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Figure S1: Colorbars used in figures on white (left) and black (right) background.

A.1 Human Protein Atlas

We used the Human Protein Atlas v21, available under the Creative Commons Attribution-
ShareAlike 3.0 International License. For pre-training, we selected the immunofluorescence stained
images from the Human Protein Atlas (HPA), which contains data on more than 17,268 human
proteins, with information on their distribution across 44 different normal human tissues and 20
different cancer types. Example images show distribution of proteins within 2-5 cell types with
different antibody markers [1]. We extracted corresponding amino acid sequences from UniProt [2].

A.2 OpenCell

We selected the OpenCell dataset for fine tuning due to its high-quality images, consistent imaging
and cell conditions, and availability of reference images with consistent morphology. The dataset
includes a collection of 1,311 CRISPR-edited HEK293T human cell lines, each tagged with a tar-
get protein using the split-mNeonGreen2 system. For each cell line, the OpenCell imaging dataset
contains 4-5 confocal images of the tagged protein, accompanied by DNA staining to serve as a refer-
ence for nuclei morphology. While smaller in comparison to HPA, the cells were imaged while alive,
providing a more accurate representation of protein distribution within the cell than immunofluores-
cence [3]. The OpenCell dataset is available under the BSD 3-Clause License.

A.3 Amino Acid Sequence Preprocessing

In natural language contexts, ensuring input sequences are the same length is usually performed
by modifying the end of the sequence, either via truncation or end-padding [4]. This allows for
predictions with respect to a given input (i.e. a text prompt). From the perspective of protein
function, however, both the beginning and end (N and C termini) are points of interest for appending
amino acids, especially with respect to protein localization [5, 6]. As such, we augment the sequence
data as follows:

1. The amino acid sequence is tokenized using the ESM-2 tokenizer.
2. Start and end tokens are appended to the beginning and end of the sequence.
3. Cropping or padding occur based on the full sequence length, (length of amino acid se-

quence + <START> token + <END> token = 1002).

• If the full sequence length > 1002 tokens, we randomly crop 1002 tokens.
• If the full sequence length < 1002 tokens, we randomly add pad tokens before the

<START> token and/or after the <END> token (See Fig. S2).
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4. A <SEP> token is appended to the end of the protein sequence.

Figure S2: The amino acid sequence is tokenized and randomly padded via the <PAD> token. The
top row shows start and end padding. The middle row shows end padding. The bottom row shows
start-padding. All of these are possible. Note that the fixed length of 1002 means that the <SEP>
token is always placed in the 1003rd position.

A.4 Image Preprocessing

A few preprocessing steps were necessary for the image encoder. Our image processing procedure
is as follows:

1. We clip pixels beneath the .001 and above the 99.999 percentiles.

2. We normalize image values based on the calculated means and standard deviation from the
datasets:
Human Protein Atlas
Nucleus: µ = 0.0655, σ = 0.1732

Protein Image: µ = 0.0650, σ = 0.1208

OpenCell
Nucleus: µ = 0.0272, σ = 0.0486

Protein Image: µ = 0.0244, σ = 0.0671

3. We rescale the images so pixel values are between 0 and 1.

4. The median pixel value of the protein image is calculated to create the thresholded image
such that pixels ≥ median = 1 and pixels < median = 0.
Finally, we rescale images to 600× 600 and randomly crop to 256× 256 pixels.

5. Data augmentation is applied via random horizontal and vertical flips.

B Methods

B.1 Sampling

We experimented with the cosine-scheduling approach used in other works [7, 8], but we did not
see any improvement in reconstruction performance (Fig. S4). We predicted the entire image in one
step for image prediction. For amino acid sequence prediction, we predict amino acids one-by-one
from the central protein.

We also calculated the probabilities of each token for all image predictions. We kept the output logits
of the transformer. For image logits, we normalized them to 1 and fed them to the VQGAN decoder,
which performed a linear interpolation in latent space. We clipped the values between 0 and 1 and
displayed them as a heatmap (Fig. S3).

B.2 Training

We utilized 4× NVIDIA RTX 3090 TURBO 24G GPUs for this study. 2 GPUs were utilized for
training VQGANs via distributed training. Our computer also contained 2× Intel Xeon Silver and
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Figure S3: Depiction of the reconstruction scheme used to generate the predicted distribution
heatmaps. Similar to training time, we provide tokenized vectors corresponding to the amino acid
sequence and the nucleus image. Every position for the tokenized image is set to <MASK_IM> (shown
as gray squares). The output logits are saved for every position and treated as probabilities associ-
ated with each image patch. These values are scaled and sent to the threshold VQGAN decoder to
produce the final heatmap. Pixel values in the final image are clipped between 0 and 1.

8× 32768mb 2933MHz DR×4 Registered ECC DDR4 RAM. Only a single GPU is ever used to
train CELL-E 2 models. Models were implemented in Python 3.11 using Pytorch 2.0 [9].

In order to train the transformer, we underwent the following procedure (Fig. 2):

1. We tokenize the amino acid sequence using the ESM-2 dictionary. We tokenize the nucleus
image and protein threshold image using the codebook indices of the respective pre-trained
VQGANs.

2. We retrieve embeddings for the amino acid sequence from the pre-trained ESM-2 protein
language model (available under the MIT license Copyright (c) Meta Platforms, Inc. and
affiliates.) . These embeddings are frozen and never updated over the course of training.

3. We randomly mask the amino acid sequence and protein threshold image tokens. The
<SEP> and nucleus image tokens are never masked.

4. We obtain embeddings for the image tokens from embedding spaces created within the
transformer and are learned over training. These size of the embedding are set to the same
dimension as the pre-trained language embeddings. We similarly retrieve embeddings from
a separate embedding space for the <SEP> token.

5. We pass the embeddings through a positional encoder via rotary encoding [10].

6. We concatenate the embeddings along the sequence dimension and pass them through the
transformer. We calculate loss via cross-entropy only on the masked tokens.

