consistent30

with the lack of sequential uniform convergence of linear threshold functions [Rakhlin et al.,31

2015], the bounds are Always Valid (see Theorem 3.1) And Sometimes Trivial, i.e., the32

width guarantee is instance-dependent (see Theorem 3.3): when the data generating process33

is smooth with respect to the uniform distribution on the unit interval, the bound width34

adapts to the unknown smoothness parameter, following the framework of smoothed online35

learning [Rakhlin et al., 2011, Haghtalab et al., 2020, 2022b,a, Block et al., 2022].36
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Table 1: Comparison to prior art for quantile-uniform CDF estimation. See Section 5 for details.

REFERENCE TIME-
UNIFORM?

NON-
STATIONARY?

NON-
ASYMPTOTIC?

NON-
PARAMETRIC?

COUNTER-
FACTUAL?

wmax-
FREE?a

HR22 ✓ ✓ ✓ N/A
HLLA21 ✓ ✓ ✓
UNO21, [IID] ✓ ✓ ✓ ✓
UNO21, [NS] ✓ ✓ ✓
WS22, [§4] ✓ ✓ ✓ ✓ ✓
THIS PAPER ✓ ✓ ✓ ✓ ✓ ✓

awmax free techniques are valid with unbounded importance weights.

2. In Section 3.3 we extend the previous technique to distributions with support over the entire37

real line, and further to distributions with a known countably infinite or unknown nowhere38

dense set of discrete jumps; with analogous instance-dependent guarantees.39

3. In Section 3.4 we extend the previous techniques to importance-weighted random variables,40

achieving our ultimate goal of estimating a complete counterfactual distribution of outcomes.41

We exhibit our techniques in various simulations in Section 4. Computationally our procedures42

have comparable cost to point estimation of the empirical CDF, as the empirical CDF is a sufficient43

statistic.44

2 Problem Setting45

Let pΩ,F , tFtutPN ,Pq be a probability space equipped with a discrete-time filtration, on which let46

Xt be an adapted, real-valued random process. Let Et r¨s
.
“ E r¨|Fts. The quantity of interest is the47

(random) map CDFt : R Ñ r0, 1s, the CDF of the averaged historical conditional distribution at time48

t:49

CDFtpvq
.
“

1

t

ÿ

sďt

Es´1 r1Xsďvs . (1)

We desire simultaneously time- and value-uniform bounds which hold with high probability, i.e.,50

adapted sequences of maps Lt, Ut : R Ñ r0, 1s satisfying51

P
`

@tPN
@vPR : Ltpvq ď CDFtpvq ď Utpvq

˘

ě 1 ´ 2α. (2)

In the i.i.d. setting, Equation (1) is deterministic and independent of t, reducing to the CDF of52

the (unknown) generating distribution. In this setting, the classic results of Glivenko [1933] and53

Cantelli [1933] established uniform convergence of linear threshold functions; subsequently the54

Dvoretzky-Kiefer-Wolfowitz (DKW) inequality characterized fixed-time and value-uniform conver-55

gence rates [Dvoretzky et al., 1956, Massart, 1990]; extended later to simultaneously time- and value-56

uniform bounds [Howard and Ramdas, 2022]. The latter result guarantees an Opt´1 logplogptqqq57

confidence interval width, matching the limit imposed by the Law of the Iterated Logarithm.58

AVAST principle In contrast, under arbitrary data dependence, linear threshold functions are not59

sequentially uniformly convergent, i.e., the averaged historical empirical CDF does not necessarily60

converge uniformly to the CDF of the averaged historical conditional distribution [Rakhlin et al.,61

2015]. Consequently, additional assumptions are required to provide a guarantee that the confidence62

width decays to zero. In this paper we design bounds that are Always Valid And Sometimes Trivial,63

i.e., under worst-case data generation, supv|Utpvq ´ Ltpvq| “ Op1q as t Ñ 8. Fortunately our64

bounds are also equipped with an instance-dependent width guarantee based upon the smoothness of65

the distribution to a reference measure qua Definition 3.2.66

Additional Notation Let Xa:b “ tXsubs“a denote a contiguous subsequence of a random process.67

Let Pt denote the average historical conditional distribution, defined as a (random) distribution over68

the sample space R by PtpAq
.
“ t´1

ř

sďt Es´1 r1XsPAs for a Borel subset A.69
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Figure 1: Visualization of Algorithm 1. The val-
ues of interest v are uncountably infinite; the al-
gorithm allocates probability δ to maintain upper
bounds on a countably infinite set of points ρ at
different resolution levels d; and leverages the
monotonicity of CDFtpvq. As d increases, the
value ρ better approximates v, but the allocated
probability decreases. The algorithm searches
over all d to optimize the overall bound via a
provably correct early termination criterion.

Algorithm 1 Unit Interval Upper Bound. ϵpdq is
an increasing function specifying the resolution
of discretization at level d. Ξt pρ; δ, d,Ψtq is an
upper confidence sequence for fixed value ρ with
coverage at least p1 ´ δq.

Input: value v; confidence α; sufficient statis-
tic Ψt.
// e.g. Ψt

.
“ X1:t or Ψt

.
“ pW1:t, X1:tq

Output: Utpvq satisfying Equation (2).
if v ą 1 then return 1 end if
u Ð 1
v Ð max p0, vq

for d “ 1 to 8 do
ρd Ð ϵpdq´1rϵpdqvs

δd Ð α{2dϵpdq

u Ð min pu,Ξt pρd; δd,Ψtqq

if 0 “
ř

sďt 1XsPpv,ρds then
return u

end if
end for

3 Derivations70

3.1 High Level Design71

Our approaches work as reductions, achieving the value- and time-uniform guarantee of Equation (2)72

by combining bounds Λt,Ξt that satisfy a time-uniform guarantee at any fixed value ρ,73

P
`

@t P N : Λtpρq ď CDFtpρq ď Ξtpρq
˘

ě 1 ´ δpρq. (3)

There are multiple existing approaches to obtaining the guarantee of Equation (3): we provide a self-74

contained introduction in Appendix A. For ease of exposition, we will only discuss how to construct75

a time- and value-uniform upper bound by combining fixed-value, time-uniform upper bounds, and76

defer the analogous lower bound construction to Appendix B.1. Our approach is to compose these77

fixed-value bounds into a value-uniform bound by taking a union bound over a particular collection78

of values, leveraging monotonicity of the CDF.79

Quantile vs Value Space In the i.i.d. setting, a value-uniform guarantee can be obtained by taking a80

careful union bound over the unique value associated with each quantile [Howard and Ramdas, 2022].81

This “quantile space” approach has advantages, e.g., variance based discretization and covariance to82

monotonic transformations. However, under arbitrary data dependence, the value associated with83

each quantile can change. Therefore we proceed in “value space”. See Appendix A.1 for more details.84

3.2 On the Unit Interval85

Algorithm 1, visualized in Figure 1, constructs an upper bound on Equation (1) which, while86

valid for all values, is designed for random variables ranging over the unit interval. For a given87

value v, it searches over upper bounds on the CDF evaluated at a decreasing sequence of values88

ρ1 ě ρ2 ě ¨ ¨ ¨ ě v and exploits monotonicity of CDFtpvq. That is, at each level d “ 1, 2, . . . , we89

construct a discretizing grid of size ϵpdq over the unit interval, and construct a time-uniform upper90

bound on CDFtpρq for each grid point ρ using the fixed-value confidence sequence oracle Ξt. Then,91

for a given value v, at each level d we make use of the fixed-value confidence sequence for smallest92

grid point ρd ě v, and we search for the level d which yields the minimal upper confidence bound. A93

union bound over the (countably infinite) possible choices for ρd controls the coverage of the overall94

procedure. Because the error probability δd decreases with d (and the fixed-value confidence radius95

Ξt increases as δ decreases), the procedure can terminate whenever no observations remain between96

the desired value v and the current upper bound ρd, as all subsequent bounds are dominated.97
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Figure 2: CDF bounds approaching the true CDF
when sampling i.i.d. from a Beta(6,3) distribution.
Note these bounds are simultaneously valid for
all times and values.
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Figure 3: Nonstationary Polya simulation for two
seeds approaching different average conditional
CDFs. Bounds successfully track the true CDFs
in both cases. See Section 4.2.

