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A Proof of Theorem 11

Before giving the proof of Theorem 1, we begin with the following lemmas:2

Lemma 2. The confidence difference c(x,x′) can be equivalently expressed as3

c(x,x′) =
π+p(x)p+(x

′)− π+p+(x)p(x
′)

p(x)p(x′)
(1)

=
π−p−(x)p(x

′)− π−p(x)p−(x
′)

p(x)p(x′)
(2)

Proof. On one hand,4

c(x,x′) = p(y′ = 1|x′)− p(y = 1|x)

=
p(x′, y′ = 1)

p(x′)
− p(x, y = 1)

p(x)

=
π+p+(x

′)

p(x′)
− π+p+(x)

p(x)

=
π+p(x)p+(x

′)− π+p+(x)p(x
′)

p(x)p(x′)
.

On the other hand,5

c(x,x′) = p(y′ = 1|x′)− p(y = 1|x)
= (1− p(y′ = 0|x′))− (1− p(y = 0|x))
= p(y = 0|x)− p(y′ = 0|x′)

=
p(x, y = 0)

p(x)
− p(x′, y = 0)

p(x′)

=
π−p−(x)

p(x)
− π−p−(x

′)

p(x′)

=
π−p−(x)p(x

′)− π−p(x)p−(x
′)

p(x)p(x′)
,

which concludes the proof.6

Lemma 3. The following equations hold:7

Ep(x,x′)[(π+ − c(x,x′))ℓ(g(x),+1)] = π+Ep+(x)[ℓ(g(x),+1)], (3)

Ep(x,x′)[(π− + c(x,x′))ℓ(g(x),−1)] = π−Ep−(x)[ℓ(g(x),−1)], (4)

Ep(x,x′)[(π+ + c(x,x′))ℓ(g(x′),+1)] = π+Ep+(x′)[ℓ(g(x
′),+1)], (5)

Ep(x,x′)[(π− − c(x,x′))ℓ(g(x′),−1)] = π−Ep−(x′)[ℓ(g(x
′),−1)]. (6)
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Proof. Firstly, the proof of Eq. (3) is given:8

Ep(x,x′)[(π+ − c(x,x′))ℓ(g(x),+1)]

=

∫ ∫
π+p(x)p(x

′)− π+p(x)p+(x
′) + π+p+(x)p(x

′)

p(x)p(x′)
ℓ(g(x),+1)p(x,x′) dx dx′

=

∫ ∫
(π+p(x)p(x

′)− π+p(x)p+(x
′) + π+p+(x)p(x

′))ℓ(g(x),+1) dx dx′

=

∫
π+p(x)ℓ(g(x),+1) dx

∫
p(x′) dx′ −

∫
π+p(x)ℓ(g(x),+1) dx

∫
p+(x

′) dx′

+

∫
π+p+(x)ℓ(g(x),+1) dx

∫
p(x′) dx′

=

∫
π+p(x)ℓ(g(x),+1) dx−

∫
π+p(x)ℓ(g(x),+1) dx+

∫
π+p+(x)ℓ(g(x),+1) dx

=

∫
π+p+(x)ℓ(g(x),+1) dx

=π+Ep+(x)[ℓ(g(x),+1)].

After that, the proof of Eq. (4) is given:9

Ep(x,x′)[(π− + c(x,x′))ℓ(g(x),−1)]

=

∫ ∫
π−p(x)p(x

′) + π−p−(x)p(x
′)− π−p(x)p−(x

′)

p(x)p(x′)
ℓ(g(x),−1)p(x,x′) dx dx′

=

∫ ∫
(π−p(x)p(x

′) + π−p−(x)p(x
′)− π−p(x)p−(x

′))ℓ(g(x),−1) dx dx′

=

∫
π−p(x)ℓ(g(x),−1) dx

∫
p(x′) dx′ +

∫
π−p−(x)ℓ(g(x),−1) dx

∫
p(x′) dx′

−
∫

π−p(x)ℓ(g(x),−1) dx

∫
p−(x

′) dx′

=

∫
π−p(x)ℓ(g(x),−1) dx+

∫
π−p−(x)ℓ(g(x),−1) dx−

∫
π−p(x)ℓ(g(x),−1) dx

=

∫
π−p−(x)ℓ(g(x),−1) dx

=π−Ep−(x)[ℓ(g(x),−1)].