Hyperparameters We used the following hyperparameters for our transformer model. Based on
the findings of Khwaja et al. [11], we increased the transformer depth to achieve better predictive
performance. The “Embedding Dimension“ was determined by the protein language model we used,
so we maximized the number of layers within the transformer, constrained by the VRAM capacity.
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Figure S4: Image prediction based on the number of reconstruction steps. Note the decreased distri-
bution intensity with increasing step count.
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Table S1: VQGAN Hyperparameters

Hyperparameter Value

Optimizer Adam [12]
Base Learning Rate 4.5× 10−6

Betas β1 = .5, β2 = .9
Weight Decay 0
Embedding Dimension 256
Number of Embeddings 512
Resolution 256
Number of Input Channels 1
Dropout 0
Discriminator Start 50000
Discriminator Weight .2
Codebook Weight 1.0

Table S2: Base Transformer Hyperparameters

Hyperparameter Value

Optimizer AdamW [13]
Base Learning Rate 3× 10−4

Betas β1 = .9, β2 = .95
Weight Decay .01
Number of Text Tokens 33
Text Sequence Length 1000
Embedding Dimension/Depth 480/68 or 640/55

or 1280/25 or 2560/5
Number of Heads 16
Dimension of Head 64
Attention Dropout .1
Feedforward Dropout .1
Image Loss Weight 1
Condition Loss Weight 1

Table S3: CELL-E 2 Model Parameters per Size

Embedding Dimension/Depth # of Params

480/68 536 M
640/55 744 M

1280/25 1.46 B
2560/5 3.47 B

C Results

C.1 Image Prediction Accuracy

Table S4 shows the image prediction performance of HPA and OpenCell-trained across both datasets
and splits. We evaluate image reconstruction using the following metrics:

Nucleus Proportion MAPE This metric measures how well the predicted protein image matches
the ground truth in terms of the fraction of intensity within the nucleus. We use Cellpose [14] to
create a mask of the nucleus channel. Then we divide the sum of the predicted 2D PDF pixels inside
the mask by the sum of all pixels in the image. We do the same for the ground truth protein image
and compare the two fractions. The error is expressed as a percentage of the ground truth fraction.

Image MAE This metric calculates the average absolute difference between each pixel in the
predicted protein threshold image and the ground truth protein threshold image. A lower MAE
means a better match.
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Figure S5: More randomly selected predictions from HPA Finetuned HPA VQGAN_480. We only
note an incorrect prediction in Eukaryotic translation initiation factor 5.

PDF MAE This metric is similar to Image MAE, except we evaluate the difference using the
predicted 2D PDF, rather than the predicted protein threshold image. We expect this number to
be less accurate as tokens with less confidence will reduce the pixel value, while all values in the
protein threshold image are 0 or 1.

SSIM Structural similarity index measure (SSIM) is a metric that evaluates how similar two im-
ages are in terms of local features such as brightness and contrast. It takes into account the spatial
relationships between neighboring pixels. SSIM values range from 0, meaning no similarity, to 1,
meaning perfect similarity.
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Table S4: Image Prediction Accuracy Across OpenCell and HPA

Training Set Proteins

Dataset Train Set Hidden Size Depth Nucleus Proportion MAPE Image MAE PDF MAE SSIM FID IS

480 68 .0254 ± .0296 .3344 ± .0797 .2845 ± .0991 .2635 ± .1797 11.4596 2.3151 ± .0224
HPA 640 55 .0291 ± .0318 .3286 ± .0808 .2843 ± .0996 .2827 ± .1836 21.0591 2.2879 ± .0153

1280 25 .0356 ± .0341 .3640 ± .0797 .2942 ± .0973 .2673 ± .1862 1.0080 2.5634 ± .0192
2560 5 .0788 ± .0773 .3530 ± .0795 .3097 ± .0904 .2569 ± .1636 22.8721 2.1817 ± .0166

HPA
480 68 .0244 ± .0317 .4620 ± .0769 .3530 ± .0803 .0865 ± .0714 4.1290 2.7063 ± .0146

OpenCell 640 55 .0247 ± .0285 .4676 ± .0778 .3572 ± .0781 .0800 ± .0674 37.6196 2.4858 ± .0169
1280 25 .0368 ± .0321 .4678 ± .0776 .3835 ± .0659 .0712 ± .0518 21.3462 1.5207 ± .0020
2560 5 .0706 ± .0737 .4678 ± .0777 .3474 ± .0797 .1041 ± .0725 14.4177 1.7531 ± .0109

480 68 .0184 ± .0177 .4138 ± .0573 .3699 ± .1262 .1388 ± .1206 3.7217 2.3090 ± .0548
HPA 640 55 .0183 ± .0166 .4087 ± .0579 .3835 ± .1191 .1230 ± .1128 3.5440 2.0354 ± .0998

1280 25 .0219 ± .0202 .4358 ± .0588 .3659 ± .1141 .1225 ± .1198 7.1451 2.1888 ± .0776
2560 5 .0460 ± .0418 .4164 ± .0693 .3905 ± .0962 .0984 ± .0870 7.5480 2.0104 ± .0519

OpenCell
480 68 .0134 ± .0131 .4930 ± .0074 .3264 ± .1108 .1620 ± .1429 .8923 3.0345 ± .1000

OpenCell 640 55 .0141 ± .0124 .4994 ± .0006 .3473 ± .0995 .1291 ± .1195 2.8314 2.3160 ± .0702
1280 25 .0277 ± .0230 .4996 ± .0007 .4276 ± .0707 .0743 ± .0518 9.3420 1.3759 ± .0213
2560 5 .0567 ± .0479 .4996 ± .0006 .4037 ± .0877 .0927 ± .0681 9.8328 1.4463 ± .0260

Validation Set Proteins
Dataset Train Set Hidden Size Depth Nucleus Proportion MAPE Image MAE PDF MAE SSIM FID IS

480 68 .0257 ± .0250 .3340 ± .0788 .2846 ± .0985 .2633 ± .1781 12.0332 2.2900 ± .0410
HPA 640 55 .0294 ± .0278 .3283 ± .0805 .2842 ± .0991 .2826 ± .1827 21.7942 2.2618 ± .0364

1280 25 .0370 ± .0360 .3622 ± .0799 .2967 ± .0985 .2645 ± .1857 1.5161 2.5440 ± .0490
2560 5 .0818 ± .0794 .3516 ± .0792 .3104 ± .0904 .2558 ± .1619 23.7977 2.1578 ± .0290

HPA
480 68 .0245 ± .0235 .4622 ± .0767 .3533 ± .0803 .0861 ± .0718 41.5344 2.6712 ± .0225

OpenCell 640 55 .0248 ± .0231 .4676 ± .0776 .3575 ± .0783 .0795 ± .0681 38.3386 2.4850 ± .0381
1280 25 .0371 ± .0343 .4678 ± .0775 .3833 ± .0661 .0713 ± .0525 21.6973 1.5206 ± .0152
2560 5 .0717 ± .0722 .4678 ± .0776 .3474 ± .0796 .1038 ± .0731 14.7231 1.7524 ± .0160

480 68 .0181 ± .0168 .4154 ± .0594 .3887 ± .1270 .1250 ± .1149 3.9509 2.1739 ± .1255
HPA 640 55 .0178 ± .0165 .4058 ± .0574 .3651 ± .1197 .1359 ± .1183 3.0867 2.1508 ± .0384