The lower bound is derived analogously in Algorithm 2 (which we have left to Appendix B.198

for the sake of brevity) and leverages a lower confidence sequence Λt pρ; δ,Ψtq (instead of an99

upper confidence sequence) evaluated at an increasingly refined lower bound on the value ρ Ð100

ϵpdq´1tϵpdqvu.101

Theorem 3.1. If ϵpdq Ò 8 as d Ò 8, then Algorithms 1 and 2 terminate with probability one.102

Furthermore, if for all ρ, δ, and d the algorithms Λtpρ; δ,Ψtq and Ξtpρ; δ,Ψtq satisfy103

P p@t : CDFtpρq ě Λtpρ; δ,Ψtqq ě 1 ´ δ, (4)

P p@t : CDFtpρq ď Ξtpρ; δ,Ψtqq ě 1 ´ δ, (5)

then guarantee (2) holds with Ut, Lt given by the outputs of Algorithms 1 and 2, respectively.104

Proof. See Appendix B.2.105

Theorem 3.1 ensures Algorithms 1 and 2 yield the desired time- and value-uniform coverage,106

essentially due to the union bound and the coverage guarantees of the oracles Ξt,Λt. However,107

coverage is also guaranteed by the trivial bounds 0 ď CDFtpvq ď 1. The critical question is: what is108

the bound width?109

Smoothed Regret Guarantee Even assuming X is entirely supported on the unit interval, on what110

distributions will Algorithm 1 provide a non-trivial bound? Because each rΛtpρ; δ,Ψtq,Ξtpρ; δ,Ψtqs111

is a confidence sequence for the mean of the bounded random variable 1Xsďρ, we enjoy width112

guarantees at each of the (countably infinite) ρ which are covered by the union bound, but the113

guarantee degrades as the depth d increases. If the data generating process focuses on an increasingly114

small part of the unit interval over time, the width guarantees on our discretization will be insufficient115

to determine the distribution. Indeed, explicit constructions demonstrating the lack of sequential116

uniform convergence of linear threshold functions increasingly focus in this manner [Block et al.,117

2022].118

Conversely, if @t : CDFtpvq was Lipschitz continuous in v, then our increasingly granular discretiza-119

tion would eventually overwhelm any fixed Lipschitz constant and guarantee uniform convergence.120

Theorem 3.3 expresses this intuition, but using the concept of smoothness rather than Lipschitz, as121

smoothness will allow us to generalize further [Rakhlin et al., 2011, Haghtalab et al., 2020, 2022b,a,122

Block et al., 2022].123

Definition 3.2. A distribution D is ξ-smooth wrt reference measure M if D ! M and124

ess supM pdD{dMq ď ξ´1.125

When the reference measure is the uniform distribution on the unit interval, ξ-smoothness implies126

an ξ´1-Lipschitz CDF. However, when the reference measure has its own curvature, or charges127

points, the concepts diverge. When reading Theorem 3.3, note ξ ď 1 (since the reference measure128

is a probability distribution) and as ξ Ñ 0 the smoothness constraint is increasingly relaxed. Thus129

Theorem 3.3 states “for less smooth distributions, convergence is slowed.”130

Theorem 3.3. Let Utpvq and Ltpvq be the upper and lower bounds returned by Algorithm 1 and131

Algorithm 2 respectively, when evaluated with ϵpdq “ 2d and the confidence sequences Λt and Ξt of132
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Figure 4: As smoothness decreases, we require
more time to reach the same maximum confidence
width. For low smoothness, DKW dominates our
method. The logarithmic dependence matches our
theory. See Section 4.1.
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Figure 5: CDF bounds approaching the true
counterfactual CDF when sampling i.i.d. from
a Beta(6,3) with infinite-variance importance
weights, using DDRM for the oracle confidence
sequence.

Equation (15). If @t : Pt is ξt-smooth wrt the uniform distribution on the unit interval then133

@t,@v : Utpvq ´ Ltpvq ď
c

Vt
t

` Õ

˜

c

Vt
t
log

`

ξ´2
t α´1t3{2

˘

¸

,
(6)

where qt
.
“ CDFtpvq; Vt

.
“ 1{t ` pqt´1{2q{logpqt{1´qtq; and Õpq elides polylog Vt factors.134

Proof. See Appendix C.135

Theorem 3.3 matches our empirical results in two important aspects: (i) logarithmic dependence upon136

smoothness (e.g.„ Figure 4); (ii) tighter intervals for more extreme quantiles (e.g., Figure 2). Note the137

choice ϵpdq “ 2d ensures the loop in Algorithm 1 terminates after at most log2p∆q iterations, where138

∆ is the minimum difference between two distinct realized values.139

3.3 Extensions140

Arbitrary Support In Appendix D.1 we describe a variant of Algorithm 1 which uses a countable141

dense subset of the entire real line. It enjoys a similar guarantee to Theorem 3.3, but with an additional142

width which is logarithmic in the probe value v: Õ

ˆ
c

Vt

t log
´

`

2 ` ξt|v|t´1{2
˘2
ξ´2
t α´1t3{2

¯

˙

.143

Note in this case ξt is defined relative to (unnormalized) Lebesgue measure and can therefore exceed144

1.145

Discrete Jumps If Pt is smooth wrt a reference measure which charges a countably infinite number146

of known discrete points, we can explicitly union bound over these additional points proportional to147

their density in the reference measure. In this case we preserve the above value-uniform guarantees.148

See Appendix D.2 for more details.149

For distributions which charge unknown discrete points, we note the proof of Theorem 3.3 only150

exploits smoothness local to v. Therefore if the set of discrete points is nowhere dense, we eventually151

recover the guarantee of Equation (6) after a “burn-in” time t which is logarithmic in the minimum152

distance from v to a charged discrete point.153

3.4 Importance-Weighted Variant154

An important use case is estimating a distribution based upon observations produced from another155

distribution with a known shift, e.g., arising in transfer learning [Pan and Yang, 2010] or off-policy156

evaluation [Waudby-Smith et al., 2022]. In this case the observations are tuples pWt, Xtq, where157

the importance weight Wt is a Radon-Nikodym derivative, implying @t : Et rWts “ 1 and a.s.158

Wt ě 0; and the goal is to estimate CDFtpvq “ t´1
ř

sďt Es´1 rWs1Xsďvs. The basic approach in159

Algorithm 1 and Algorithm 2 is still applicable in this setting, but different Λt and Ξt are required.160

In Appendix E we present details on two possible choices for Λt and Ξt: the first is based upon the161

empirical Bernstein construction of Howard et al. [2021], and the second based upon the DDRM162
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construction of Mineiro [2022]. Both constructions leverage the L˚ Adagrad bound of Orabona163

[2019] to enable lazy evaluation. The empirical Bernstein version is amenable to analysis and164

computationally lightweight, but requires finite importance weight variance to converge (the variance165

bound need not be known, as the construction adapts to the unknown variance). The DDRM version166

requires more computation but produces tighter intervals. See Section 4.1 for a comparison.167

Inspired by the empirical Bernstein variant, the following analog of Theorem 3.3 holds. Note Pt168

is the target (importance-weighted) distribution, not the observation (non-importance-weighted)169

distribution.170

Theorem 3.4. Let Utpvq and Ltpvq be the upper and lower bounds returned by Algorithm 1 and171

Algorithm 2 respectively with ϵpdq “ 2d and the confidence sequences Λt and Ξt of Equation (18). If172