It can be noticed that c(x,x′) = −c(x′,x) and p(x,x′) = p(x′,x). Therefore, it can be deduced10

naturally that Ep(x,x′)[(π+ − c(x,x′))ℓ(g(x),+1)] = Ep(x′,x)[(π+ + c(x′,x))ℓ(g(x),+1)]. Be-11

cause x and x′ are symmetric, we can swap them and deduce Eq. (5). Eq. (6) can be deduced in the12

same manner, which concludes the proof.13

Based on Lemma 3, the proof of Theorem 1 is given.14

Proof of Theorem 1. To begin with, it can be noticed that Ep+(x)[ℓ(g(x),+1)] =15

Ep+(x′)[ℓ(g(x
′),+1)] and Ep−(x)[ℓ(g(x),−1)] = Ep−(x′)[ℓ(g(x

′),−1)]. Then, by summing up all16

the equations from Eq. (3) to Eq. (6), we can get the following equation:17

Ep(x,x′)[L+(g(x), g(x
′)) + L−(g(x), g(x

′))]

= 2π+Ep+(x)[ℓ(g(x),+1)] + 2π−Ep−(x)[ℓ(g(x),−1)]

After dividing each side of the equation above by 2, we can obtain Theorem 1.18
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B Analysis on Variance of Risk Estimator19

B.1 Proof of Lemma 1 in the Main Paper20

Based on Lemma 3, it can be observed that21

Ep(x,x′)[L(x,x′)] =Ep(x,x′)[(π+ − c(x,x′))ℓ(g(x),+1) + (π− − c(x,x′))ℓ(g(x′),−1)]

=π+Ep+(x)[ℓ(g(x),+1)] + π−Ep−(x′)[ℓ(g(x
′),−1)]

=π+Ep+(x)[ℓ(g(x),+1)] + π−Ep−(x)[ℓ(g(x),−1)]

=R(g)

and22

Ep(x,x′)[L(x′,x)] =Ep(x,x′)[(π+ + c(x,x′))ℓ(g(x′),+1) + (π− + c(x,x′))ℓ(g(x),−1)]

=π−Ep−(x)[ℓ(g(x),−1)] + π+Ep+(x′)[ℓ(g(x
′),+1)]

=π−Ep−(x)[ℓ(g(x),−1)] + π+Ep+(x)[ℓ(g(x),+1)]

=R(g).

Therefore, for an arbitrary weight α ∈ [0, 1],23

R(g) =αR(g) + (1− α)R(g)

=αEp(x,x′)[L(x,x′)] + (1− α)Ep(x,x′)[L(x′,x)],

which indicates that24

1

n

n∑
i=1

(αL(xi,x
′
i) + (1− α)L(x′

i,xi))

is also an unbiased risk estimator and concludes the proof.25

B.2 Proof of Theorem 226

In this subsection, we show that Eq. (8) in the main paper achieves the minimum variance of27

S(g;α) =
1

n

n∑
i=1

(αL(xi,x
′
i) + (1− α)L(x′

i,xi))

w.r.t. any α ∈ [0, 1]. To begin with, we introduce the following notations:28

µ1 ≜ Ep(x,x′)[(
1

n

n∑
i=1

L(xi,x
′
i))

2] = Ep(x,x′)[(
1

n

n∑
i=1

L(x′
i,xi))

2],

µ2 ≜ Ep(x,x′)[
1

n2

n∑
i=1

L(xi,x
′
i)

n∑
i=1

L(x′
i,xi)]. (7)

Furthermore, according to Lemma 1 in the main paper, we have29

Ep(x,x′)[S(g;α)] = R(g).

Then, we provide the proof of Theorem 2 as follows.30

Proof of Theorem 2.
Var(S(g;α)) =Ep(x,x′)[(S(g;α)−R(g))2]

=Ep(x,x′)[S(g;α)
2]−R(g)2

=α2Ep(x,x′)[(
1

n

n∑
i=1

L(xi,x
′
i))

2] + (1− α)2Ep(x,x′)[(
1

n

n∑
i=1

L(x′
i,xi))

2]

+ 2α(1− α)Ep(x,x′)[
1

n2

n∑
i=1

L(xi,x
′
i)

n∑
i=1

L(x′
i,xi)]−R(g)2

=µ1α
2 + µ1(1− α)2 + 2µ2α(1− α)−R(g)2

=(2µ1 − 2µ2)(α− 1

2
)2 +

1

2
(µ1 + µ2)−R(g)2.
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Besides, it can be observed that31

2µ1 − 2µ2 = Ep(x,x′)[(
1

n

n∑
i=1

(L(xi,x
′
i)− L(x′

i,xi))
2] ≥ 0.