1280 25 .0227 ± .0213 .4323 ± .0581 .3886 ± .1128 .1051 ± .1140 1.4713 2.0247 ± .1003
2560 5 .0487 ± .0453 .4202 ± .0722 .4049 ± .0870 .0874 ± .0792 9.1799 1.9269 ± .0768

OpenCell
480 68 .0161 ± .0148 .4953 ± .0064 .3620 ± .1168 .1220 ± .1188 1.5844 2.6069 ± .1175

OpenCell 640 55 .0159 ± .0136 .4995 ± .0006 .3785 ± .1008 .1011 ± .1012 2.6966 2.0974 ± .0981
1280 25 .0272 ± .0223 .4996 ± .0010 .4359 ± .0700 .0694 ± .0472 8.9102 1.3712 ± .0432
2560 5 .0584 ± .0511 .4996 ± .0005 .4145 ± .0889 .0890 ± .0667 9.5116 1.4176 ± .0329

IS Inception score (IS) is a metric that assesses how realistic and diverse the images generated by
a model are. It uses a pretrained neural network to classify the images and computes a score based
on how well they fit into different categories. A higher IS means more realistic and varied images.

FID Fréchet Inception Distance (FID) is another metric that compares the quality and diversity of
generated images to ground truth images. It calculates the distance between two statistical represen-
tations of the image distributions, called feature vectors, which are extracted by a pretrained neural
network. A lower FID means more similar distributions and better quality images. For this study
FID was scored against the training or validation sets when applicable.

C.2 Masked Sequence In-Filling

Table S6 shows the sequence prediction performance (predicting 15% of masked residues) of the
models shown in Table S4. We evaluate only on masked positions using the following criteria:

Sequence MAE This metric calculates the average absolute difference between each amino acid
in the predicted sequence and the ground truth sequence for the masked positions. A lower MAE
means a better match.

Cosine Similarity We evaluate cosine similarity of the amino acid embeddings. This metric mea-
sures the angle between two vectors that represent the predicted sequence and the ground truth
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HPA Model Size Comparison
Broad substrate specificity ATP-binding cassette transporter ABCG2
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Figure S6: CELL-E 2 models trained on the HPA dataset. Predictions are shown based on the
hidden size of the transformer embedding. We see the strongest performance from the 480 and 640
models. Localization is expected within the mitochondria in the selected protein. Not the heightened
intensity within the nuclear region in the 1280 and 2560 models predictions.
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OpenCell Model Size Comparison
Actin-binding protein WASF1
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Figure S7: Similar to Fig. S6, we depict the performance of CELL-E 2 models only trained on
the OpenCell dataset. We see the best performance on the 480 model, but not drastically different
predicted distribution images. This is likely a function of reduced training time due to the quick
overfitting of the model.

sequence. It ranges from -1 to 1, where 1 means the vectors are identical, 0 means they are orthog-
onal, and -1 means they are opposite. A higher cosine similarity means a more similar sequence.
Note that cosine similarity is performed on the entirety of the protein and not just masked positions.

C.3 Finetuning

Table S8 shows the image prediction performance of models across datasets after fine-tuning on the
OpenCell dataset. Table S9 shows the sequence prediction accuracy of the same models.
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Table S5: ESM-2 Masked Sequence In-Filling Accuracy (No Image)

Training Set Proteins

Dataset Hidden Size # Layers Sequence MAE Cosine Similarity

480 12 .7351 ± .1100 .9464 ± .0232
HPA 640 30 .6507 ± .1317 .9572 ± .0183

1280 33 .4921 ± .1741 .9724 ± .0133
2560 36 .3818 ± .1911 .9778 ± .0130

480 12 .7276 ± .1144 .9425 ± .0233
OpenCell 640 30 .6151 ± .1364 .9572 ± .0159

1280 33 .4335 ± .1650 .9746 ± .0082
2560 36 .3298 ± .1762 .9793 ± .0089

Validation Set Proteins

Dataset Hidden Size # Layers Sequence MAE Cosine Similarity

480 12 .7368 ± .1116 .9471 ± .0209
HPA 640 30 .6553 ± .1334 .9571 ± .0161

1280 33 .5005 ± .1705 .9723 ± .0096
2560 36 .3894 ± .1911 .9777 ± .0096

480 12 .7355 ± .1130 .9381 ± .0286
OpenCell 640 30 .6185 ± .1454 .9538 ± .0199

1280 33 .4260 ± .1822 .9737 ± .0096
2560 36 .3220 ± .1848 .9789 ± .0086

D Discussion

D.1 CELL-E Comparison

Table S10 shows the image prediction metrics for the original CELL-E model on both the HPA and
OpenCell datasets. Note that CELL-E was only trained on OpenCell data.

Table S11 depicts the mean time taken for 10 separate model predictions. CELL-E is not directly
comparable to CELL-E 2 due to differences in language model and package versioning, so we opt
to include the compute time of CELL-E 2 using an autoregressive reconstruction scheme (i.e. 256
sequential steps from top left to bottom right). CELL-E 2 model run in autoregressive mode are
significantly slower due to the lack of cache implementation found in CELL-E and the larger ESM-
2 language model compared to the TAPE model used in CELL-E. CELL-E 2 models which generate
the prediction in a single step (NAR) are an orders of magnitude faster than their autoregressive
counterparts.

D.2 De novo NLS Design

NLS generation

1. We selected a desired NLS length (iterating over a range of 5 to 30 residues) and
inserted that number of mask tokens after the starting methionine in the GFP se-
quence. (e.g. an NLS of length 5 at the N terminus would have an input sequence of
<START> M <MASK_SEQ> <MASK_SEQ> <MASK_SEQ> <MASK_SEQ>
<MASK_SEQ>SKGEE...<END> <PAD>...).

2. We randomly chose a nucleus image and segmented the nuclei area by applying a mask
with Cellpose [14]. We assigned the pixels inside the nucleus area to True and used this as
the threshold image.