@t : Pt is ξt-smooth wrt the uniform distribution on the unit interval then173

@t,@v : Utpvq ´ Ltpvq ď

Bt `

c

pτ ` Vtq{t

t

` Õ

˜

c

pτ ` Vtq{t

t
log

`

ξ´2
t α´1

˘

¸

` Õpt´1 log
`

ξ´2
t α´1

˘

q,

(7)

where qt
.
“ CDFtpvq, Kpqtq

.
“ pqt´1{2q{logpqt{1´qtq; Vt “ O

`

Kpqtq
ř

sďtW
2
s

˘

, Bt
.
“174

t´1
ř

sďtpWs ´ 1q, and Õpq elides polylog Vt factors.175

Proof. See Appendix E.2.176

Theorem 3.4 exhibits the following key properties: (i) logarithmic dependence upon smoothness; (ii)177

tighter intervals for extreme quantiles and importance weights with smaller quadratic variation; (iii)178

no explicit dependence upon importance weight range; (iv) asymptotic zero width for importance179

weights with sub-linear quadratic variation.180

Additional Remarks First, the importance-weighted average CDF is a well-defined mathematical181

quantity, but the interpretation as a counterfactual distribution of outcomes given different actions in182

the controlled experimentation setting involves subtleties: we refer the interested reader to Waudby-183

Smith et al. [2022] for a complete discussion. Second, the need for nonstationarity techniques for184

estimating the importance-weighted CDF is driven by the outcomes pXtq and not the importance-185

weights pWtq. For example with off-policy contextual bandits, a changing historical policy does not186

induce nonstationarity, but a changing conditional reward distribution does.187

4 Simulations188

These simulations explore the empirical behaviour of Algorithm 1 and Algorithm 2 when instantiated189

with ϵpdq “ 2d and curved boundary oracles Λ and Ξ. To save space, precise details on the190

experiments as well additional figures are elided to Appendix F. Reference implementations which191

reproduce the figures are available at url1.192

4.1 The i.i.d. setting193

These simulations exhibit our techniques on i.i.d. data. Although the i.i.d. setting does not fully194

exercise the technique, it is convenient for visualizing convergence to the unique true CDF. In this195

setting the DKW inequality applies, so to build intuition about our statistical efficiency, we compare196

our bounds with a naive time-uniform version of DKW resulting from a p6{π2t2q union bound over197

time.198

1Redacted for review: see python notebooks in supplemental.
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diverges dramatically from the counterfactual dis-
tribution (green). The bound correctly covers the
counterfactual CDF.
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in Section 3.3 and Appendix D.1 for distributions
with arbitrary support, based on i.i.d. sampling
from a variety of lognormal distributions. Loga-
rithmic range dependence is evident.

Beta distribution In this case the data is smooth wrt the uniform distribution on r0, 1s so we can199

directly apply Algorithm 1 and Algorithm 2. Figure 2 shows the bounds converging to the true CDF200

as t increases for an i.i.d. Betap6, 3q realization. Figure 8 compares the bound width to time-uniform201

DKW at t “ 10000 for Beta distributions that are increasingly less smooth with respect to the uniform202

distribution. The DKW bound is identical for all, but our bound width increases as the smoothness203

decreases.204

The additional figures in Appendix F clearly indicate tighter bounds at extreme quantiles, in corre-205

spondence with Theorem 3.3.206

Beyond the unit interval In Figure 7 (main text) and Appendix F.1 we present further simulations207

of i.i.d. lognormal and Gaussian random variables, ranging over R` and R respectively, and using208

Algorithm 3. The logarithmic dependence of the bound width upon the probe value is evident.209

An Exhibition of Failure Figure 4 shows the (empirical) relative convergence when the data is210

simulated i.i.d. uniform over r0, ϵs for decreasing ϵ (hence decreasing smoothness). The reference211

width is the maximum bound width obtained with Algorithm 1 and Algorithm 2 at tref “ 10000 and212

ϵ “ 1{16, and shown is the multiplicative factor of time required for the maximum bound width213

to match the reference width as smoothness varies. The trend is consistent with arbitrarily poor214

convergence with arbitrarily small ϵ. Because this is i.i.d. data, DKW applies and a uniform bound215

(independent of ϵ) is available. Thus while our instance-dependent guarantees are valuable in practice,216

they can be dominated by stronger guarantees leveraging additional assumptions. On a positive note,217

a logarithmic dependence on smoothness is evident over many orders of magnitude, confirming the218

analysis of Theorem 3.3.219

Importance-Weighted In these simulations, in addition to being i.i.d., Xt and Wt are drawn220

independently of each other, so the importance weights merely increase the difficulty of ultimately221

estimating the same quantity.222

In the importance-weighted case, an additional aspect is whether the importance-weights have finite223

or infinite variance. Figures 5 and 13 demonstrate convergence in both conditions when using DDRM224

for pointwise bounds. Figures 14 and 15 show the results using empirical Bernstein pointwise bounds.225

In theory, with enough samples and infinite precision, the infinite variance Pareto simulation would226

eventually cause the empirical Bernstein variant to reset to trivial bounds, but in practice this is not227

observed. Instead, DDRM is consistently tighter but also consistently more expensive to compute, as228

exemplified in Table 2. Thus either choice is potentially preferable.229

4.2 Nonstationary230

Continuous Polya Urn In this case

Xt „ Beta

˜

2 ` γt
ÿ

săt

1Xsą1{2, 2 ` γt
ÿ

săt

1Xsď1{2

¸

,

i.e., Xt is Beta distributed with parameters becoming more extreme over time: each realization will231

increasingly concentrate either towards 0 or 1. Suppose γt “ tq. In the most extreme case that232
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Table 2: Comparison of DDRM and Empirical Bernstein on i.i.d. Xt „ Betap6, 3q, for different Wt.
Width denotes the maximum bound width supv Utpvq ´ Ltpvq. Time is for computing the bound at
1000 equally spaced points.

Wt WHAT WIDTH TIME (SEC)

EXPp1q
DDRM 0.09 24.8

EMP. BERN 0.10 1.0

PARETOp3{2q
DDRM 0.052 59.4

EMP. BERN 0.125 2.4

`

t “
ř

sďt 1Xsą1{2

˘

, the conditional distribution at time t is Beta px; 2 ` tγt, 2q “ Opt1`qq, hence233

dPt{dU “ Opt1`qq, which is smooth enough for our bounds to converge. Figure 3 shows the bounds234

covering the true CDF for two realizations with different limits. Figure 12 shows (for one realization)235

the maximum bound width, scaled by
a

t{logptq to remove the primary trend, as a function of t for236

different γt schedules.237

Importance-Weighted Continuous Polya Urn In this case Wt is drawn iid either Wt “ 0 or
Wt “ wmax, such as might occur during off-policy evaluation with an epsilon-greedy logging policy.
Given Wt, the distribution of Xt is given by

Xt|Wt „ Beta

˜

2 ` γt
ÿ

săt

1Xsą1{21Ws“Wt ,

2 ` γt
ÿ

săt

1Xsă1{21Ws“Wt

¸

,

i.e., each importance weight runs an independent Continuous Polya Urn. Because of this, it is238

possible for the unweighted CDF to mostly concentrate at one limit (e.g., 1) but the weighted CDF to239

concentrate at another limit (e.g., 0). Figure 6 exhibits this phenomenon.240

5 Related Work241

Constructing nonasymptotic confidence bands for the cumulative distribution function of iid random242

variables is a classical problem of statistical inference dating back to Dvoretzky et al. [1956] and Mas-243

sart [1990]. While these bounds are quantile-uniform, they are ultimately fixed-time bounds (i.e. not244

time-uniform). In other words, given a sample of iid random variables X1, . . . , Xn „ F , these fixed245

time bounds r 9Lnpxq, 9UnpxqsxPR satisfy a guarantee of the form:246

Pp@x P R, 9Lnpxq ď F pxq ď 9Unpxqq ě 1 ´ α, (8)

for any desired error level α P p0, 1q. Howard and Ramdas [2022] developed confidence bands247

rsLtpxq, sUtpxqsxPR,tPN that are both quantile- and time-uniform, meaning that they satisfy the stronger248

guarantee:249

Pp@x P R, t P N, sLtpxq ď F pxq ď sUtpxqq ě 1 ´ α. (9)