Therefore, Var(S(g;α)) achieves the minimum value when α = 1/2, which concludes the proof.32

C Proof of Theorem 333

To begin with, we give the definition of Rademacher complexity.34

Definition 1 (Rademacher complexity). Let Xn = {x1, · · ·xn} denote n i.i.d. random variables35

drawn from a probability distribution with density p(x), G = {g : X 7→ R} denote a class of36

measurable functions, and σ = (σ1, σ2, · · · , σn) denote Rademacher variables taking values from37

{+1,−1} uniformly. Then, the (expected) Rademacher complexity of G is defined as38

Rn(G) = EXnEσ

[
sup
g∈G

1

n

n∑
i=1

σig(xi)

]
. (8)

Let Dn
i.i.d.∼ p(x,x′) denote n pairs of ConfDiff data and LCD(g;xi,x

′
i) = (L(x,x′)+L(x′,x))/2,39

then we introduce the following lemma.40

Lemma 4.
R̄n(LCD ◦ G) ≤ 2LℓRn(G),

where LCD ◦ G = {LCD ◦ g|g ∈ G} and R̄n(·) is the Rademacher complexity over ConfDiff data41

pairs Dn of size n.42

Proof.

R̄n(LCD ◦ G) =EDn
Eσ[sup

g∈G

1

n

n∑
i=1

σiLCD(g;xi,x
′
i)]

=EDn
Eσ[sup

g∈G

1

2n

n∑
i=1

σi((π+ − ci)ℓ(g(xi),+1) + (π− − ci)ℓ(g(x
′
i),−1)

+ (π+ + ci)ℓ(g(x
′
i),+1) + (π− + ci)ℓ(g(xi),−1))].

Then, we can induce that43

∥∇LCD(g;xi,x
′
i)∥2

=∥∇(
(π+ − ci)ℓ(g(xi),+1) + (π− − ci)ℓ(g(x

′
i),−1)

2

+
(π+ + ci)ℓ(g(x

′
i),+1) + (π− + ci)ℓ(g(xi),−1)

2
)∥2

≤∥∇(
(π+ − ci)ℓ(g(xi),+1)

2
)∥2 + ∥∇(

(π− − ci)ℓ(g(x
′
i),−1)

2
)∥2

+ ∥∇(
(π+ + ci)ℓ(g(x

′
i),+1)

2
)∥2 + ∥∇(

(π− + ci)ℓ(g(xi),−1)

2
)∥2

≤|π+ − ci|Lℓ

2
+

|π− − ci|Lℓ

2
+

|π+ + ci|Lℓ

2
+

|π− + ci|Lℓ

2
. (9)

Suppose π+ ≥ π−, the value of RHS of Eq. (9) can be determined as follows: when ci ∈ [−1,−π+),44

the value is −2ciLℓ; when ci ∈ [−π+,−π−), the value is (π+ − ci)Lℓ; when ci ∈ [−π−, π−), the45

value is Lℓ; when ci ∈ [π−, π+), the value is (π+ + ci)Lℓ; when ci ∈ [π+, 1], the value is 2ciLℓ.46

To sum up, when π+ ≥ π−, the value of RHS of Eq. (9) is less than 2Lℓ. When π+ ≤ π−, we can47
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deduce that the value of RHS of Eq. (9) is less than 2Lℓ in the same way. Therefore,48

R̄n(LCD ◦ G) ≤2LℓEDn
Eσ[sup

g∈G

1

n

n∑
i=1

σig(xi)]

=2LℓEXnEσ[sup
g∈G

1

n

n∑
i=1

σig(xi)]

=2LℓRn(G),
which concludes the proof.49

After that, we introduce the following lemma.50

Lemma 5. The inequality below hold with probability at least 1− δ:51

sup
g∈G

|R(g)− R̂CD(g)| ≤ 4LℓRn(G) + 2Cℓ

√
ln 2/δ

2n
.

Proof. To begin with, we introduce Φ = supg∈G(R(g) − R̂CD(g)) and Φ̄ = supg∈G(R(g) −52 ̂̄RCD(g)), where R̂CD(g) and ̂̄RCD(g) denote the empirical risk over two sets of training examples53

with exactly one different point {(xi,x
′
i), ci} and {(x̄i, x̄

′
i), c(x̄i, x̄

′
i)} respectively. Then we have54

Φ̄− Φ ≤ sup
g∈G

(R̂CD(g)− ̂̄RCD(g))

≤ sup
g∈G

(
LCD(g;xi,x

′
i)− LCD(g; x̄i, x̄

′
i)

n
)

≤ 2Cℓ

n
.