3. We inputted the masked GFP sequence, the nucleus image, and the threshold image to the
transformer and sampled the output. We used the model depth that achieved the highest
performance on sequence reconstruction, which was OpenCell_2560.
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Table S6: Masked Sequence In-Filling Accuracy

Training Set Proteins

Dataset Train Set Hidden Size Depth Sequence MAE Cosine Similarity

480 68 .8548 ± .1050 .9500 ± .0260
HPA 640 55 .7738 ± .1368 .9580 ± .0238

1280 25 .5818 ± .2053 .9733 ± .0195
2560 5 .5294 ± .2402 .9732 ± .0235

HPA
480 68 .8554 ± .1047 .9504 ± .0262

OpenCell 640 55 .7806 ± .1343 .9576 ± .0239
1280 25 .6377 ± .1850 .9709 ± .0191
2560 5 .5599 ± .2294 .9721 ± .0235

480 68 .8403 ± .1102 .9463 ± .0277
HPA 640 55 .7434 ± .1356 .9557 ± .0263

1280 25 .5315 ± .1996 .9725 ± .0219
2560 5 .4760 ± .2281 .9726 ± .0266

OpenCell
480 68 .7507 ± .1709 .9533 ± .0285

OpenCell 640 55 .6641 ± .1764 .9610 ± .0272
1280 25 .5698 ± .2016 .9709 ± .0220
2560 5 .4950 ± .2456 .9711 ± .0271

Validation Set Proteins

Dataset Train Set Hidden Size Depth Sequence MAE Cosine Similarity

480 68 .8628 ± .0951 .9504 ± .0237
HPA 640 55 .7917 ± .1245 .9577 ± .0216

1280 25 .6512 ± .1794 .9708 ± .0163
2560 5 .5759 ± .2322 .9722 ± .0210

HPA
480 68 .8625 ± .0935 .9508 ± .0240

OpenCell 640 55 .7927 ± .1245 .9577 ± .0216
1280 25 .6476 ± .1811 .9711 ± .0163
2560 5 .5696 ± .2288 .9724 ± .0210

480 68 .8651 ± .0992 .9420 ± .0312
HPA 640 55 .7675 ± .1318 .9529 ± .0271

1280 25 .5910 ± .2065 .9699 ± .0213
2560 5 .5137 ± .2414 .9700 ± .0250

OpenCell
480 68 .8600 ± .1030 .9430 ± .0316

OpenCell 640 55 .7645 ± .1332 .9532 ± .0273
1280 25 .5872 ± .2060 .9703 ± .0213
2560 5 .5080 ± .2365 .9703 ± .0250

4. For each sequence length, we generated 300 candidates per length per terminus. We then
provided the HPA Finetuned (Finetuned HPA VQGAN)_480 model with the predicted
NLS + GFP sequence and the nucleus image. Using the previously calculated nucleus mask,
we calculate the percentage of positive intensity predicted within the nucleus bounds. Any
sequence with a predicted nucleus proportion intensity < 75% was discarded.

We generated candidate NLS with lengths from 2 to 30 amino acids at the N and C termini of the
protein. We ranked them using these criteria:

• Forward Consistency: The proportion of positive signal in the nucleus mask relative to the
whole image, using the best image prediction model (480 model), similar to Section 5.1.
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Table S7: Masked Sequence Random In-Filling Accuracy

Training Set Proteins

Dataset Sequence MAE Cosine Similarity

HPA .9600 ± .0274 .9502 ± .0181
OpenCell .9603 ± .0268 .9469 ± .0176

Validation Set Proteins

Dataset Sequence MAE Cosine Similarity

HPA .9605 ± .0257 .9509 ± .0157
OpenCell .9592 ± .0282 .9461 ± .0191

Finetuned Model Comparison
Glycerol-3-phosphate acyltransferase 4
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Figure S8: Various model performance from different fine tuning methods. We note superior predic-
tive performance from the model with where we initially fine-tune the image encoder.

• Image Prediction Confidence: The values from the predicted distribution using a masked
approach, indicating the confidence in the localization image prediction.
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Table S8: Image Prediction Accuracy after Finetuning on HPA and OpenCell

Training Set Proteins

Dataset Image Encoders Hidden Size Depth Nucleus Proportion MAPE Image MAE PDF MAE SSIM FID IS

HPA .0292 ± .0291 .3606 ± .0832 .3599 ± .0836 .2237 ± .1479 22.0947 2.8130 ± .0208
Opencell 480 68 .0245 ± .0317 .4680 ± .0776 .3428 ± .0833 .1047 ± .0840 23.2398 3.0922 ± .0167
HPA Finetuned .0249 ± .0289 .3755 ± .1011 .3292 ± .0848 .1406 ± .1027 8.3675 3.9647 ± .0299
HPA .0299 ± .0263 .3475 ± .0834 .3472 ± .0819 .1516 ± .1118 6.7563 2.0455 ± .0099
Opencell 640 55 .0273 ± .0254 .4518 ± .0570 .3505 ± .0778 .0900 ± .0747 31.7937 2.5763 ± .0119

HPA HPA Finetuned .0270 ± .0249 .3041 ± .0907 .3328 ± .0794 .1278 ± .0910 11.4788 2.3392 ± .0130
HPA .0448 ± .0400 .3461 ± .0820 .3350 ± .0842 .2004 ± .1364 6.8770 2.1677 ± .0096
OpenCell 1280 25 .0426 ± .0410 .4486 ± .0556 .3401 ± .0826 .1067 ± .0841 17.6565 2.7158 ± .0105
HPA Finetuned .0435 ± .0437 .3315 ± .0888 .3323 ± .0826 .1762 ± .1183 5.9633 2.2360 ± .0279
HPA .0729 ± .0655 .3844 ± .0704 .3590 ± .0792 .1793 ± .1161 12.6113 2.0646 ± .0112
OpenCell 2560 5 .0727 ± .0776 .4736 ± .0633 .3428 ± .0847 .1291 ± .0925 8.4963 2.1803 ± .0116
HPA Finetuned .0744 ± .0671 .3507 ± .0803 .3599 ± .0795 .2014 ± .1322 16.672 2.2908 ± .0156

HPA .0157 ± .0151 .3712 ± .0791 .3699 ± .0799 .2038 ± .1525 17.1616 3.0822 ± .0843
OpenCell 480 68 .0135 ± .0135 .4996 ± .0007 .3161 ± .1117 .1874 ± .1495 1.5167 3.0898 ± .1459
HPA Finetuned .0154 ± .0150 .3170 ± .1159 .3186 ± .1215 .2125 ± .1600 18.7426 3.9276 ± .1406
HPA .0165 ± .0151 .4011 ± .0667 .3439 ± .1026 .1263 ± .1063 6.0163 2.2918 ± .0533
OpenCell 640 55 .0149 ± .0136 .4732 ± .0192 .3415 ± .1054 .1356 ± .1281 4.9600 2.4016 ± .0866

OpenCell HPA Finetuned .0167 ± .0150 .3305 ± .1035 .3400 ± .1059 .1525 ± .1195 2.8065 2.7464 ± .0621
HPA .0243 ± .0224 .3817 ± .0686 .3355 ± .1065 .1546 ± .1201 3.7530 2.5043 ± .0454
OpenCell 1280 25 .0220 ± .0205 .4671 ± .0278 .3236 ± .1089 .1702 ± .1491 .5084 3.0222 ± .1054
HPA Finetuned .0254 ± .0241 .3701 ± .0838 .3581 ± .1054 .1468 ± .1156 5.2415 2.5990 ± .1403
HPA .0411 ± .0379 .4067 ± .0745 .3363 ± .1087 .1775 ± .1299 14.7029 2.4132 ± .0603
OpenCell 2560 5 .0540 ± .0492 .4977 ± .0124 .3753 ± .1089 .1630 ± .1200 26.8886 1.8080 ± .0489
HPA Finetuned .0394 ± .0359 .3710 ± .0843 .3492 ± .1032 .1727 ± .1265 15.3433 2.5426 ± .0637

