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1 A Proof of Theorem 1

2 Before giving the proof of Theorem 1, we begin with the following lemmas:
3 Lemma 2. The confidence difference c(x,x') can be equivalently expressed as

o(x,z') = mp(@)py(¢) — mypy (z)p(x)

p(z)p(x’) M
m_p_(@)p(a’) - 7_p(@)p_(a')
- P@)p(@) @
4 Proof. On one hand,
c(z,z’) =p(y’ =1lz') —p(y = 1|x)
_pEy =1 p@y=1)
- p(=) p(x
_ T4 p4 () _ T4 p+ ()
p(x’) p(x)
. mp(@)p+(x') — mipy (T)p(2)
B p(x)p(z’) '
5 On the other hand,
c(z, @) = p(y' = 1|z') — p(y = 1|=)
=1 —p@y =0[z") — (1 —p(y = 0lz))
=p(y = Olz) — p(y" = 0lz’)
_plx,y=0) p' y=0)
) p(a’
_rp(2) Tp (@)
p(z) p(x’)
_ mp_(z)p(x') — 7_p(x)p_ (=)
p(z)p(z’) ’
6 which concludes the proof. O
7 Lemma 3. The following equations hold:
Ep@an|(m4 — c(@, ) l(g(), +1)] = 4B}, () [€(9(x), +1)], (©)
Epan[(m- + c(@, @)l(g(x), —1)] = 7_E,_ @ [l(g(z),—1)], 4
p(m az’)[(7r + c(w T ))g(g(wl)a +1)] = 7T+Ep+(m/)[€(g(w/)a +1)]» (5)
Ep@,an|(m- —c(®,@)l(g(x'), —1)] = 7_E,_ (2 [l(g(x'), —1)]. (©6)
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Proof. Firstly, the proof of Eq. (3) is given:

enl(my — c(z, 2"))l(g(x), +1)]
7 op(x)p(x’) — 7 op(x)py (2') + 7T opy (x)p(x') / /
// p(@)p(a’ l(g(z), +1)p(x, ) de dx
(z)

— [ [ @) - mp@ips @) + mops @) (@), +1) dede’
— [ mep@)ttgl@). +1)de [ @) de’ - [mp@)iol@) +1)de [ pie)de’
+ [mp@tgl@). +1) de [ pa)da
— [ mip@)tlo@). +1)de ~ [ mpe)tlg@) 1) do+ [ npi(e)ilgle) +1) de

= / mp+(x)l(g(z), +1) dz
=11 Ep, @) [0(9(@), +1)].

After that, the proof of Eq. (@) is given:

Ep(@.2n)[(m- +C(w x')l(g(x), —1)]
//ﬂ p(@)p(x’) + 7 p_(@)p(a’) — m_p(x)p_(2)
p(@)p(z’)

— [ [s@pia) + mp-@pla’) - 7-p@hp-(@)igl@). 1) deda’
~ [ m@)tlg@). -1 de [ p(e)de’ + [ 7p-(@)tloe). 1) de [ pla’)da
- [ sttt -1de [ @) da
= [ mp@)tl(e). -1z + [7p-@)g(e),~da~ [ pa)ilo(e), -1 da

:/ﬂ,pf(w)f(g(w)a_l)dw
:W,Ep_(m)[€(9($)7_1)]'

g(x), —)p(z,z’) dz dx’

It can be noticed that c(xz, ') = —c(a’, ) and p(x, x’) = p(a’, ). Therefore, it can be deduced
naturally that Ep(w ey — c(m, ") (g(x), +1)] = Ep@r z)[(74 + c(x', x))(g(x), +1)]. Be-
cause « and x’ are symmetric, we can swap them and deduce Eq. . Eq. @ can be deduced in the
same manner, which concludes the proof. O

Based on Lemma 3] the proof of Theorem 1 is given.