Accordingly, Φ−Φ̄ can be bounded in the same way. The following inequalities holds with probability55

at least 1− δ/2 by applying McDiarmid’s inequality:56

sup
g∈G

(R(g)− R̂CD(g)) ≤ EDn
[sup
g∈G

(R(g)− R̂CD(g))] + 2Cℓ

√
ln 2/δ

2n
,

Furthermore, we can bound EDn [supg∈G(R(g) − R̂CD(g))] with Rademacher complexity. It is a57

routine work to show by symmetrization [16] that58

EDn [sup
g∈G

(R(g)− R̂CD(g))] ≤ 2R̄n(LCD ◦ G) ≤ 4LℓRn(G),

where the second inequality is from Lemma 4. Accordingly, supg∈G(R̂CD(g)−R(g)) has the same59

bound. By using the union bound, the following inequality holds with probability at least 1− δ:60

sup
g∈G

|R(g)− R̂CD(g)| ≤ 4LℓRn(G) + 2Cℓ

√
ln 2/δ

2n
,

which concludes the proof.61

Finally, the proof of Theorem 3 is provided.62

Proof of Theorem 3.

R(ĝCD)−R(g∗) = (R(ĝCD)− R̂CD(ĝCD)) + (R̂CD(ĝCD)− R̂CD(g
∗)) + (R̂CD(g

∗)−R(g∗))

≤ (R(ĝCD)− R̂CD(ĝCD)) + (R̂CD(g
∗)−R(g∗))

≤ |R(ĝCD)− R̂CD(ĝCD)|+
∣∣∣R̂CD(g

∗)−R(g∗)
∣∣∣

≤ 2 sup
g∈G

|R(g)− R̂CD(g)|

≤ 8LℓRn(G) + 4Cℓ

√
ln 2/δ

2n
.
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The first inequality is derived because ĝCD is the minimizer of R̂CD(g). The last inequality is derived63

according to Lemma 5, which concludes the proof.64

D Proof of Theorem 465

To begin with, we provide the following inequality:66

sup
g∈G

|R̄CD(g)− R̂CD(g)|

=
1

2n
|

n∑
i=1

((π̄+ − π+ + ci − c̄i)ℓ(g(xi),+1) + (π̄− − π− + ci − c̄i)ℓ(g(x
′
i),−1)

+ (π̄+ − π+ + c̄i − ci)ℓ(g(x
′
i),+1) + (π̄− − π− + c̄i − ci)ℓ(g(xi),−1))|

≤ 1

2n

n∑
i=1

(|(π̄+ − π+ + ci − c̄i)ℓ(g(xi),+1)|+ |(π̄− − π− + ci − c̄i)ℓ(g(x
′
i),−1)|

+ |(π̄+ − π+ + c̄i − ci)ℓ(g(x
′
i),+1)|+ |(π̄− − π− + c̄i − ci)ℓ(g(xi),−1)|)

=
1

2n

n∑
i=1

(|π̄+ − π+ + ci − c̄i|ℓ(g(xi),+1) + |π̄− − π− + ci − c̄i|ℓ(g(x′
i),−1)

+ |π̄+ − π+ + c̄i − ci|ℓ(g(x′
i),+1) + |π̄− − π− + c̄i − ci|ℓ(g(xi),−1))

≤ 1

2n

n∑
i=1

((|π̄+ − π+|+ |ci − c̄i|)ℓ(g(xi),+1) + (|π̄− − π−|+ |ci − c̄i|)ℓ(g(x′
i),−1)

+ (|π̄+ − π+|+ |c̄i − ci|)ℓ(g(x′
i),+1) + (|π̄− − π−|+ |c̄i − ci|)ℓ(g(xi),−1))

=
1

2n

n∑
i=1

((|π̄+ − π+|+ |ci − c̄i|)ℓ(g(xi),+1) + (|π+ − π̄+|+ |ci − c̄i|)ℓ(g(x′
i),−1)

+ (|π̄+ − π+|+ |c̄i − ci|)ℓ(g(x′
i),+1) + (|π+ − π̄+|+ |c̄i − ci|)ℓ(g(xi),−1))

≤
2Cℓ

∑n
i=1 |c̄i − ci|
n

+ 2Cℓ|π̄+ − π+|.