Validation Set Proteins
Dataset Image Encoders Hidden Size Depth Nucleus Proportion MAPE Image MAE PDF MAE SSIM FID IS

HPA .0291 ± .0259 .3589 ± .0838 .3583 ± .0843 .2246 ± .1501 21.8254 2.8176 ± .0210
Opencell 480 68 .0245 ± .0233 .4681 ± .0774 .3430 ± .0833 .1047 ± .0853 23.9367 3.0918 ± .0519
HPA Finetuned .0249 ± .0235 .3427 ± .0908 .3292 ± .0847 .1397 ± .1047 8.7002 3.9302 ± .0716
HPA .0304 ± .0273 .3469 ± .0835 .3476 ± .0821 .1496 ± .1117 7.0875 2.0259 ± .0310
Opencell 640 55 .0276 ± .0265 .4519 ± .0567 .3502 ± .0779 .0905 ± .0759 31.8870 2.5738 ± .0402

HPA HPA Finetuned .0279 ± .0262 .3041 ± .0906 .3326 ± .0793 .1266 ± .0917 12.0062 2.3105 ± .0310
HPA .0454 ± .0434 .3462 ± .0822 .3362 ± .0847 .1984 ± .1368 6.8893 2.1656 ± .0288
Opencell 1280 25 .0433 ± .0444 .4484 ± .0560 .3400 ± .0827 .1064 ± .0848 18.1654 2.7017 ± .0460
HPA Finetuned .0430 ± .0403 .3322 ± .0882 .3320 ± .0824 .1771 ± .1162 5.9752 2.2687 ± .0112
HPA .0746 ± .0686 .3828 ± .0708 .3594 ± .0807 .1790 ± .1176 12.6199 2.0311 ± .0311
OpenCell 2560 5 .0739 ± .0755 .4730 ± .0650 .3429 ± .0854 .1289 ± .0957 8.7266 2.1980 ± .0275
HPA Finetuned .0761 ± .0697 .3510 ± .0816 .3603 ± .0810 .2003 ± .1332 16.4098 2.2785 ± .0319

HPA .0166 ± .0151 .3776 ± .0834 .3477 ± .1268 .1869 ± .1503 17.4075 2.9113 ± .1199
OpenCell 480 68 .0159 ± .0156 .4996 ± .0006 .3506 ± .1208 .1574 ± .1372 2.5026 2.7168 ± .1137
HPA Finetuned .0170 ± .0160 .3449 ± .1305 .3487 ± .1340 .1881 ± .1541 19.2683 3.6083 ± .2013
HPA .0176 ± .0155 .4028 ± .0668 .3644 ± .1004 .1060 ± .0928 7.9330 2.0560 ± .1219
OpenCell 640 55 .0170 ± .0149 .4771 ± .0201 .3684 ± .1073 .1081 ± .1121 5.1479 2.1141 ± .1304

OpenCell HPA Finetuned .0172 ± .0151 .3477 ± .1043 .3583 ± .1033 .1339 ± .1083 2.4811 2.4813 ± .1009
HPA .0258 ± .0243 .3890 ± .0709 .3572 ± .1050 .1355 ± .1092 3.7844 2.2680 ± .1109
OpenCell 1280 25 .0262 ± .0259 .4743 ± .0275 .3576 ± .1133 .1339 ± .1218 .9963 2.6376 ± .1468
HPA Finetuned .0247 ± .0234 .3599 ± .0813 .3361 ± .1078 .1645 ± .1229 4.8118 2.8837 ± .0426
HPA .0464 ± .0464 .4081 ± .0776 .3591 ± .1074 .1598 ± .1211 13.7206 2.2251 ± .1164
OpenCell 2560 5 .0594 ± .0533 .4969 ± .0121 .3928 ± .1074 .1509 ± .1135 27.7841 1.7532 ± .0837
HPA Finetuned .0446 ± .0430 .3812 ± .0885 .3709 ± .0988 .1549 ± .1193 13.4599 2.3191 ± .1147

• Text Prediction Confidence: The average probability values of the predicted NLS se-
quence tokens.

• Sequence Similarity: The maximum alignment score between the candidate NLS and
sequences from the NLSdb, similar to Madani et. al. [15].

• Embedding Cosine Angle: The minimum cosine angle between the embeddings of the
candidate NLS and sequences from the NLdb [16], using the same language model from
Section 5.2, except similarity is evaluated on the entire protein sequence (NLS + GFP),
rather than limited to the masked positions.

We rounded all values to one decimal place and ranked them by 1) Sequence Similarity, 2) Embed-
ding Cosine Similarity, 3) Forward Consistency, 4) Image Prediction Confidence, 5) Text Prediction
Confidence.
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Table S9: Masked Sequence In-Filling Accuracy after Finetuning on HPA and OpenCell

Training Set Proteins

Dataset Image Encoders Hidden Size Depth Sequence MAE Cosine Similarity

HPA .8457 ± .1102 .9507 ± .0260
OpenCell 480 68 .8442 ± .1144 .9508 ± .0259
HPA Finetuned .8498 ± .1108 .9506 ± .0259
HPA .7716 ± .1365 .9581 ± .0239
OpenCell 640 55 .7729 ± .1422 .9582 ± .0240

HPA HPA Finetuned .7755 ± .1354 .9579 ± .0239
HPA .5742 ± .2022 .9740 ± .0194
OpenCell 1280 25 .5737 ± .2155 .9738 ± .0196
HPA Finetuned .5791 ± .2071 .9736 ± .0196
HPA .5156 ± .2443 .9738 ± .0235
OpenCell 2560 5 .5177 ± .2426 .9736 ± .0236
HPA Finetuned .5128 ± .2433 .9739 ± .0236

HPA .8139 ± .1436 .9483 ± .0279
OpenCell 480 68 .7493 ± .1909 .9528 ± .0286
HPA Finetuned .8026 ± .1585 .9493 ± .0281
HPA .7339 ± .1560 .9560 ± .0267
OpenCell 640 55 .6738 ± .1964 .9599 ± .0277

OpenCell HPA Finetuned .7338 ± .1565 .9561 ± .0267
HPA .4991 ± .2176 .9738 ± .0226
OpenCell 1280 25 .3697 ± .2493 .9790 ± .0236
HPA Finetuned .4959 ± .2190 .9740 ± .0229
HPA .4510 ± .2568 .9725 ± .0273
OpenCell 2560 5 .4289 ± .2600 .9732 ± .0274
HPA Finetuned .4482 ± .2558 .9726 ± .0273