Proof of Theorem 1. To begin with, it can be noticed that E, (4)[l(g(x),+1)] =
By, @) [l(g(x), +1)] and E;,_ (o) [l(g(x), —1)] = E,_ (2 [¢(g(x’), —1)]. Then, by summing up all
the equations from Eq. (3) to Eq. (6), we can get the following equation:

Ep(@a) L+ (g(2), g(2")) + L (9(), g(x"))]
=21y By, (o) [l(g(m), +1)] + 27_E,_ (o) [l(g(), —1)]

After dividing each side of the equation above by 2, we can obtain Theorem 1. O
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B Analysis on Variance of Risk Estimator

B.1 Proof of Lemma 1 in the Main Paper

Based on Lemma[3] it can be observed that

Ep(m,m/)[ﬁ(w» ml)}

and

]Ep(ac,:c')[ﬁ(m/a CC)}

=R(g)

=1_E,_(a)[l(9(z),
=7T_Ep, (x) [é(g(:c),

=R(g).

Therefore, for an arbitrary weight « € [0, 1],

R(g) =aR(g)

which indicates that

+ (1= a)R(g)
=0E, (4,2 [L(x, )]

1 n
- ;(a/j(mi,m

is also an unbiased risk estimator and concludes the proof.

B.2 Proof of Theorem 2

In this subsection, we show that Eq. (8) in the main paper achieves the minimum variance of

S(g; @)

n

i=1

+ (1 —a)L(

:Ep(:c,w’) [(W-i- + C(.’B, m'))[(g(m'), +1) +
_1)] + 7T+Ep+(w/) [E(g(w’), +1)]
D]+ 7By, () [g(), +1)]

_ %Z(aﬁ(mi, ) + (1 — a)L(a)}, ;)

w.r.t. any a € [0, 1]. To begin with, we introduce the following notations:

p(x,x’) § ‘sza

Ml

Mz

(wm Z£ L, T

Ep(:l:,w’)

(EDWCRD

Furthermore, according to Lemma 1 in the main paper, we have

Ep(a:mc’) [S(g; Oz)] = R(g)
Then, we provide the proof of Theorem 2 as follows.

Proof of Theorem 2.

Var(S(

g;)) =

Ep(w,m’) [(S(g

ja) —

R(g)

)%l

:Ep(m,m’) [S(g; a)Q] - R(g)2

:OZQ]E:D(m7m/)

+2a(l — )

=(2p1 — 2p2)(

1

x,x’
Ep ) n2

1
a— =

2

1
y+3

G e
i=1

n

- am(m,m,)[(% > L@l )]

ZE T;, T
=1

=pa’® + (1 - a)® + 2M20<(1 —a)—

5

P+ po) —

.’13

’L’ml

+ (1 = a)Ep(gon[L(x', )],

n

=1

=Ep(@,a) (74 — c(@, @) l(g(x), +1) + (17— — c(z,2'))l(9(z'), —1)]
:7T+E;D+(m) [E(Q(IL’), +1)] + 71-—Epf(a:’) [f(g(il}/), _1)]
:W+EP+(93) [f(g(w), +1)] + 7r—E;IL(w) [g(g(:ll), 71)}

(m— + c(,z'))l(g(x), —1)]

)

R(g)?

(N
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Besides, it can be observed that

n

1

2M1 - 2M2 = Ep(w,m’) E Z 3317 (w ml))z] = 0.
i=1

Therefore, Var(S(g; o)) achieves the minimum value when o = 1/2, which concludes the proof. [

C Proof of Theorem 3

To begin with, we give the definition of Rademacher complexity.

Definition 1 (Rademacher complexity). Let X,, = {x1, - x,} denote n i.i.d. random variables
drawn from a probability distribution with density p(x), G = {g : X — R} denote a class of
measurable functions, and o = (01,09, - , 0,) denote Rademacher variables taking values from
{+1, —1} uniformly. Then, the (expected) Rademacher complexity of G is defined as

sup — Za,g (x;) ] . (3)

n
9€9 i=1

R (9) = Ex,Es

Let D, "~ p(x, ) denote n pairs of ConfDiff data and Lcp (g; x4, ) = (L(=x, ")+ L(x', x))/2,
then we introduce the following lemma.