Then, we deduce the following inequality:67

R(ḡCD)−R(g∗) =(R(ḡCD)− R̂CD(ḡCD)) + (R̂CD(ḡCD)− R̄CD(ḡCD)) + (R̄CD(ḡCD)− R̄CD(ĝCD))

+ (R̄CD(ĝCD)− R̂CD(ĝCD)) + (R̂CD(ĝCD)−R(ĝCD)) + (R(ĝCD)−R(g∗))

≤2 sup
g∈G

|R(g)− R̂CD(g)|+ 2 sup
g∈G

|R̄CD(g)− R̂CD(g)|+ (R(ĝCD)−R(g∗))

≤4 sup
g∈G

|R(g)− R̂CD(g)|+ 2 sup
g∈G

|R̄CD(g)− R̂CD(g)|

≤16LℓRn(G) + 8Cℓ

√
ln 2/δ

2n
+

4Cℓ

∑n
i=1 |c̄i − ci|
n

+ 4Cℓ|π̄+ − π+|.

The first inequality is derived because ḡCD is the minimizer of R̄(g). The second and third inequality68

are derived according to the proof of Theorem 3 and Lemma 5 respectively.69

E Proof of Theorem 570

To begin with, let D+
n (g) = {Dn|Â(g) ≥ 0 ∩ B̂(g) ≥ 0 ∩ Ĉ(g) ≥ 0 ∩ D̂(g) ≥ 0} and D−

n (g) =71

{Dn|Â(g) ≤ 0 ∪ B̂(g) ≤ 0 ∪ Ĉ(g) ≤ 0 ∪ D̂(g) ≤ 0}. Before giving the proof of Theorem 5, we72

give the following lemma based on the assumptions in Section 3.73

Lemma 6. The probability measure of D−
n (g) can be bounded as follows:74

P(D−
n (g)) ≤ exp (

−2a2n

C2
ℓ

) + exp (
−2b2n

C2
ℓ

) + exp (
−2c2n

C2
ℓ

) + exp (
−2d2n

C2
ℓ

). (10)
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Proof. It can be observed that75

p(Dn) = p(x1,x
′
1) · · · p(xn,x

′
n)

= p(x1) · · · p(x′
n)p(x1) · · · p(x′

n).

Therefore, the probability measure P(D−
n (g)) can be defined as follows:76

P(D−
n (g)) =

∫
Dn∈D−

n (g)

p(Dn) dDn

=

∫
Dn∈D−

n (g)

p(Dn) dx1 · · · dxn dx
′
1 · · · dx′

n.

When exactly one ConfDiff data pair in Sn is replaced, the change of Â(g), B̂(g), Ĉ(g) and D̂(g)77

will be no more than Cℓ/n. By applying McDiarmid’s inequality, we can obtain the following78

inequalities:79

P(E[Â(g)]− Â(g) ≥ a) ≤ exp (
−2a2n

C2
ℓ

),

P(E[B̂(g)]− B̂(g) ≥ b) ≤ exp (
−2b2n

C2
ℓ

),

P(E[Ĉ(g)]− Ĉ(g) ≥ c) ≤ exp (
−2c2n

C2
ℓ

),

P(E[D̂(g)]− D̂(g) ≥ d) ≤ exp (
−2d2n

C2
ℓ

).

Furthermore,80

P(D−
n (g)) ≤P(Â(g) ≤ 0) + P(B̂(g) ≤ 0) + P(Ĉ(g) ≤ 0) + P(D̂(g) ≤ 0)

≤P(Â(g) ≤ E[Â(g)]− a) + P(B̂(g) ≤ E[B̂(g)]− b)

+ P(Ĉ(g) ≤ E[Ĉ(g)]− c) + P(D̂(g) ≤ E[D̂(g)]− d)

=P(E[Â(g)]− Â(g) ≥ a) + P(E[B̂(g)]− B̂(g) ≥ b)

+ P(E[Ĉ(g)]− Ĉ(g) ≥ c) + P(E[D̂(g)]− D̂(g) ≥ d)

≤ exp (
−2a2n

C2
ℓ

) + exp (
−2b2n

C2
ℓ

) + exp (
−2c2n

C2
ℓ

) + exp (
−2d2n

C2
ℓ

),

which concludes the proof.81

Then, the proof of Theorem 5 is given.82

Proof of Theorem 5. To begin with, we prove the first inequality in Theorem 5.83

E[R̃CD(g)]−R(g)

=E[R̃CD(g)− R̂CD(g)]