However, the bounds presented in Howard and Ramdas [2022] ultimately focused on the classical iid250

on-policy setup, meaning the CDF for which confidence bands are derived is the same CDF as those of251

the observations pXtq
8
t“1. This is in contrast to off-policy evaluation problems such as in randomized252

controlled trials, adaptive A/B tests, or contextual bandits, where the goal is to estimate a distribution253

different from that which was collected (e.g. collecting data based on a Bernoulli experiment with the254

goal of estimating the counterfactual distribution under treatment or control). Chandak et al. [2021]255

and Huang et al. [2021] both introduced fixed-time (i.e. non-time-uniform) confidence bands for256

the off-policy CDF in contextual bandit problems, though their procedures are quite different, rely257

on different proof techniques, and have different properties from one another. Waudby-Smith et al.258

[2022, Section 4] later developed time-uniform confidence bands in the off-policy setting, using a259

technique akin to Howard and Ramdas [2022, Theorem 5] and has several desirable properties in260
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comparison to Chandak et al. [2021] and Huang et al. [2021] as outlined in Waudby-Smith et al.261

[2022, Table 2].262

Nevertheless, regardless of time-uniformity or on/off-policy estimation, all of the aforementioned263

prior works assume that the distribution to be estimated is fixed and unchanging over time. The264

present paper takes a significant departure from the existing literature by deriving confidence bands265

that allow the distribution to change over time in a data-dependent manner, all while remaining266

time-uniform and applicable to off-policy problems in contextual bandits. Moreover, we achieve this267

by way of a novel stitching technique which is closely related to those of Howard and Ramdas [2022]268

and Waudby-Smith et al. [2022].269

6 Discussion270

This work constructs bounds by tracking specific values, in contrast with i.i.d. techniques which track271

specific quantiles. The value-based approach is amenable to proving correctness qua Theorem 3.1,272

but has the disadvantage of sensitivity to monotonic transformations. We speculate it is possible to273

be covariant to a fixed (wrt time) but unknown monotonic transformation without violating known274

impossibility results. A technique with this property would have increased practical utility.275
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A Confidence Sequences for Fixed v344

Since our algorithm operates via reduction to pointwise confidence sequences, we provide a brief345

self-contained review here. We refer the interested reader to Howard et al. [2021] for a more thorough346

treatment.347

A confidence sequence for a random process Xt is a time-indexed collection of confidence sets CIt348

with a time-uniform coverage property P p@t P N : Xt P CItq ě 1 ´ α. For real random variables,349

the concept of a lower confidence sequence can be defined via P p@t P N : Xt ě Ltq ě 1 ´ α, and350

analogously for upper confidence sequences; and a lower and upper confidence sequence can be351

combined to form a confidence sequence CIt
.
“ tx|Lt ď x ď Utu with coverage p1 ´ 2αq via a352

union bound.353

One method for constructing a lower confidence sequence for a real valued parameter z is to exhibit a354

real-valued random process Etpzq which, when evaluated at the true value z˚ of the parameter of355

interest, is a non-negative supermartingale with initial value of 1, in which case Ville’s inequality356

ensures P
`

@t P N : Etpz
˚q ď α´1

˘

ě 1 ´ α. If the process Etpzq is monotonically increasing in357

z, then the supremum of the lower contour set Lt
.
“ supz

␣

z|Etpzq ď α´1
(

is suitable as a lower358

confidence sequence; an upper confidence sequence can be analogously defined.359

We use the above strategy as follows. We bound these deviations using the following nonnegative360

martingale,361

Etpλq
.
“ exp

˜

λSt ´
ÿ

sďt

log phpλ, θsqq

¸

, (10)

where λ P R is fixed and hpλ, zq
.
“ p1 ´ zqe´λz ` zeλp1´zq, the moment-generating function of a362

centered Bernoulli(zq random variable. Equation (10) is a test martingale qua Shafer et al. [2011],363

i.e., it can be used to construct time-uniform bounds on q̂t ´ qt via Ville’s inequality.364

Next we lower bound Equation (10),365

Etpλq
.
“ exp

˜

λSt ´
ÿ

sďt

log phpλ, θsqq

¸

, (10)

and eliminate the explicit dependence upon θs, by noting hpλ, ¨q is concave and therefore366

Etpλq ě exp pλt pqt ´ q̂tq ´ t h pλ, qtqq , (11)

because
ˆ

tfpqq “ max
θ
ˇ

ˇ1Jθ“tq

ř

sďt fpθsq

˙

for any concave f . Equation (11) is monotonically367

increasing in qt and therefore defines a lower confidence sequence. For an upper confidence sequence368

we use qt “ 1 ´ p1 ´ qtq and a lower confidence sequence on p1 ´ qtq.369

Regarding the choice of λ, in practice many λ are (implicitly) used via stitching (i.e., using different370

λ in different time epochs and majorizing the resulting bound in closed form) or mixing (i.e., using371

a particular fixed mixture of Equation (11) via a discrete sum or continuous integral over λ); our372

choices will depend upon whether we are designing for tight asymptotic rates or low computational373

footprint. We provide specific details associated with each theorem or experiment.374

Note Equation (11) is invariant to permutations of X1:t and hence the empirical CDF at time t is a375

sufficient statistic for calculating Equation (11) at any v.376

A.1 Challenge with quantile space377

In this section assume all CDFs are invertible for ease of exposition.378

In the i.i.d. setting, Equation (10) can be evaluated at the (unknown) fixed vpqq which corresponds379

to quantile q. Without knowledge of the values, one can assert the existence of such values for a380

countably infinite collection of quantiles and a careful union bound of Ville’s inequality on a particular381

discretization can yield an LIL rate: this is the approach of Howard and Ramdas [2022]. A key382

advantage of this approach is covariance to monotonic transformations.383

Beyond the i.i.d. setting, one might hope to analogously evaluate Equation (10) at an unknown fixed384

value vtpqq which for each t corresponds to quantile q. Unfortunately, vtpqq is not just unknown,385
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Algorithm 2 Unit Interval Lower Bound. ϵpdq is an increasing function specifying the resolution
of discretization at level d. Λt pρ; δ, d,Ψtq is a lower confidence sequence for fixed value ρ with
coverage at least p1 ´ δq.

Input: value v; confidence α; sufficient statistic Ψt. // comments below indicate differences from
upper bound
// Ψt

.
“ X1:t or Ψt

.
“ pW1:t, X1:tq

Output: Ltpvq satisfying Equation (2).
if v ă 0 then return 0 end if // check for underflow of range rather than overflow
l Ð 0 // initialize with 0 instead of 1
v Ð min p1, vq // project onto [0, 1] using min instead of max
for d “ 1 to 8 do
ρd Ð ϵpdq´1tϵpdqvu // use floor instead of ceiling
δd Ð α{2dϵpdq

l Ð max pl,Λt pρd; δ,Ψtqq // use lower bound instead of upper bound
if 0 “

ř

sďt 1XsPrρd,vq then
return l

end if
end for

but also unpredictable with respect to the initial filtration, and the derivation that Equation (10) is a386

martingale depends upon v being predictable. In the case that Xt is independent but not identically387

distributed, vtpqq is initially predictable and therefore this approach could work, but would only be388

valid under this assumption.389

The above argument does not completely foreclose the possibility of a quantile space approach, but390

merely serves to explain why the authors pursued a value space approach in this work. We encourage391

the interested reader to innovate.392

B Unit Interval Bounds393

B.1 Lower Bound394

Algorithm 2 is extremely similar to Algorithm 1: the differences are indicated in comments. Careful395

inspection reveals the output of Algorithm 1, Utpvq, can be obtained from the output of Algorithm 2,396

Ltpvq, via Utpvq “ 1 ´ Ltp1 ´ vq; but only if the sufficient statistics are adjusted such that397

Ξtpρd; δ,Ψtq “ 1 ´ Λtp1 ´ ρd; δ,Ψ
1
tq. The reference implementation uses this strategy.398