Lemma 4.
S%TL(LCD o g) < QLZ%n(g),

where Lcp 0 G = {Lcp o glg € G} and R,,(+) is the Rademacher complexity over ConfDiff data
pairs D,, of size n.

Proof.

Rn(Lep ©G) =Ep, Eo[sup — ZMCD (g @i, )]

n
9€9 i=1

n

=B, Eyfsup 5= Y i((ms — )y, +1) + (- — ci)tlg(a), —1)

+ (74 +¢i)l(g(x]), +1) + (71— + c)l(g(=i), —1))].
Then, we can induce that

IVLcp(g; i, ) |2
(m+ —ci)l(g(zi), +1) + (71— — ¢;)l(g(z7), —1)

|19 !
9 2
SHV( (7T+ - Ci)zég(mi)a +1))||2 + ||V((7T_ — C%)Eég(m;)7 _1))”2
N Hv((m + Ci)fég(:v’i), —1-1))”2 N ”v((7L + Ci)fég(:vi), —1))”2
S|’]‘Dr _20i|L2 |’/T, —QCi‘LZ |7T+ -|-20i|L[ |7T, —;Ci‘L[' )

Suppose 74 > m_, the value of RHS of Eq. @ can be determined as follows: when ¢; € [—1, —m4),
the value is —2¢; Ly; when ¢; € [—7y, —7_), the value is (74 — ¢;)Ly; when ¢; € [—m_,m_), the
value is Lg; when ¢; € [r_, w4 ), the value is (74 + ¢;)Ly; when ¢; € [m4, 1], the value is 2¢; Ly.
To sum up, when 7 > 7_, the value of RHS of Eq. @I) is less than 2L,. When 7 < m_, we can
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deduce that the value of RHS of Eq. (9 is less than 2L, in the same way. Therefore,

_ 1 <&
R (Lep 0 G) <2LiEp, Eolsup — > oig(x:)
9€9 i1

1 n
=2LEx,Eglsup — » oi9(x)]
=2L,M,.(9),

which concludes the proof. O

After that, we introduce the following lemma.
Lemma 5. The inequality below hold with probability at least 1 — 6:

~ In2/6
sup |R(g) — Rep(9)] < 4LeR,(G) + 2C; / .
geG 2n

Proof. To begin with, we introduce ® = sup,cg(R(g) — I:BCD(g)) and & = sup,eg(R(g) —
Rep(g)), where Rop(g) and Rep (g) denote the empirical risk over two sets of training examples
with exactly one different point {(x;, x}), ¢;} and {(&;, &;), c(&;, T;)} respectively. Then we have
® — & < sup(Ron(9) — Ren(g))
geG
s ) — g !
Ssup(ﬁCD(g’w“wz) L‘cn(g,w“wz))
geg n
=0

n

Accordingly, ® — ® can be bounded in the same way. The following inequalities holds with probability
at least 1 — §/2 by applying McDiarmid’s inequality:

zlé;g)(R(g) ~ Ron(9)) < Ep, [ZEE(R(Q) — Rep(9)] +2C 1112211/5,

Furthermore, we can bound Ep, [sup,cg(R(g) — Rep (9))] with Rademacher complexity. It is a
routine work to show by symmetrization [[16]] that

Ep, [sgg(R(g) — Rep(9))] < 2R, (Lep 0 G) < 4LeR,(G),

where the second inequality is from Lemma Accordingly, supgeg(l/%CD (9) — R(g)) has the same
bound. By using the union bound, the following inequality holds with probability at least 1 — §:

~ In2/6
sup | Rlg) — Ren(a)] < 4L, (9) + 200 2202,
g€eg 2n
which concludes the proof. O

Finally, the proof of Theorem 3 is provided.