=

∫
Dn∈D+

n (g)

(R̃CD(g)− R̂CD(g))p(Dn) dDn

+

∫
Dn∈D−

n (g)

(R̃CD(g)− R̂CD(g))p(Dn) dDn

=

∫
Dn∈D−

n (g)

(R̃CD(g)− R̂CD(g))p(Dn) dDn ≥ 0,

7



where the last inequality is derived because R̃CD(g) is an upper bound of R̂CD(g). Furthermore,84

E[R̃CD(g)]−R(g)

=

∫
Dn∈D−

n (g)

(R̃CD(g)− R̂CD(g))p(Dn) dDn

≤ sup
Dn∈D−

n (g)

(R̃CD(g)− R̂CD(g))

∫
Dn∈D−

n (g)

p(Dn) dDn

= sup
Dn∈D−

n (g)

(R̃CD(g)− R̂CD(g))P(D−
n (g))

= sup
Dn∈D−

n (g)

(f(Â(g)) + f(B̂(g)) + f(Ĉ(g)) + f(D̂(g))

− Â(g)− B̂(g)− Ĉ(g)− D̂(g))P(D−
n (g))

≤ sup
Dn∈D−

n (g)

(Lf |Â(g)|+ Lf |B̂(g)|+ Lf |Ĉ(g)|+ Lf |D̂(g)|

+ |Â(g)|+ |B̂(g)|+ |Ĉ(g)|+ |D̂(g)|)P(D−
n (g)

= sup
Dn∈D−

n (g)

Lf + 1

2n
(|

n∑
i=1

(π+ − ci)ℓ(g(xi),+1)|+ |
n∑

i=1

(π− − ci)ℓ(g(x
′
i),−1)|

+ |
n∑

i=1

(π+ + ci)ℓ(g(x
′
i),+1)|+ |

n∑
i=1

(π− + ci)ℓ(g(xi),−1)|)P(D−
n (g))

≤ sup
Dn∈D−

n (g)

Lf + 1

2n
(

n∑
i=1

|(π+ − ci)ℓ(g(xi),+1)|+
n∑

i=1

|(π− − ci)ℓ(g(x
′
i),−1)|

+

n∑
i=1

|(π+ + ci)ℓ(g(x
′
i),+1)|+

n∑
i=1

|(π− + ci)ℓ(g(xi),−1)|)P(D−
n (g))

= sup
Dn∈D−

n (g)

Lf + 1

2n

n∑
i=1

(|(π+ − ci)ℓ(g(xi),+1)|+ |(π− − ci)ℓ(g(x
′
i),−1)|

+ |(π+ + ci)ℓ(g(x
′
i),+1)|+ |(π− + ci)ℓ(g(xi),−1)|)P(D−

n (g))

≤ sup
Dn∈D−

n (g)

(Lf + 1)Cℓ

2n

n∑
i=1

(|π+ − ci|+ |π− − ci|+ |π+ + ci|+ |π− + ci|)P(D−
n (g)).

Similar to the proof of Theorem 3, we can obtain85

|π+ − ci|+ |π− − ci|+ |π+ + ci|+ |π− + ci| ≤ 4.

Therefore, we have86

E[R̃CD(g)]−R(g) ≤ 2(Lf + 1)Cℓ∆,

which concludes the proof of the first inequality in Theorem 5. Before giving the proof of the second87

inequality, we give the upper bound of |R̃CD(g) − E[R̃CD(g)]|. When exactly one ConfDiff data88

pair in Dn is replaced, the change of R̃CD(g) is no more than 2CℓLf/n. By applying McDiarmid’s89

inequality, we have the following inequalities with probability at least 1− δ/2:90

R̃CD(g)− E[R̃CD(g)] ≤ 2CℓLf

√
ln 2/δ

2n
,

E[R̃CD(g)]− R̃CD(g) ≤ 2CℓLf

√
ln 2/δ

2n
.

Therefore, with probability at least 1− δ, we have91

|R̃CD(g)− E[R̃CD(g)]| ≤ 2CℓLf

√
ln 2/δ

2n
.
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Table 1: Characteristics of experimental data sets.