B.2 Proof of Theorem 3.1399

We prove the results for the upper bound Algorithm 1; the argument for the lower bound Algorithm 2400

is similar.401

The algorithm terminates when we find a d such that 0 “
ř

sďt 1XsPpv,ρds. Since ϵpdq Ò 8 as d Ò 8,402

we have ρd “ ϵpdqrϵpdq´1vs Ó v, so that
ř

sďt 1XsPpv,ρds Ó 0. So the algorithm must terminate.403

At level d, we have ϵpdq confidence sequences. The ith confidence sequence at level d satisfies404

P pDt : CDFtpi{ϵpdqq ą Ξtpi{ϵpdq; δd, d,Ψtqq ď
α

2dϵpdq
. (12)

Taking a union bound over all confidence sequences at all levels, we have405

P
`

Dd P N, i P t1, . . . , du, t P N : CDFtpi{ϵpdqq ą Ξtpi{ϵpdq; δ, d,Ψtq
˘

ď α. (13)

Thus we are assured that, for any v P R,406

P p@t, d : CDFtpvq ď CDFtpρdq ď Ξtpρd; δd, d,Ψtqq ě 1 ´ α. (14)
Algorithm 1 will return Ξtpρd; δd, d,Ψtq for some d unless all such values are larger than one, in407

which case it returns the trivial upper bound of one. This proves the upper-bound half of guarantee408

(2). A similar argument proves the lower-bound half, and union bound over the upper and lower409

bounds finishes the argument.410
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C Proof of Theorem 3.3411

Theorem 3.3. Let Utpvq and Ltpvq be the upper and lower bounds returned by Algorithm 1 and412

Algorithm 2 respectively, when evaluated with ϵpdq “ 2d and the confidence sequences Λt and Ξt of413

Equation (15). If @t : Pt is ξt-smooth wrt the uniform distribution on the unit interval then414

@t,@v : Utpvq ´ Ltpvq ď
c

Vt
t

` Õ

˜

c

Vt
t
log

`

ξ´2
t α´1t3{2

˘

¸

,
(6)

where qt
.
“ CDFtpvq; Vt

.
“ 1{t ` pqt´1{2q{logpqt{1´qtq; and Õpq elides polylog Vt factors.415

Note v is fixed for the entire argument below, and ξt denotes the unknown smoothness parameter at416

time t.417

We will argue that the upper confidence radius Utpvq ´ t´1
ř

sďt 1Xsďv has the desired rate. An anal-418

ogous argument applies to the lower confidence radius t´1
ř

sďt 1Xsďv ´ Ltpvq, and the confidence419

width Utpvq ´ Ltpvq is the sum of these two.420

For the proof we introduce an integer parameter η ě 2 which controls both the grid spacing421

(ϵpdq “ ηd) and the allocation of error probabilities to levels (δd “ α{pηdϵpdqq). In the main paper422

we set η “ 2.423

At level d we construct ηd confidence sequences on an evenly-spaced grid of values 1{ηd, 2{ηd, . . . , 1.424

We divide total error probability α{ηd at level d among these ηd confidence sequences, so that each425

individual confidence sequence has error probability α{η2d.426

For a fixed bet λ and value ρ, St defined in Section 3.2 is sub-Bernoulli qua Howard et al. [2021,427

Definition 1] and therefore sub-Gaussian with variance process Vt
.
“ tKpqtq, where Kppq

.
“428

p2p´1q{2 logpp{1´pq is from Kearns and Saul [1998]; from Howard et al. [2021, Proposition 5] it follows429

that there exists an explicit mixture distribution over λ such that430

Mpt; qt, τq
.
“

g

f

f

e2 ptKpqtq ` τq log

˜

η2d

2α

c

tKpqtq ` τ

τ
` 1

¸

(15)

is a (curved) uniform crossing boundary, i.e., satisfies431

α

η2d
ě P

ˆ

Dt ě 1 : St ě
Mpt; qt, τq

t

˙

,

where St
.
“ CDFtpρq ´ t´1

ř

sďt 1Xsďρ is from Equation (10), and τ is a hyperparameter to be432

determined further below.433

Because the values at level d are 1{ηd apart, the worst-case discretization error in the estimated434

average CDF value is435

CDFtpϵpdqrϵpdq´1vsq ´ CDFtpvq ď 1{pξtη
dq,

and the total worst-case confidence radius including discretization error is436

rdptq “
1

ξtηd
`

g

f

f

e

2 pKpqtq ` τ{tq

t
log

˜

η2d

2α

c

tKpqtq ` τ

τ
` 1

¸

.

Now evaluate at d such that
?
ψt ă ξtη

d ď η
?
ψt where ψt

.
“ t pKpqtq ` τ{tq

´1,437

rdptq ď

c

Kpqtq ` τ{t

t
`

g

f

f

e

2 pKpqtq ` τ{tq

t
log

˜

ξ´2
t η2

2α

ˆ

t

Kpqtq ` τ{t

˙

c

tKpqtq ` τ

τ
` 1

¸

.

The final result is not very sensitive to the choice of τ , and we use τ “ 1 in practice.438
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Algorithm 3 Entire Real Line Upper Bound. ϵpdq is an increasing function specifying the resolution
of discretization at level d. Ξt pρ; δ, d,Ψtq is an upper confidence sequence for fixed value ρ with
coverage at least p1 ´ δq.

Input: value v; confidence α; sufficient statistic Ψt.
// e.g. Ψt

.
“ X1:t or Ψt

.
“ pW1:t, X1:tq

Output: Utpvq satisfying Equation (2).
u Ð 1
for d “ 1 to 8 do
kd Ð rϵpdq´1vs // Sub-optimal: see text for details
ρd Ð ϵpdqkd
δd Ð pα{2dq p3{pπ2

´3qp1`|kd|q
2q // Union bound over d P N and kd P Z

u Ð min pu,Ξt pρd; δd, d,Ψtqq

if 0 “
ř

sďt 1XsPpv,ρds then
return u

end if
end for

D Extensions439

D.1 Arbitrary Support440

Algorithm 3 is a variation on Algorithm 1 which does not assume a bounded range, and instead uses441

a countably discrete dense subset of the entire real line. Using the same argument of Theorem 3.3442

with the modified probability from the modified union bound, we have443

|kd| ´ 1 ă η´d|v| ď |kd|,

ξt{
a

ψt ą η´d ě η´1ξt{
a

ψt

ùñ 1 ` |kd| ă 2 ` ξt|v|{
a

ψt

ùñ rdptq ď Õ

˜

c

Vt
t
log

´

`

2 ` ξt|v|t´1{2
˘2
ξ´2
t α´1t3{2

¯

¸

,

demonstrating a logarithmic penalty in the probe value v (e.g., Figure 7).444

Sub-optimality of kd The choice of kd in Algorithm 3 is amenable to analysis, but unlike in445

Algorithm 1, it is not optimal. In Algorithm 1 the probability is allocated uniformly at each depth,446

and therefore the closest grid point provides the tightest estimate. However in Algorithm 3, the447

probability budget decreases with |kd| and because kd can be negative, it is possible that a different448

kd can produce a tighter upper bound. Since every kd is covered by the union bound, in principle we449

could optimize over all kd but it is unclear how to do this efficiently. In our implementation we do450

not search over all kd, but we do adjust kd to be closest to the origin with the same empirical counts.451

D.2 Discrete Jumps452

Known Countably Infinite Suppose D is smooth wrt a reference measure M , where M is of the
form

M “ M̆ `
ÿ

iPI

ζi1vi ,

with I a countable index set, 1 ě
ř

iPI ζi and M̆ a sub-probability measure normalizing to p1 ´453
ř

iPI ζiq. Then we can allocate p1 ´
ř

iPI ζiq of our overall coverage probability to bounding M̆454

using Algorithm 1 and Algorithm 2. For the remaining tviuiPI we can run explicit pointwise bounds455

each with coverage probability fraction ζi.456

Computationally, early termination of the infinite search over the discrete bounds is possible. Suppose457

(wlog) I indexes ζ in non-increasing order, i.e., i ď j ùñ ζi ď ζj : then as soon as there are no458

remaining empirical counts between the desired value v and the most recent discrete value vi, the459

search over discrete bounds can terminate.460
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E Importance-Weighted Variant461