Proof of Theorem 3.
R(gep) — R(g%) =




63 The first inequality is derived because gcp is the minimizer of ﬁcp (9). The last inequality is derived
e+ according to Lemma 5] which concludes the proof. O

s D Proof of Theorem 4

66 To begin with, we provide the following inequality:

sup | Rep(g) — Rep(9))
geg

o S = e+ e gl +1) + (7 — 7+ — )o@, 1)

+ (7 = e = e)l(g(a), +1) + (7= — 7 + & — ¢)l(g(:), —1))|
< D (s =y 4 e = E)llg(@a), +1)| + (- — 7 + i — e)l(g(x]), ~1)|

2n
=1

F1(Fy =y 48— g, A1)+ |7 — 7+ — e)g(ws), 1))
:i’ (Fs — 7+ s — Glg(as), +1) + 7o — 7 + ¢ — Ell(g(at), ~1)
+ |;*r=+1— T4+ ¢ — ci|l(g(x)), +1) + |[7= — 7= + & — ¢;|[l(g(z;), —1))
S% i:((hw — |+ e — a)l(g(i), +1) + (17— — 71— | + |e; — &)l(g(27), —1)
+ (Ffi =il + e — al)l(g(), +1) + (17— —7—| + |&; — i) l(g(x:), —1))
:% '" (174 = 7 + e — @l l(g(@i), +1) + (|74 — 74| + | — i) e(g(2s), —1)
+ (Ei — il e — a)l(g(i), +1) + (Imy — 7| + & — i) (g (), —1))
S2(35 Yo le — il

3

+ 20@|ﬁ'+ — 7T+|.
67 Then, we deduce the following inequality:
R(gop) — R(g*) =(R(gop) — Rep(dep)) + (Rep (gep) — Rep (Gep)) + (Rep(Gep) — Rep (Go
+ (Rep(gep) — Rep(gep)) + (Rop(gep) — R(gen)) + (R(gep) — R(g))
<2sup |R(g) — Rep(9)] + 2sup|Rep(g) — Rep(9)| + (R(Gep) — R(g"))
geg geg

<4sup|R(g) — Rep(g)| + 2sup |Rep(9) — Rep(g)]
g€eg Y

/ 4 |G — e
<16L,R,.(G) + 8C, 1112271/5 + Ce Zl:ﬁ e cil +4C¢|ﬁ+ — 7y

e8 The first inequality is derived because gcp is the minimizer of R(g). The second and third inequality
so are derived according to the proof of Theorem 3 and Lemma [5|respectively. [

7o E Proof of Theorem 5

71 To begin with, let D (¢) = {Dn|A(g) > 0N B(g) > 0N C(g) > 0N D(g) > 0} and D;; (9) =
72 {Dn|A(g) <0UB(g9) <0UC(g9) <0UD(g) < 0}. Before giving the proof of Theorem 5, we
73 give the following lemma based on the assumptions in Section 3.

74 Lemma 6. The probability measure of ©,, (g) can be bounded as follows:

—2a2n) te (—2b2n) te (—2c2n) —2d%n
Xp (——s— Xp (——s—
2 Pimez Pimee

P(D,,(9)) < exp(

D))



75 Proof. It can be observed that
p(Dn) = p(z1, 1) -+ p(@n, )
= p(x1) -+ p(a;,)p(x1) - pla,).

76 Therefore, the probability measure P(D,, (g)) can be defined as follows:

P05 () = | o, PP D,

:/ p(D,)dx; - - - dx, dz) - - - dx),.
Dn€D5 (9)

77 When exactly one ConfDiff data pair in S,, is replaced, the change of A(g), B(g), C(g) and D(g)
78 will be no more than Cy/n. By applying McDiarmid’s inequality, we can obtain the following
79 inequalities:

P(E[A(g)] - A(g) > a) < exp ( q )
PEIB()] - Blo) > 1) < o (o).
PEC()] - o) > 0 < exp (o™,
FED()]) - Dlo) > ) < exp (o)

so Furthermore,

P(D; (9)) <P(A(g) < 0) +P(B(g) < 0) + P(C(g) < 0) +P(D(g) < 0)
<P(A(g) < E[A(g)] — a) + P(B(g) < E[B(g)] - b)
+P(C(g) < E[C(9)] - ¢) +P(D(g) < E[D(g)] — d)

=P(E[A(g)] -
+P(E[C(9)] — C(g) = ¢) + P(E[D(g)] — D(g) = d)
—2a2n —2b%n —2¢n —2d%n
<eXp( Cg )+eX ( Og2 )+eXp(TZ2)+eXp( CZQ )7
gt which concludes the proof. O

g2 Then, the proof of Theorem 5 is given.