Validation Set Proteins
Dataset Image Encoders Hidden Size Depth Sequence MAE Cosine Similarity

HPA .8566 ± .1000 .9508 ± .0238
OpenCell 480 68 .8575 ± .0973 .9507 ± .0237
HPA Finetuned .8610 ± .0998 .9507 ± .0238
HPA .7920 ± .1249 .9576 ± .0217
OpenCell 640 55 .7976 ± .1243 .9574 ± .0217

HPA HPA Finetuned .7954 ± .1235 .9575 ± .0216
OpenCell 1280 25 .6434 ± .1840 .9713 ± .0163
HPA Finetuned .6446 ± .1824 .9712 ± .0163
HPA .5672 ± .2345 .9726 ± .0209
OpenCell 2560 5 .5731 ± .2313 .9723 ± .0209
HPA Finetuned .5651 ± .2329 .9727 ± .0210

HPA .8560 ± .1061 .9426 ± .0312
OpenCell 480 68 .8634 ± .1101 .9421 ± .0313
HPA Finetuned .8689 ± .1090 .9417 ± .0311
HPA .7679 ± .1340 .9529 ± .0271
OpenCell 640 55 .7829 ± .1385 .9517 ± .0276

OpenCell HPA Finetuned .7792 ± .1398 .9520 ± .0273
HPA .5955 ± .2134 .9695 ± .0218
OpenCell 1280 25 .5867 ± .2172 .9698 ± .0219
HPA Finetuned .5931 ± .2136 .9696 ± .0217
HPA .5277 ± .2565 .9686 ± .0255
OpenCell 2560 5 .5322 ± .2545 .9684 ± .0255
HPA Finetuned .5255 ± .2552 .9687 ± .0255

Table S10: Image Prediction Accuracy for CELL-E

Training Set Proteins

Dataset Hidden Size Depth Nucleus Proportion MAPE Image MAE PDF MAE SSIM FID IS

HPA 768 32 .0672 ± .0632 .3601 ± .0829 .3303 ± .0796 .2219 ± .1383 4.2355 2.1292 ± .0139
OpenCell .0377 ± .0327 .3642 ± .1150 .3600 ± .1044 .2133 ± .1825 11.3911 2.4390 ± .0625

Validation Set Proteins
Dataset Hidden Size Depth Nucleus Proportion MAPE Image MAE PDF MAE SSIM FID IS

HPA 768 32 .0786 ± .0644 .3610 ± .0816 .3308 ± .0785 .2217 ± .1371 4.1685 2.1021 ± .0371
OpenCell .0347 ± .0294 .3671 ± .1117 .3653 ± .1008 .2060 ± .1846 10.5555 2.4762 ± .0866
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Table S11: Speed Comparison

Model Hidden Size Autoregressive Mean Generation Time (s)

CELL-E (Cached) 768 Yes 18.2740 ± 0.0451
CELL-E (Non-Cached) 768 Yes 28.7694 ± 0.3207

CELL-E 2 480 Yes 55.0057 ± 0.2069
CELL-E 2 640 Yes 62.9650 ± 0.1033
CELL-E 2 1280 Yes 74.3698 ± 0.1788
CELL-E 2 2560 Yes 128.9960 ± 0.3718

CELL-E 2 480 No 0.2784 ± 0.0006
CELL-E 2 640 No 0.3067 ± 0.0012
CELL-E 2 1280 No 0.3249 ± 0.0011
CELL-E 2 2560 No 0.5487 ± 0.0022

Table S12: NLS Composition

Max ID % # Sequences Mean Sequence Length Mean % R or K

0% - 33% 109 25.6606 ± 3.0099 20.6379 ± 8.6101
33% - 66% 133 17.1955 ± 5.0804 32.0076 ± 12.8334
66% - 100% 13 6.9231 ± 1.2558 57.5794 ± 17.9351

D.3 Visualizing Attention

In Fig. S11 and Fig. 3, we depict the relative attention weights placed on the input amino acid
sequence and nucleus image used to generate the threshold prediction. Specifically, we sought to
emphasize weights correlated with positive signal, that is patches with largely white pixels. In this
way, we do not bias the weights we consider with the use of any manual feature annotations or
image segmentation. We first use attention rollout [17] to obtain the relative correlation between
tokens at the end of the network. We then take an average across the multiplied attention heads.
From here, we separate "positive" vs "negative" signal image patches based on the average intensity
within the predicted image. Positive and negative patches are those where ≥ 75% and ≤ 25% are
white, respectively. We then subtract the mean attention weights of the negative patches from the
positive patches. Those with positive differences are therefore more correlated with a positive signal
prediction in the cell. For visualization, we depict the log value of the difference (normalized to 1).

Values used to sort candidate NLS sequences are available in the de_novo_NLS_sequences.csv.

Predicted sequences are shown in Table S13.
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Input
Tokens

Inputs

Figure S9: Diagram depicts the pipeline for NLS discovery. In the top half, we predetermine the
length of the novel NLS sequence and insert the corresponding number of mask tokens either after
the starting Methionine or before the <END> token, depending on the chosen terminus. The threshold
image is obtained by passing the nucleus image through Cellpose. In the bottom half, we pass the the
GFP with proposed NLS sequence into an image prediction model to ensure predictive consistency
of the sequence.
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Figure S10: Pie charts showing the maximum # of stretches (numbers outside of circle) of R and
K amino acids per proposed NLS sequence. Stretches are calculated based on the number of con-
tinuous R and K amino acids with a maximum tolerance of 2 amino acid gap. Only streches with
4 or more amino acids are counted. Proteins are shown binned with respect to Max ID % sequence
homology with the NLSdb (0%-33%, 33%-66%, and 66%-100%). The relative proportion of max
stretches per bin is shown as a percentage inside the circle.

Figure S11: Relative attention weights of predictions from HPA_480 on HPA images with known
localization signals (highlighted in red).
Three proteins with documented localization signals show high attention on those regions: Hetero-
geneous nuclear riboprotein A1 (top left), which localizes to the nucleus and cytoplasm [18, 19];
Nucleoplasmin-2 (bottom left), which localizes to the nucleus [20]; and Mitochondrial import re-
ceptor subunit TOM22 homolog (top right), which localizes to the mitochondria [21]. However,
Calnexin (bottom right), which localizes to the endoplasmic reticulum [22], does not show high
attention on its localization signal despite the correct prediction. This may be due to the loss of sub-
cellular features in the thresholding process caused by the low resolution of the fluorescence image.
We also observe high attention on other amino acids in the sequences that are not known localization
signals. These may indicate potential sites of interest for further biological investigation.
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Table S13: NLS candidates sorted by nucleus proportion.