E.1 Modified Bounds462

Algorithm 1 and Algorithm 2 are unmodified, with the caveat that the oracles Λt and Ξt must now463

operate on an importance-weighted realization pW1:t, X1:tq, rather then directly on the realization464

X1:t.465

E.1.1 DDRM Variant466

For simplicity we describe the lower bound Λt only. The upper bound is derived analogously via the467

equality Ys “ Ws ´ pWs ´ Ysq and a lower bound on pWs ´ Ysq: see Waudby-Smith et al. [2022,468

Remark 3] for more details.469

This is the Heavy NSM from Mineiro [2022] combined with the L˚ bound of Orabona [2019, §4.2.3].470

The Heavy NSM allow us to handle importance weights with unbounded variance, while the Adagrad471

L˚ bound facilitates lazy evaluation.472

For fixed v, let Yt “ Wt1Xtěv be a non-negative real-valued discrete-time random process, let
Ŷt P r0, 1s be a predictable sequence, and let λ P r0, 1q be a fixed scalar bet. Then

Etpλq
.
“ exp

˜

λ

˜

ÿ

sďt

Ŷs ´ Es´1 rYss

¸

`
ÿ

sďt

log
´

1 ` λ
´

Ys ´ Ŷs

¯¯

¸

is a test supermartingale [Mineiro, 2022, §3]. Manipulating,

Etpλq “ exp

¨

˚

˚

˚

˝

λ

˜

ÿ

sďt

Ys ´ Es´1 rYss

¸

´
ÿ

sďt

´

λ
´

Ys ´ Ŷs

¯

´ log
´

1 ` λ
´

Ys ´ Ŷs

¯¯¯

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

.
“hpλpYs´Ŷsqq

˛

‹

‹

‹

‚

“ exp

˜

λ

˜

ÿ

sďt

Ys ´ Es´1 rYss

¸

´
ÿ

sďt

h
´

λ
´

Ys ´ Ŷs

¯¯

¸

ě exp

˜

λ

˜

ÿ

sďt

Ys ´ Es´1 rYss

¸

´

˜

ÿ

sďt

h
´

λ
´

Ys ´ Ŷ ˚
t

¯¯

¸

´ Regptq

¸

p:q

“ exp

˜

λ

˜

tŶ ˚
t ´

ÿ

sďt

Es´1 rYss

¸

`
ÿ

sďt

log
´

1 ` λ
´

Ys ´ Ŷ ˚
t

¯¯

´ Regptq

¸

,

where for p:q we use a no-regret learner on hpq with regret Regptq to any constant prediction
Ŷ ˚
t P r0, 1s. The function hpq is M -smooth with M “ λ2

p1´λq2
so we can get an L˚ bound [Orabona,

2019, §4.2.3] of

Regptq “ 4
λ2

p1 ´ λq2
` 4

λ

1 ´ λ

d

ÿ

sďt

h
´

λ
´

Ys ´ Ŷ ˚
t

¯¯

“ 4
λ2

p1 ´ λq2
` 4

λ

1 ´ λ

g

f

f

e

˜

´tŶ ˚
t `

ÿ

sďt

Ys

¸

´
ÿ

sďt

log
´

1 ` λ
´

Ys ´ Ŷ ˚
t

¯¯

,

thus essentially our variance process is inflated by a square-root. In exchange we do not have to473

actually run the no-regret algorithm, which eases the computational burden. We can compete with474

any in-hindsight prediction: if we choose to compete with the clipped running mean Yt then we end475

up with476

Etpλq ě exp

˜

λ

˜

min

˜

t,
ÿ

sďt

Ys

¸

´ Es´1 rYss

¸

`
ÿ

sďt

log
`

1 ` λ
`

Ys ´ Yt
˘˘

´ Regptq

¸

,

(16)
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which is implemented in the reference implementation as
LogApprox:getLowerBoundWithRegret(lam). The λ-s are mixed using DDRM from
Mineiro [2022, Thm. 4], implemented via the DDRM class and the getDDRMCSLowerBound method
in the reference implementation. getDDRMCSLowerBound provably correctly early terminates the
infinite sum by leveraging

ÿ

sďt

log
`

1 ` λ
`

Ys ´ Yt
˘˘

ď λ

˜

ÿ

sďt

Ys ´ tYt

¸

as seen in the termination criterion of the inner method logwealth(mu).477

To minimize computational overhead, we can lower bound logpa`bq for b ě 0 using strong concavity
qua Mineiro [2022, Thm. 3], resulting in the following geometrically spaced collection of sufficient
statistics:

p1 ` kqnl “ zl ď z ă zu “ p1 ` kqzl “ p1 ` kqnl`1,

along with distinct statistics for z “ 0. k is a hyperparameter controlling the granularity of the478

discretization (tighter lower bound vs. more space overhead): we use k “ 1{4 exclusively in our479

experiments. Note the coverage guarantee is preserved for any choice of k since we are lower480

bounding the wealth.481

Given these statistics, the wealth can be lower bounded given any bet λ and any in-hindsight prediction
Ŷ ˚
t via

fpzq
.
“ log

´

1 ` λ
´

z ´ Ŷ ˚
t

¯¯

,

fpzq ě αfpzlq ` p1 ´ αqfpzuq `
1

2
αp1 ´ αqmpzlq,

α
.
“

zu ´ z

zu ´ zl
,

mpzlq
.
“

˜

kzlλ

kzlλ` 1 ´ λŶ ˚
t

¸2

.

Thus when accumulating the statistics, for each Ys “ Ws1Xsěv, a value of α must be accumulated482

at key fpzlq, a value of p1 ´ αq accumulated at key fpzuq, and a value of αp1 ´ αq accumulated at483

key mpzlq. The LogApprox::update method from the reference implementation implements this.484

Because these sufficient statistics are data linear, a further computational trick is to accumulate the suf-485

ficient statistics with equality only, i.e., for Ys “ Ws1Xs“v; and when the CDF curve is desired, com-486

bine these point statistics into cumulative statistics. In this manner onlyOp1q incremental work is done487

per datapoint; while an additional Opt logptqq work is done to accumulate all the sufficient statistics488

only when the bounds need be computed. The method StreamingDDRMECDF::Frozen::__init__489

from the reference implementation contains this logic.490

E.1.2 Empirical Bernstein Variant491

For simplicity we describe the lower bound Λt only. The upper bound is derived analogously via the492

equality Ys “ Ws ´ pWs ´ Ysq and a lower bound on pWs ´ Ysq: see Waudby-Smith et al. [2022,493

Remark 3] for more details.494

This is the empirical Bernstein NSM from Howard et al. [2021] combined with the L˚ bound of495

Orabona [2019, §4.2.3]. Relative to DDRM it is faster to compute, has a more concise sufficient496

statistic, and is easier to analyze; but it is wider empirically, and theoretically requires finite importance497

weight variance to converge.498

For fixed v, let Yt “ Wt1Xtěv be a non-negative real-valued discrete-time random process, let
Ŷt P r0, 1s be a predictable sequence, and let λ P r0, 1q be a fixed scalar bet. Then

Etpλq
.
“ exp

˜

λ

˜

ÿ

sďt

Ŷs ´ Es´1 rYss

¸

`
ÿ

sďt

log
´

1 ` λ
´

Ys ´ Ŷs

¯¯

¸
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is a test supermartingale [Mineiro, 2022, §3]. Manipulating,

Etpλq
.
“ exp

¨

˚

˚

˚

˝

λ

˜

ÿ

sďt

Ys ´ Es´1 rYss

¸

´
ÿ

sďt

´

λ
´

Ys ´ Ŷs

¯

´ log
´

1 ` λ
´

Ys ´ Ŷs

¯¯¯

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

.
“hpλpYs´Ŷsqq

˛

‹

‹

‹

‚

ě exp

˜

λ

˜

ÿ

sďt

Ys ´ Es´1 rYss

¸

´ hp´λq
ÿ

sďt

´

Ys ´ Ŷs

¯2
¸

[Fan, Lemma 4.1]

ě exp

˜

λ

˜

ÿ

sďt

Ys ´ Es´1 rYss

¸

´ hp´λq

˜

Regptq `
ÿ

sďt

pYs ´ Y ˚
t q

2

¸¸

p:q ,

.
“ exp pλSt ´ hp´λqVtq ,

where St “
ř

sďt Ys´Es´1 rYss and for p:q we use a no-regret learner on squared loss on feasible set
r0, 1s with regret Regptq to any constant in-hindsight prediction Ŷ ˚

t P r0, 1s. Since Ys is unbounded
above, the loss is not Lipschitz and we can’t get fast rates for squared loss, but we can run Adagrad
and get an L˚ bound,

Regptq “ 2
?
2

d

ÿ

sďt

g2s

“ 4
?
2

d

ÿ

sďt

pYs ´ Ŷsq2

ď 4
?
2

d

Regptq `
ÿ

sďt

pYs ´ Ŷ ˚
t q2,

ùñ Regptq ď 16 ` 4
?
2

d

8 `
ÿ

sďt

pYs ´ Ŷ ˚
t q2.