83 Proof of Theorem 5. To begin with, we prove the first inequality in Theorem 5.

E[Rcp(g)] — R(g)
:E[ECD(Q) — ﬁCD(g)]

—/ (RNCD(9> — Rep (9))p(Dy,) dD,,
DD} (9)
+ / ~ (R~CD(9) - RACD (9))p(Dy,) dD,,
D, €D; (9)

_ / (Ren(g) — Ben(9))p(Dn) dDy, > 0,
Dn€D, (9)
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where the last inequality is derived because Rcp(g) is an upper bound of Rep (g). Furthermore,
E[Ren(9)] - R(g)
= [ (Renlg) ~ Ren(9))p(Dy) dD,
Dn€D7 (9)

< sw (Renlg) - Bon(9) /D IR CALES

Dn€D, (9)

= sup (Repn(9) — Ron(9)P(D;(9))
Dn€D, (9)

= sup (f(A(9)) + f(Blg)) + f(C(g)) + f(D(g))
DD (9)

— A(g) — B(g) — C(9) — D(9))B(D;, (9))
< sup (LylA(g)| + Ly|B(g)l + L¢|C(g)| + Ly D(g)]

Dn€D5 (9)
+1A(g)l + |B(g )|+|C(9)|+|D( )P, (9)
L —|—1
= sup f |Z s — ¢i)l(g(x;), +1) \+|Z — —ci)l(g(z;), —1)]
Dn€D, (9)

+| Z(m +e)l(g(ai), +1)] + | Z(?T— + ci)l(g(z:), —1))P(D,, (9))

=1

< sup Lf“D (ms — e)t(g(w:) +1\+Z| - —e)(g(a}). 1)
Dn€®r (9)

+ 37 I+ )bl +1)] + 3 [ + )y, ~D)PE@; (9))

= s ELELS((m — e, +1)]+ [~ c)(glel), 1)

Dn €95 (9) i=1

i+ eelg(a), )]+ | + ) el(an), ~ DB (9)

< s BIEUOS oy et —al i bl DB (9)
Dn€D4 (9) i=1

Similar to the proof of Theorem 3, we can obtain
[Ty —cil + - =l + |7y ol + - + o <4
Therefore, we have
E[Rcp(9)] — R(g) < 2(Ly +1)CiA,
which concludes the proof of the first inequality in Theorem 5. Before giving the proof of the second

inequality, we give the upper bound of | Rcp(g) — E[Rcp(g)]|. When exactly one ConfDiff data

pair in D, is replaced, the change of Rcp(g) is no more than 2C, L ¢ /n. By applying McDiarmid’s
inequality, we have the following inequalities with probability at least 1 — §/2:

~ In2/6
Ren(g) - BlReo(9)] < 2001/ 22,
~ ~ In2/6
ElRen(e)] - Ronlg) < 20iLyy | 222,
Therefore, with probability at least 1 — J, we have
~ ~ In2/6
Ren(9) ~ ElRen(o)]l < 2001|200
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Table 1: Characteristics of experimental data sets.

Data Set #Train #Test #Features # Class Labels Model

MNIST 60,000 10,000 784 10 MLP
Kuzushiji 60,000 10,000 784 10 MLP
Fashion 60,000 10,000 784 10 MLP
CIFAR-10 50,000 10,000 3,072 10 ResNet-34
Optdigits 4,495 1,125 62 10 MLP
USPS 7,437 1,861 256 10 MLP
Pendigits 8,793 2,199 16 10 MLP
Letter 16,000 4,000 16 26 MLP

Finally, we have

|Rep(g9) — R(9)] = [Rep(g) — E[Rep(9)] + E[Rep(9)] — R(9)]
< |Rep(g) — E[Rep(9)]| + [E[Rep(9)] — R(g)]
) — E[Rcp