Terminus Sequence Terminus Sequence

N RKRRQR C SPTAFPSNVIETIRVKRRMEL
N NKRPRKKEK C EFRAKYRQMGSRKKKKSGQWSA
C RPKVI N KKHKLRSVPDLTELMRMIFLAP
C VLKRAKKD N KLLRFAGKSGMMVLLAPHSGKM
C RHKKKKIA C IFQADKDQKAHPPAKKAPSELMQ
N HRRKKR C KGKVKSIMIPPKSRKSLAKVPLS
C RSQKRK N AAGKSFKPRIKKSRMTRDSSETMA
N KCKKKN C TGNRIFGETPSWERERKRPGGGQQ
N KGKRFSK C NKLQKHSKRQPHKLQAMKLKYPTWE
C AKRLKGK C LVFPNRDASIKKPLQNPPQKRRCMIM
C SKKAKKNKM N LPKRRRLSRRKKVELEPEYGWEEEVVV
C EEKRPRF N TEAPARTAVKKSRAMKGYIARLASSPS
N MKICIT C IEKSKGKEAPKSSPPLKQNQRSRKMVK
N AVPAKRARIDG C FQVRASPKGKPATKNKLRLLKIRRHRV
C ESHHLPRAKKR C LQEGTRTRSQKAQEPKFKKVSGDIPNK
N GKERSYPPISKR N SDPNTAQYPWMPPQATKRAAMAAREAE
C KLKKRNRQPEDKK C HYKKEKRKRSASPILAEEPVPKCARTLR
C GGKFATGKKKKPKM C LDKRKRIKPPKEEQKELMRKMWGPGSSL
N PSKLLRQ N GSKKSRTATDSLESRMAMEDVAMGEESE
C QRRKGQKFQT C EGSGLVPGNSRKRPEPKKPKKRKKVRRK
C KTCPPKRPVVEW C RKKRQAIQAVTMGRIKKKSYEKQWSKFED
C DKEKKRKNDHEK C ASTVPAYSRSKAGKVEPKPKQKKTQRNAP
N FRFSC C SKQQAEINLKAAKPLETTDISLSKKEKKDM
N LQSSDKK C RRAEGLSEPKRHMAEYEQSRRRQRVVRTAT
C EMEGKKKKIKKM N PPTKKQEPQQENNSEDELRRSSSAADPEER
C LQRKQKMRSH C ANFCSGMQAHLSRDFLCL
C YGEPCIKRSS C GNKLARTEMPAVYTSIGSASKSY
C AQAKRKRIGFH C VELRNGKLKPTEESMSFKRMYGS
C DSSKKPKFTPK C EITLSGPPFGGPQVVYRPKLQRVT
C LKSGPSKSQRKN C FGGETQIIENSAKRSHLRPNMHEMI
C TTKKKKNDSCGAS C HKAQPAVIQAISVKRAVEDEPVPMAMT
C LFGKNRFPKKKKFKM C HLTSLKMGGLFVLLPIRSRQKRGSDVG
C GKKYGHKPRKLKKEK C LRDARRSASGLPRQDSEGYVGAPKRIN
N SAKRGYMLAE C LLTGFRLGIGDEKPRRAKHILTSQASK
C DYPGKGKKRKGKK C YVQSIGVEIPGKRGKSSLPSLYQMAEP
N KRVLHEAPQSAL C LKLRLRYNAPIKKLFSRK
C GPPAKFMLDV N PGPSSRYRPLEDGGPAAE
C SKQACRGKRGSK C YPNMPKPRRSKRSVAYTMM
C DSIPSSRKKRSEM N ENEMPTEFHSPKRYQPMNPNS
C IGPSSSSVEPEFKRT N PRNNKKTKMTELGLTQLAEAV
C IFVQPASDKKRKAMT N DSPKRPFVTSVEEPMSMVIMPE
C SRNRKKRKNRLRRIRKRQFH C EIIGNAKRVPEAEGLLHKYQKK
N PKRRKPMQGGE C KASKKVEDQLDAKKPKMEGKAKP
N KRALMAEPVVE C TQEKAQKKADLRGQPQRKRSKEM
C KKEKVSKRKQRRRF C KPQEVLKEIECTQKPTKKKVLDG
C VEGKGMKRSVRAV C IATATHRKRGIKHPHRRRSRPLFG
C RQRPAYNAVDI N QSNYKRQKVPPPENSEMRVAMGSEL
C TYKKLPTDKKQQQILKR C FSKKPEPTGKRPKKSSRSKFRCHRN
C FALKQDHKKAK N KRKTNQIPSKREGDQTNMADTKRQKL
N GNHKRYKMKERMGLF C FRTKPPKGKNRMSETGSFAMAVKANA
C KKWKQRIKRILPLI C TKEPKKPHKKTKMRLRRLNGNSESMSC
N ELGERPGSRKRTGRE C DWFTYAQNQAVSNAIEEHHSMLKKHKI
N SLTKAFSQMQRSQKK C DLRNRRLHLSKVEIVWYGALSKQPRTN
N LKLHSKLLEKKNKRMM C RKRRRGLDRPGYNSSTSHGDDPPTSGW
C VTLDQTKKSKTRRKHIFR C HALRKGRIELVYKQTKRSAAITSRYTLE
N DASEMLKGKLKKMKSEGLT C KRKAAEDTTEVEMSPGGDEEEKHASPSS
C GNRKAKRKDGTLDRNHRLEN C DKDNLCLKKRERLEDMGYLPKKRASAMRM
C LDANGPFKDMVKNKRAKRQC C NIKLDDPIPTDRTGEILMDARKSKIRPMM
C RDFKEPKPKRRRIRRASGAP C QSLDPKDDDSAKRPALPHPAKAIKKSRLH
C DRAVLPPPYKHQKRKEATKKKM C NPTLHAPIHFGKMRNLTPPPPPTKKKMKP
C AYKLRGVESASAPHSPIKRKEM N PRPSLAKRPRFVACKQLMLPDDPVSLHYK
N PTPPSKRQPELSLEFAKQAAREA N PPKQRRRHKTDESLFLGRPDTPSVEWKRKQ
C KKKRPGRARRRRRKKKQGELKIQH C SKSPMLAGGGEPHDPSGTESEPVSMRTHTM
C KFRGGKKRKRRTDKKTQSVTRKRRK N AEEELTVAVTTASEPAWAGMSSITEIAAKR
C VKYEPGFSRQQGRI C KKDAAAPGLVTGDEKRTAM
C RQKLSYALVEGMVD C VPPGYRDKDVKRAKPLSPSYVA
C SRAKRKAEPIVWVLA C RKSRKILCPYMRFYFEHATVGAW
C APIFVESPQSSGQNKRE C KKENTPVQLVPPSKKAARTSLISK