Thus basically our variance process is inflated by an additive square root.499

We will compete with Y ˚
t “ min

`

1, 1t
ř

s Ys
˘

.500

A key advantage of the empirical Bernstein over DDRM is the availability of both a conjugate (closed-501

form) mixture over λ and a closed-form majorized stitched boundary. This yields both computational502

speedup and analytical tractability.503

For a conjugate mixture, we use the truncated gamma prior from Waudby-Smith et al. [2022, Theorem504

2] which yields mixture wealth505

MEB
t

.
“

ˆ

τ τe´τ

Γpτq ´ Γpτ, τq

˙ˆ

1

τ ` Vt

˙

1F1 p1, Vt ` τ ` 1, St ` Vt ` τq , (17)

where 1F1p. . .q is Kummer’s confluent hypergeometric function and Γp¨, ¨q is the upper incomplete506

gamma function. For the hyperparameter, we use τ “ 1.507

E.2 Proof of Theorem 3.4508

Theorem 3.4. Let Utpvq and Ltpvq be the upper and lower bounds returned by Algorithm 1 and509

Algorithm 2 respectively with ϵpdq “ 2d and the confidence sequences Λt and Ξt of Equation (18). If510

@t : Pt is ξt-smooth wrt the uniform distribution on the unit interval then511

@t,@v : Utpvq ´ Ltpvq ď

Bt `

c

pτ ` Vtq{t

t

` Õ

˜

c

pτ ` Vtq{t

t
log

`

ξ´2
t α´1

˘

¸

` Õpt´1 log
`

ξ´2
t α´1

˘

q,

(7)
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where qt
.
“ CDFtpvq, Kpqtq

.
“ pqt´1{2q{logpqt{1´qtq; Vt “ O

`

Kpqtq
ř

sďtW
2
s

˘

, Bt
.
“512

t´1
ř

sďtpWs ´ 1q, and Õpq elides polylog Vt factors.513

Note v is fixed for the entire argument below, and ξt denotes the unknown smoothness parameter at514

time t.515

We will argue that the upper confidence radius Utpvq ´ t´1
ř

sďtWs1Xsďv has the desired rate.516

An analogous argument applies to the lower confidence radius. One difference from the non-517

importance-weighted case is that, to be sub-exponential, the lower bound is constructed from an518

upper bound on U 1
tpvq “ Wsp1 ´ 1Xsďvq via Ltpvq ´ 1 ´ U 1

tpvq, which introduces an additional519

Bt “ t´1
ř

sďtpWs ´ 1q term to the width. (Note, because @t : EtrWt ´ 1s “ 0, this term will520

concentrate, but we will simply use the realized value here.)521

For the proof we introduce an integer parameter η ě 2 which controls both the grid spacing522

(ϵpdq “ ηd) and the allocation of error probabilities to levels (δd “ α{pηdϵpdqq). In the main paper523

we set η “ 2.524

At level d we construct ηd confidence sequences on an evenly-spaced grid of values 1{ηd, 2{ηd, . . . , 1.525

We divide total error probability α{ηd at level d among these ηd confidence sequences, so that each526

individual confidence sequence has error probability α{η2d.527

For a fixed bet λ and value ρ, St defined in Appendix E.1.2 is sub-exponential qua Howard et al.528

[2021, Definition 1] and therefore from Lemma E.1 there exists an explicit mixture distribution over529

λ inducing (curved) boundary530

α

η2d
ě P

ˆ

Dt ě 1 :
St

t
ě max

ˆ

Cpτq

t
, u

ˆ

Vt; τ,
α

η2d

˙˙˙

,

u

ˆ

Vt; τ,
α

η2d

˙

“

g

f

f

e2

ˆ

pτ ` Vtq{t

t

˙

log

˜

c

τ ` Vt
2π

e´ 1
12pτ`Vtq`1

ˆ

1 ` η2dα´1

Cpτq

˙

¸

`
1

t
log

˜

c

τ ` Vt
2π

e´ 1
12pτ`Vtq`1

ˆ

1 ` η2dα´1

Cpτq

˙

¸

, (18)

where St
.
“ CDFtpρq ´ t´1

ř

sďtWs1Xsďρ, and τ is a hyperparameter to be determined further531

below.532

Because the values at level d are 1{ηd apart, the worst-case discretization error in the estimated533

average CDF value is534

CDFtpϵpdqrϵpdq´1vsq ´ CDFtpvq ď 1{pξtη
dq,

and the total worst-case confidence radius including discretization error is535

rdptq “
1

ξtηd
` max

ˆ

Cpτq

t
, u

ˆ

Vt; τ,
α

η2d

˙˙

.

Now evaluate at d such that
?
ψt ă ξtη

d ď η
?
ψt where ψt

.
“ t ppτ ` Vtq{tq

´1,536

rdptq ď
1

?
ψt

` max

ˆ

Cpτq

t
, u

ˆ

Vt; τ,
α

η2ξ´2
t ψt

˙˙

“

c

pτ ` Vtq{t

t
` Õ

˜

c

pτ ` Vtq{t

t
log

`

ξ´2
t α´1

˘

¸

` Õpt´1 log
`

ξ´2
t α´1

˘

q,

where Õpq elides polylog Vt factors. The final result is not very sensitive to the choice of τ , and we537

use τ “ 1 in practice.538

Lemma E.1. Suppose539

exp pλSt ´ ψepλqVtq ,

ψepλq
.
“ ´λ´ logp1 ´ λq,
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is sub-ψe qua Howard et al. [2021, Definition 1]; then there exists an explicit mixture distribution540

over λ with hyperparameter τ ą 0 such that541

α ě P
ˆ

Dt ě 1 :
St

t
ě max

ˆ

Cpτq

t
, u pVt; τ, αq

˙˙

,

u pVt; τ, αq “

g

f

f

e2

ˆ

pτ ` Vtq{t

t

˙

log

˜

c

τ ` Vt
2π

e´ 1
12pτ`Vtq`1

ˆ

1 ` α´1

Cpτq

˙

¸

`
1

t
log

˜

c

τ ` Vt
2π

e´ 1
12pτ`Vtq`1

ˆ

1 ` α´1

Cpτq

˙

¸

,

Cpτq
.
“

τ τe´τ

Γpτq ´ Γpτ, τq
,

is a (curved) uniform crossing boundary.542

Proof. We can form the conjugate mixture using a truncated gamma prior from Howard et al. [2021,543

Proposition 9], in the form from Waudby-Smith et al. [2022, Theorem 2], which is our Equation (17).544

MEB
t

.
“

ˆ

τ τe´τ

Γpτq ´ Γpτ, τq

˙ˆ

1

τ ` Vt

˙

1F1 p1, Vt ` τ ` 1, St ` Vt ` τq ,

where 1F1p. . .q is Kummer’s confluent hypergeometric function. Using Olver et al. [2010, identity545

13.6.5],546

1F1p1, a` 1, xq “ exax´a pΓpaq ´ Γpa, xqq

where Γpa, xq is the (unregularized) upper incomplete gamma function. From Pinelis [2020, Theorem547

1.2] we have548

Γpa, xq ă
xae´x

x´ a

ùñ 1F1p1, a` 1, xq ě exax´aΓpaq ´
a

x´ a
.