=|Rop(g (9)]] + E[Rcp(9)] — R(g)
< QCgLfH / (Lf-i-l)CgA an
with probability at least 1 — §, which concludes the proof. O

F Proof of Theorem 6

With probability at least 1 — J, we have
R(gep) — R(g*) =(R(Gep) — Rep(gep)) + (Rep(Gep) — Rep(Ge))
+ (Rep(Gen) — R(gen)) + (R(Gen) — R(g"))
<|R(jcp) — Rep(fep)| + | Rep (Gop) — R(Gep)| + (R(Gep) — R(g*))

§4Cg(Lf + 1)\/ 1n22/ + 4(Lf + 1)CzA + 8L,R,, (g)

The first inequality is derived because gcp is the minimizer of RCD( g). The second inequality is
derived from Theorem 5 and Theorem 3. The proof is completed. O

G Related Work

Learning with pairwise comparisons has been investigated pervasively in the community [[1, 2} (10} |11}
17,1190 23]], with applications in information retrieval [15], computer vision [6]], regression [21} 22],
crowdsourcing [3| 24], and graph learning [9]]. It is noteworthy that there exist distinct differences
between our work and previous works on learning with pairwise comparisons. Previous works have
mainly tried to learn a ranking function that can rank candidate examples according to relevance or
preference. In this paper, we try to learn a pointwise binary classifier by conducting empirical risk
minimization under the binary classification setting.

H Limitations and Potential Negative Social Impacts

H.1 Limitations

This work focuses on binary classification problems. To generalize it to multi-class problems, we need
to convert multi-class classification to a set of binary classification problems via the one-versus-rest
or the one-versus-one strategies. In the future, developing methods directly handling multi-class
classification problems is promising.
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H.2 Potential Negative Social Impacts

This work is within the scope of weakly supervised learning, which aims to achieve comparable
performance while reducing labeling costs. Therefore, when this technique is very effective and
prevalent in society, the demand for data annotations may be reduced, leading to the increasing
unemployment rate of data annotation workers.

I

Additional Information about Experiments

In this section, the details of experimental data sets and hyperparameters are provided.

I.1 Details of Experimental Data Sets

The detailed statistics and corresponding model architectures are summarized in Table[T| while the
basic information, sources and data split details are elaborated in this subsection.

For the four benchmark data sets,

MNIST [[14]: It is a grayscale handwritten digits recognition data set. It is composed of 60,000
training examples and 10,000 test examples. The original feature dimension is 28*28, and the label
space is 0-9. The even digits are regarded as the positive class while the odd digits are regarded as
the negative class. We sampled 15,000 unlabeled data pairs as training data. The data set can be
downloaded from http://yann.lecun.com/exdb/mnist/.

Kuzushiji-MNIST [4]: It is a grayscale Japanese character recognition data set. It is composed
of 60,000 training examples and 10,000 test examples. The original feature dimension is 28*28,
and the label space is {‘0’, ‘su’,‘na’, ‘ma’, ‘re’, ‘ki’,‘tsu’,‘ha’, ‘ya’,‘wo’}. The positive class is
composed of ‘0’, ‘su’,na’, ‘ma’, and ‘re’ while the negative class is composed of ‘ki’,‘tsu’,‘ha’,
‘ya’, and ‘wo’. We sampled 15,000 unlabeled data pairs as training data. The data set can be
downloaded from https://github.com/rois-codh/kmnist,

Fashion-MNIST [20]: It is a grayscale fashion item recognition data set. It is composed of 60,000
training examples and 10,000 test examples. The original feature dimension is 28*28, and the
label space is { “T-shirt’, ‘trouser’, ‘pullover’, ‘dress’, ‘sandal’, ‘coat’, ‘shirt’, ‘sneaker’, ‘bag’,
‘ankle boot’}. The positive class is composed of ‘T-shirt’, ‘pullover’, ‘coat’, ‘shirt’, and ‘bag’
while the negative class is composed of ‘trouser’, ‘dress’, ‘sandal’, ‘sneaker’, and ‘ankle boot’.
We sampled 15,000 unlabeled data pairs as training data. The data set can be downloaded from
https://github.com/zalandoresearch/fashion-mnist,