C KKRGRWGRIRPSYVKDKCL C SVSKRSRDLVPWSEEGFFQQAKQIQ
C LLSDSSSLQHALEPKKIQI C NVRPAIKKQIPLYDLQRQPEKMRKLINM
C NTTKPKRKQNKTIT C DFKKKRKKWLLARRMQAC
N PPSRGKKLTDNRRSKSPSPLPE N ELAREQEMSPAKRHMTWGTL
N DPGPAKKARTMTQS C PHKITEDLTQERRKRGKGGH
C NENPTVKQECKK C IGAAKKLHQPVGERASKKAMM
C KEYIKYQKKKLMM N SSTEPPADPSAPRSKIPRLATE
C MIKPAKRSKTEKPQN C LVLEKSASSVMEAPSKILKQKM
C AKKFESLAMKFQRLN C AASPLPLEPPANLGDRKKRKEAIK
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C RPTVLPKPGSRQAKKSY C HPKKKRATGWSPKKQASRKRPKWNAI
C KVEDIEPNTKKFSGKQS C KGESSGKKQTLKKVCLGHEKRTFSKA
C KRSKGKMWMKNLFPEKL C ASSKCDHNERDRSSRDKRKTSKKKGNK
C RKKKKKSRTEREPIRKRK C YFSISRTISKTRKARPRGWEGSKKSRMM
N STKRCEVERSENLDAGEM C STISSVATRRSKKEQRMPAAPSNNLPKKI
C EPVGSTKFRKRQKIRGISN N PRRRREADVETRDAAMGGEPKVLQVLHLGN
C KYRSKKAFREMRTKVGGGM C IRYMNIPQRGIPKLPRSE
C KVSDKASEQHARRKKRQSS C SFTHQDNMPSKRFNGRGRMQH
N GKHTCSNKGKRKRKLIHFKSRM C KQRAATLKQTSEESKKPRPIDLH
C DRKKDITGHGPEKKKLRKEQQK C AAPSALSREEPGLWGSMAKRTVLA
C NVDNENIDKKKKFKSVTKGKHD C TSKDQPPHKLMQRAV
C ATEGKEPVGPGSSKGRRRRRRRP N TMMAMQLARRMGPRFMRSSF
C QGIEVDSSIKGFSHKKKKRKMKM C KSKFKRQKYAGDHGLKEGDI
C RRKNKLRPARRRRLYPSKRRRRLRPN C VPAEREKNRRKRQTHLGYSMGL
C ERAATAAASTSTKEASPPASKKSYKFEF C DVMPNKKLCIVLPPKSLSDAPMQ
C DKKGRKPGRSTGVI C PLETDHMHRTWSTKIRMCVLMIT
C KRAARRSRVVAPIRSI C KLKRRGIIITGETLNESGLKKLA
C HSSGSPLEKLGRKNNRNRAS N AARKRGQAKLLERRLEWFWMMIGDML
C RTRVDGAAAASE C RQSQSISAKWKRESAASQSGEQAEMNM
N AMAGQTKRRPQRKA C QVRKRYYVRLTSEKPKIPKYQKWLYWM
N SGDGPFHQSKGKRKH C LCMDIVIEYTDARIRKKTAKFLKEINE
C WNCKRLKEKKSEHPAA C IYPGKEPPIKLNKSLKSKRESHSADMSF
N SGPPAKVQKRAPESDCR N EVSKAQRKQKPAKLPPSTTIQIASVDYE
C RHPPAEETPKAAKRKPTI N KGGRKEVEVQQRESAPLPALPSEAYEEAVE
C DKETSKDIGRGGRGKRKLDL C NMLSPSEPSYVGSTKYGKSIR
C KKKKKQRKKRKRDQGRLRKW C VHSPWMGVSSTEGLLFLPVKILKQV
C LSFERGKMKRLHKKKRKIKL C YAQEPELQSKFKAQRLTDPYFYGPH
C KGKTYYKRVRERMPKKRPLT C SRGLAWLMPTVLLCPHKPFRLRVDS
C KKREKRKQKEAKHKRRIKSMLE N RIGSIWEFVRRKEQFWLRVTAMA
C SMPKELNSLVPKKRRQGPVRQDTQ C KLLIEPYAKAKKNWISMLCSAAMGSFL
C PQSKRDGKQKDSDN C KSRNKTPPKKGLCVVTSSLKKTVTMTKS
C RGEAKKESENAKRHQ C SIFGDGKLKDARRKVPHKRRLRILFLSYC
C KEKQNITKKAKRKTHK C GSGLRRKSTKTLQQTSDMAEGKS
C DRKSNPFVFLKPKTEEM C TLIPFHALKNIFAVVALQALRVVG
C KRKDKQIAVKKYPRTKS C AALIGSASPLALLRHGVQVLSPDSYW
C KLLKTTKITKDAKYPRKH C KYKGEQTIVKQEHLGDGVVARMPT
C ARYSKSKKKFYNSKLMPH C RKEMFVRPPTHTHTVTMILRKKLKLSAS
C RGGKKKKGARAPVFGASLD C SNRHAIMSRPEYNKHEDDNKMQKYIVWM
C VDVAFVHKSPGSRKQRGRF N AGASLVMDTAGIGGSVGMRIQTKRHKVD
C RTTKKRQTRPPAPRDRRNSL N KRFMPMMSQNTIHNNPQYINARPSRFPLY
C SKLEEKKWALLSSQKHTRQG N ATAHPTSNASWEKESAHAPVKKVHRMKEP
N NKKKNKTCAAAPAAAAPTVM C REHKPAQQQAKGKEPKVPPPTGERTMGYQ
N SKKKKYPGILRVPVGQLPLAEMKSA C AAKKSRTLPETKSGGMKTVRLLEGPMDF
N PKKKRKAPAVWQAAEPAPSSMPPVE N AAATNPTRAMITLKENRKGHMMGKNKKA
N PFLLVSQLG C VDKKLPPKECMKKMIKMAISKLVAKPTK
N LLATAGIYHLL C YTSVTNFGFKAHDLDFGKFKQEPDLDYD
C HSSKHLARVL N ISFSKILMLPLMSLSTAPAMKVQHED
C RVCRKGNMFIDSSKERS N AMMAVAMMTMVAMGQFAGDTLKKRNRGE
N MMMMMMMMMKMMMMLCQTLTGQRKRG N LAIGAVEPAMAQEPMIETTMVFQVPERS
C FLRINAVHRAKGPKKIKSLPA C DGTKLLEGQFTKQSCAATILFPSHD

N AMAGLAYGQENVPPKNGQGQT
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