Data Set # Train # Test # Features # Class Labels Model

MNIST 60,000 10,000 784 10 MLP
Kuzushiji 60,000 10,000 784 10 MLP
Fashion 60,000 10,000 784 10 MLP

CIFAR-10 50,000 10,000 3,072 10 ResNet-34

Optdigits 4,495 1,125 62 10 MLP
USPS 7,437 1,861 256 10 MLP

Pendigits 8,793 2,199 16 10 MLP
Letter 16,000 4,000 16 26 MLP

Finally, we have92

|R̃CD(g)−R(g)| = |R̃CD(g)− E[R̃CD(g)] + E[R̃CD(g)]−R(g)|
≤ |R̃CD(g)− E[R̃CD(g)]|+ |E[R̃CD(g)]−R(g)|
= |R̃CD(g)− E[R̃CD(g)]|+ E[R̃CD(g)]−R(g)

≤ 2CℓLf

√
ln 2/δ

2n
+ 2(Lf + 1)Cℓ∆, (11)

with probability at least 1− δ, which concludes the proof.93

F Proof of Theorem 694

With probability at least 1− δ, we have95

R(g̃CD)−R(g∗) =(R(g̃CD)− R̃CD(g̃CD)) + (R̃CD(g̃CD)− R̃CD(ĝCD))

+ (R̃CD(ĝCD)−R(ĝCD)) + (R(ĝCD)−R(g∗))

≤|R(g̃CD)− R̃CD(g̃CD)|+ |R̃CD(ĝCD)−R(ĝCD)|+ (R(ĝCD)−R(g∗))

≤4Cℓ(Lf + 1)

√
ln 2/δ

2n
+ 4(Lf + 1)Cℓ∆+ 8LℓRn(G).

The first inequality is derived because g̃CD is the minimizer of R̃CD(g). The second inequality is96

derived from Theorem 5 and Theorem 3. The proof is completed.97

G Related Work98

Learning with pairwise comparisons has been investigated pervasively in the community [1, 2, 10, 11,99

17, 19, 23], with applications in information retrieval [15], computer vision [6], regression [21, 22],100

crowdsourcing [3, 24], and graph learning [9]. It is noteworthy that there exist distinct differences101

between our work and previous works on learning with pairwise comparisons. Previous works have102

mainly tried to learn a ranking function that can rank candidate examples according to relevance or103

preference. In this paper, we try to learn a pointwise binary classifier by conducting empirical risk104

minimization under the binary classification setting.105

H Limitations and Potential Negative Social Impacts106

H.1 Limitations107

This work focuses on binary classification problems. To generalize it to multi-class problems, we need108

to convert multi-class classification to a set of binary classification problems via the one-versus-rest109

or the one-versus-one strategies. In the future, developing methods directly handling multi-class110

classification problems is promising.111
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H.2 Potential Negative Social Impacts112

This work is within the scope of weakly supervised learning, which aims to achieve comparable113

performance while reducing labeling costs. Therefore, when this technique is very effective and114

prevalent in society, the demand for data annotations may be reduced, leading to the increasing115

unemployment rate of data annotation workers.116

I Additional Information about Experiments117

In this section, the details of experimental data sets and hyperparameters are provided.118

I.1 Details of Experimental Data Sets119

The detailed statistics and corresponding model architectures are summarized in Table 1 while the120

basic information, sources and data split details are elaborated in this subsection.121

For the four benchmark data sets,122

• MNIST [14]: It is a grayscale handwritten digits recognition data set. It is composed of 60,000123

training examples and 10,000 test examples. The original feature dimension is 28*28, and the label124

space is 0-9. The even digits are regarded as the positive class while the odd digits are regarded as125

the negative class. We sampled 15,000 unlabeled data pairs as training data. The data set can be126

downloaded from http://yann.lecun.com/exdb/mnist/.127

• Kuzushiji-MNIST [4]: It is a grayscale Japanese character recognition data set. It is composed128

of 60,000 training examples and 10,000 test examples. The original feature dimension is 28*28,129

and the label space is {‘o’, ‘su’,‘na’, ‘ma’, ‘re’, ‘ki’,‘tsu’,‘ha’, ‘ya’,‘wo’}. The positive class is130

composed of ‘o’, ‘su’,‘na’, ‘ma’, and ‘re’ while the negative class is composed of ‘ki’,‘tsu’,‘ha’,131

‘ya’, and ‘wo’. We sampled 15,000 unlabeled data pairs as training data. The data set can be132

downloaded from https://github.com/rois-codh/kmnist.133

• Fashion-MNIST [20]: It is a grayscale fashion item recognition data set. It is composed of 60,000134

training examples and 10,000 test examples. The original feature dimension is 28*28, and the135

label space is {‘T-shirt’, ‘trouser’, ‘pullover’, ‘dress’, ‘sandal’, ‘coat’, ‘shirt’, ‘sneaker’, ‘bag’,136