CIFAR-10 [13]: It is a colorful object recognition data set. It is composed of 50,000 training
examples and 10,000 test examples. The original feature dimension is 32*32%*3, and the label
space is { ‘airplane’, ‘bird’, ‘automobile’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’}. The
positive class is composed of ‘bird’, ‘deer’, ‘dog’, ‘frog’, ‘cat’, and ‘horse’ while the negative class
is composed of ‘airplane’, ‘automobile’, ‘ship’, and ‘truck’. We sampled 10,000 unlabeled data
pairs as training data. The data set can be downloaded from https://www.cs.toronto.edu/
"kriz/cifar.htmll

For the four UCI data sets, they can be downloaded from [5].

Optdigits, USPS, Pendigits [5]: They are handwritten digit recognition data set. The train-test split
can be found in Table[I] The feature dimensions are 62, 256, and 16 respectively and the label space
is 0-9. The even digits are regarded as the positive class while the odd digits are regarded as the
negative class. We sampled 1,200, 2,000, and 2,500 unlabeled data pairs for training respectively.
Letter [5]: It is a letter recognition data set. It is composed of 16,000 training examples and 4,000
test examples. The feature dimension is 16 and the label space is the 26 capital letters in the
English alphabet. The positive class is composed of the top 13 letters while the negative class is
composed of the latter 13 letters. We sampled 4,000 unlabeled data pairs for training.

1.2 Details of Experiments on the KuaiRec Data Set

We used the small matrix of the KuaiRec [7]] data set since it has dense confidence scores. It has
1,411 users and 3,327 items. We clipped the watching ratio above 2 and regarded the examples
with watching ratio greater than 2 as positive examples. Following the experimental protocol of [8]],
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we regarded the latest positive example foe each user as the positive testing data, and sampled 49
negative testing data to form the testing set for each user. The HR and NDCG were calculated at top
10. The learning rate was set to le-3 and the dropout rate was set to 0.5. The number of epochs was
set to 50 and the batch size was set to 256. The number of MLP layers was 2 and the embedding
dimension was 128. The hyperparameters was the same for all the approaches for a fair comparison.

I.3 Details of Hyperparameters

All the experiments were conducted on NVIDIA GeForce RTX 3090. The number of training epoches
was set to 200 and we obtained the testing accuracy by averaging the results in the last 10 epoches.
All the methods were implemented in Pytorch [[18]. We used the Adam optimizer [[12]]. To ensure fair
comparisons, We set the same hyperparameter values for all the compared approaches.

For MNIST, Kuzushiji-MNIST and Fashion-MNIST, the learning rate was set to le-3 and the weight
decay was set to 1e-5. The batch size was set to 256 data pairs. For training the probabilistic classifier
to generate confidence, the batch size was set to 256 and the epoch number was set to 10.

For CIFAR10, the learning rate was set to Se-4 and the weight decay was set to 1e-5. The batch size
was set to 128 data pairs. For training the probabilistic classifier to generate confidence, the batch
size was set to 128 and the epoch number was set to 10.

For all the UCI data sets, the learning rate was set to 1e-3 and the weight decay was set to 1e-5. The
batch size was set to 128 data pairs. For training the probabilistic classifier to generate confidence,
the batch size was set to 128 and the epoch number was set to 10.

The learning rate and weight decay for training the probabilistic classifier were the same as the setting
for each data set correspondingly.

J More Experimental Results with Fewer Training Data

Figure[I]shows extra experimental results with fewer training data on other data sets with different
class priors.
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Figure 1: Classification performance of ConfDiff-ReL.U and ConfDiff-ABS given a fraction of
training data as well as Pcomp-Teacher given 100% of training data with different prior settings
(m4+ = 0.2 for the first row, 7 = 0.5 for the second and the third row, and 71 = 0.8 for the fourth
and the fifth row).
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