Applying this to the mixture yields549

MEB
t ě

Cpτqeτ`Vt`St

pτ ` Vt ` Stq
τ`Vt

Γ pτ ` Vtq ´
Cpτq

St

ě
Cpτqeτ`Vt`St

pτ ` Vt ` Stq
τ`Vt

Γ pτ ` Vtq ´ 1, p:q

where p:q follows from the self-imposed constraint St ě Cpτq. This yields crossing boundary550

α´1 “
Cpτqeτ`Vt`St

pτ ` Vt ` Stq
τ`Vt

Γ pτ ` Vtq ´ 1,

eτ`Vt`St

´

1 ` St

τ`Vt

¯τ`Vt
“

˜

pτ ` Vtq
τ`Vt

Γ pτ ` Vtq

¸

ˆ

1 ` α´1

Cpτq

˙

.
“

˜

pτ ` Vtq
τ`Vt

Γ pτ ` Vtq

¸

ϕtpτ, αq,

e1`
St

τ`Vt

´

1 ` St

τ`Vt

¯ “

˜

pτ ` Vtq
τ`Vt

Γ pτ ` Vtq

¸
1

τ`Vt

ϕtpτ, αq
1

τ`Vt
.
“ zt,

St “ pτ ` Vtq
`

´1 ´W´1

`

´z´1
t

˘˘

.

Chatzigeorgiou [2013, Theorem 1] states551

W´1p´e´u´1q P ´1 ´
?
2u`

„

´u,´
2

3
u

ȷ

ùñ ´1 ´W´1p´e´u´1q P
?
2u`

„

2

3
u, u

ȷ

.
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Substituting yields552

pτ ` Vtq
`

´1 ´W´1

`

´z´1
t

˘˘

ď pτ ` Vtq

ˆ
c

2 log
´ zt
e1

¯

` log
´ zt
e1

¯

˙

. (19)

From Feller [1958, Equation (9.8)] we have553

Γp1 ` nq P
?
2πn

´ n

e1

¯n ”

e
1

12n`1 , e
1

12n

ı

ùñ

˜

pτ ` Vtq
τ`Vt

Γ pτ ` Vtq

¸
1

τ`Vt

P

ˆ

τ ` Vt
2π

˙
1

2pτ`Vtq

e1
”

e
´ 1

12pτ`Vtq2 , e
´ 1

12pτ`Vtq2`pτ`Vtq

ı

.

Therefore554

pτ ` Vtq

c

2 log
´ zt
e1

¯

ď pτ ` Vtq

g

f

f

e2 log

˜

ˆ

τ ` Vt
2π

˙
1

2pτ`Vtq

e
´ 1

12pτ`Vtq2`pτ`Vtqϕtpτ, αq
1

τ`Vt

¸

“

g

f

f

e2 pτ ` Vtq log

˜

c

τ ` Vt
2π

e´ 1
12pτ`Vtq`1ϕtpτ, αq

¸

, (20)

and555

pτ ` Vtq log
´ zt
e1

¯

ď pτ ` Vtq log

˜

ˆ

τ ` Vt
2π

˙
1

2pτ`Vtq

e
´ 1

12pτ`Vtq2`pτ`Vtqϕtpτ, αq
1

τ`Vt

¸

“ log

˜

c

τ ` Vt
2π

e´ 1
12pτ`Vtq`1ϕtpτ, αq

¸

. (21)

Combining Equations (19) to (21) yields the crossing boundary556

St

t
“

g

f

f

e2

ˆ

pτ ` Vtq{t

t

˙

log

˜

c

τ ` Vt
2π

e´ 1
12pτ`Vtq`1

ˆ

1 ` α´1

Cpτq

˙

¸

`
1

t
log

˜

c

τ ` Vt
2π

e´ 1
12pτ`Vtq`1

ˆ

1 ` α´1

Cpτq

˙

¸

.

557

F Simulations558

F.1 i.i.d. setting559

For non-importance-weighted simulations, we use the Beta-Binomial boundary of Howard et al.
[2021] for Λt and Ξt. The curved boundary is induced by the test NSM

Wtpb; q̂t, qtq “

ş1

qt
dBeta pp; bqt, bp1 ´ qtqq

´

p
qt

¯tq̂t ´
1´p
1´qt

¯tp1´q̂tq

ş1

qt
dBeta pp; bqt, bp1 ´ qtqq

“
1

p1 ´ qtqtp1´q̂tqqtq̂tt

ˆ

Betapqt, 1, bqt ` tq̂t, bp1 ´ qtq ` tp1 ´ q̂tqq

Betapqt, 1, bqt, bp1 ´ qtqq

˙

with prior parameter b “ 1. Further documentation and details are in the reference implementation560

csnsquantile.ipynb.561

The importance-weighted simulations use the constructions from Appendix E: the reference implemen-562

tation is in csnsopquantile.ipynb for the DDRM variant and csnsopquantile-ebern.ipynb563

for the empirical Bernstein variant.564
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Figure 2: CDF bounds approaching the true CDF
when sampling i.i.d. from a Beta(6,3) distribution.
Note these bounds are simultaneously valid for
all times and values.
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Figure 8: Comparison to naive time-uniform
DKW (which is only valid in the i.i.d. setting)
for Beta distributions of varying smoothness. De-
creasing smoothness degrades our bound.
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Figure 9: CDF bounds approaching the true CDF
when sampling i.i.d. from a lognormal(0, 1) dis-
tribution. Recall these bounds are simultaneously
valid for all times and values.
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Figure 7: Demonstration of the variant described
in Section 3.3 and Appendix D.1 for distributions
with arbitrary support, based on i.i.d. sampling
from a variety of lognormal distributions. Loga-
rithmic range dependence is evident.
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Figure 10: CDF bounds approaching the true CDF
when sampling i.i.d. from a Gaussian(0, 1) distri-
bution. Recall these bounds are simultaneously
valid for all times and values.

104 103 102 101 100 0 100 101 102 103 104 105

v

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

U
t(v

)
L t

(v
)

i.i.d. Gaussian(0, 1)
Gaussian(100, 100)
Gaussian(10000, 10000)
Time uniform DKW

t = 10000

Figure 11: Demonstration of the variant described
in Section 3.3 and Appendix D.1 for distributions
with arbitrary support, based on i.i.d. sampling
from a variety of Gaussian distributions. Loga-
rithmic range dependence is evident.
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Figure 3: Nonstationary Polya simulation for two
seeds approaching different average conditional
CDFs. Bounds successfully track the true CDFs
in both cases. See Section 4.2.
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Figure 12: Maximum bound width, scaled by
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t{logptq to remove the primary trend, as a func-
tion of t, for nonstationary Polya simulations with
different γt schedules. See Section 4.2
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Figure 13: CDF bounds approaching the true
counterfactual CDF when sampling i.i.d. from a
Beta(6,3) with finite-variance importance weights,
using DDRM for the oracle confidence sequence.
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Figure 5: CDF bounds approaching the true
counterfactual CDF when sampling i.i.d. from
a Beta(6,3) with infinite-variance importance
weights, using DDRM for the oracle confidence
sequence.
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Figure 14: CDF bounds approaching the true
counterfactual CDF when sampling i.i.d. from a
Beta(6,3) with finite-variance importance weights,
using Empirical Bernstein for the oracle confi-
dence sequence.
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Figure 15: CDF bounds approaching the true
counterfactual CDF when sampling i.i.d. from
a Beta(6,3) with infinite-variance importance
weights, using Empirical Bernstein for the oracle
confidence sequence. Despite apparent conver-
gence, eventually this simulation would reset the
Empirical Bernstein oracle confidence sequence
to trivial bounds.
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