‘ankle boot’}. The positive class is composed of ‘T-shirt’, ‘pullover’, ‘coat’, ‘shirt’, and ‘bag’137

while the negative class is composed of ‘trouser’, ‘dress’, ‘sandal’, ‘sneaker’, and ‘ankle boot’.138

We sampled 15,000 unlabeled data pairs as training data. The data set can be downloaded from139

https://github.com/zalandoresearch/fashion-mnist.140

• CIFAR-10 [13]: It is a colorful object recognition data set. It is composed of 50,000 training141

examples and 10,000 test examples. The original feature dimension is 32*32*3, and the label142

space is {‘airplane’, ‘bird’, ‘automobile’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’}. The143

positive class is composed of ‘bird’, ‘deer’, ‘dog’, ‘frog’, ‘cat’, and ‘horse’ while the negative class144

is composed of ‘airplane’, ‘automobile’, ‘ship’, and ‘truck’. We sampled 10,000 unlabeled data145

pairs as training data. The data set can be downloaded from https://www.cs.toronto.edu/146

~kriz/cifar.html.147

For the four UCI data sets, they can be downloaded from [5].148

• Optdigits, USPS, Pendigits [5]: They are handwritten digit recognition data set. The train-test split149

can be found in Table 1. The feature dimensions are 62, 256, and 16 respectively and the label space150

is 0-9. The even digits are regarded as the positive class while the odd digits are regarded as the151

negative class. We sampled 1,200, 2,000, and 2,500 unlabeled data pairs for training respectively.152

• Letter [5]: It is a letter recognition data set. It is composed of 16,000 training examples and 4,000153

test examples. The feature dimension is 16 and the label space is the 26 capital letters in the154

English alphabet. The positive class is composed of the top 13 letters while the negative class is155

composed of the latter 13 letters. We sampled 4,000 unlabeled data pairs for training.156

I.2 Details of Experiments on the KuaiRec Data Set157

We used the small matrix of the KuaiRec [7] data set since it has dense confidence scores. It has158

1,411 users and 3,327 items. We clipped the watching ratio above 2 and regarded the examples159

with watching ratio greater than 2 as positive examples. Following the experimental protocol of [8],160
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we regarded the latest positive example foe each user as the positive testing data, and sampled 49161

negative testing data to form the testing set for each user. The HR and NDCG were calculated at top162

10. The learning rate was set to 1e-3 and the dropout rate was set to 0.5. The number of epochs was163

set to 50 and the batch size was set to 256. The number of MLP layers was 2 and the embedding164

dimension was 128. The hyperparameters was the same for all the approaches for a fair comparison.165

I.3 Details of Hyperparameters166

All the experiments were conducted on NVIDIA GeForce RTX 3090. The number of training epoches167

was set to 200 and we obtained the testing accuracy by averaging the results in the last 10 epoches.168

All the methods were implemented in Pytorch [18]. We used the Adam optimizer [12]. To ensure fair169

comparisons, We set the same hyperparameter values for all the compared approaches.170

For MNIST, Kuzushiji-MNIST and Fashion-MNIST, the learning rate was set to 1e-3 and the weight171

decay was set to 1e-5. The batch size was set to 256 data pairs. For training the probabilistic classifier172

to generate confidence, the batch size was set to 256 and the epoch number was set to 10.173

For CIFAR10, the learning rate was set to 5e-4 and the weight decay was set to 1e-5. The batch size174

was set to 128 data pairs. For training the probabilistic classifier to generate confidence, the batch175

size was set to 128 and the epoch number was set to 10.176

For all the UCI data sets, the learning rate was set to 1e-3 and the weight decay was set to 1e-5. The177

batch size was set to 128 data pairs. For training the probabilistic classifier to generate confidence,178

the batch size was set to 128 and the epoch number was set to 10.179

The learning rate and weight decay for training the probabilistic classifier were the same as the setting180

for each data set correspondingly.181

J More Experimental Results with Fewer Training Data182

Figure 1 shows extra experimental results with fewer training data on other data sets with different183

class priors.184
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Figure 1: Classification performance of ConfDiff-ReLU and ConfDiff-ABS given a fraction of
training data as well as Pcomp-Teacher given 100% of training data with different prior settings
(π+ = 0.2 for the first row, π+ = 0.5 for the second and the third row, and π+ = 0.8 for the fourth
and the fifth row).
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