
NIS3D: A Completely Annotated Benchmark for
Dense 3D Nuclei Image Segmentation

Wei Zheng1, James Cheng Peng1, Zeyuan Hou1,
Boyu Lyu1, Mengfan Wang1, Xuelong Mi1

Shuoxuan Qiao1, Yinan Wan2, Guoqiang Yu1

1Dept. of Electrical and Computer Engineering, Virginia Tech
2Biozentrum, University of Basel

1{zhengw,jameschengpeng,stanhou,boyu93,mengfanw,mixl18,kevinqiao,yug}@vt.edu
2{yinan.wan}@unibas.ch

Abstract

3D segmentation of nuclei images is a fundamental task for many biological studies.1

Despite the rapid advances of large-volume 3D imaging acquisition methods and2

the emergence of sophisticated algorithms to segment the nuclei in recent years,3

a benchmark with all cells completely annotated is still missing, making it hard4

to accurately assess and further improve the performance of the algorithms. The5

existing nuclei segmentation benchmarks either worked on 2D only or annotated6

a small number of 3D cells, perhaps due to the high cost of 3D annotation for7

large-scale data. To fulfill the critical need, we constructed NIS3D, a 3D, high8

cell density, large-volume, and completely annotated Nuclei Image Segmentation9

benchmark, assisted by our newly designed semi-automatic annotation software.10

NIS3D provides more than 22,000 cells across multiple most-used species in this11

area. Each cell is labeled by three independent annotators, so we can measure the12

variability of each annotation. A confidence score is computed for each cell, allow-13

ing more nuanced testing and performance comparison. A comprehensive review14

on the methods of segmenting 3D dense nuclei was conducted. The benchmark was15

used to evaluate the performance of several selected state-of-the-art segmentation16

algorithms. The best of current methods is still far away from human-level accuracy,17

corroborating the necessity of generating such a benchmark. The testing results18

also demonstrated the strength and weakness of each method and pointed out the19

directions of further methodological development. The dataset can be downloaded20

here https://github.com/yu-lab-vt/NIS3D.21

1 Introduction22

With the rapid development of live-cell microscopic imaging and genetic fluorescent reporters,23

researchers are able to record the time-lapse 3D images of cell nuclei during the embryogenesis24

process[1]. Such data are valuable for a wide range of biological research, for instance, the mecha-25

nisms and patterns of cell differentiation, the origin and diversity of cell types, and the causes and26

consequences of developmental defects [2–7]. In these studies, a critical step is 3D embryonic cell27

nuclei image segmentation, which is the foundation of subsequent analyses including cell tracking,28

lineaging analysis, morphogenesis analysis, and morphodynamic analysis [8–10].29
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Figure 1: Examples of NIS3D benchmark. Each row represents a specific data, with columns from
left to right displaying raw data, the annotated ground truth, and the corresponding confidence score
map, respectively. Confidence scores are assigned on a four-level scale to indicate the reliability
of each annotation, from low to high: “undefined masks”, “1/3”, “2/3”, and “3/3”. These levels
are labeled by the colors deep blue, light blue, yellow, and red, respectively. It’s worth noting that
“undefined mask” indicates regions with a group of very blurry cells that annotators can’t decide their
boundaries. The detection whose majority of pixels are within the undefined masks will be ignored,
neither considered as true positive nor false positive.

Unlike other types of nuclei image data, 3D embryonic nuclei data possess distinctive characteristics,30

such as high cell density, large volumes, low signal-to-noise ratio (SNR), and a diverse range of shapes31

and intensities within the same volume, as exemplified in Figure 2. Consequently, the segmentation32

of 3D embryonic nuclei images presents great challenges. Despite the numerous 3D segmentation33

methods proposed, there is currently a lack of a widely accepted comprehensive benchmark for34

evaluating their performance. The existing benchmarks or datasets [11–16] for nuclei segmentation35

predominantly provide 2D ground truth, thereby overlooking the critical aspect of 3D analysis.36

Although some datasets [17, 18] do offer 3D annotations, they focus on the very early stages of37

embryo development, resulting in uncharacteristically low cell density and a very limited number of38

annotated cells.39

Annotating large volumes of 3D embryonic nuclei is a time-consuming and labor-intensive task40

that requires a thorough manual inspection of the data. Unlike 2D images, where objects reside on41

individual planes with relatively simple morphological structures, annotating 3D images presents42

significantly greater challenges for the following reasons: (a) In 3D image annotation, a nucleus is43

captured across multiple consecutive z-slices, resulting in 2D boundaries on each slice comprising44
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Figure 2: Left: 2D non-embryonic nuclei images [12, 13, 19]. Right: 3D embryonic nuclei images.

its surface. Consequently, annotating the same number of cells in 3D requires significantly more45

time compared to 2D labeling. (b) In dense object arrangements, portions of the cell surface can be46

parallel to the chosen visualization view and remain invisible, further complicating the annotation47

process. (c) The cell morphology and texture in 3D images exhibit far greater complexity than their48

2D counterparts, demanding annotators to adhere to higher standards when labeling nuclei accurately.49

Consequently, annotating 3D images necessitates a larger investment of human labor compared to 2D50

cases.51

To fill the gap of a completely annotated 3D embryonic cell image dataset, in this report, we present52

NIS3D, a 3D, high cell density, large-volume, and completely annotated embryonic Nuclei Image53

Segmentation benchmark. We provide examples of the benchmark in Figure 1. NIS3D provides more54

than 22,000 3D nuclei in the embryo images of zebrafish, drosophila, and mouse, which are the most55

commonly used species in the field. Each image of NIS3D is annotated by three independent well-56

trained annotators spending a total of 700+ hours. To allow more nuanced testing and performance57

comparison, a confidence score is computed for each cell to show its reliability. There are four levels58

of confidence scores in NIS3D, from the least confident score representing ambiguous annotation to59

the largest confident score indicating great consistency among all annotators.60

To be more specific, the advantages of NIS3D are as follows:61

• A good representation: NIS3D provides large-volume images of high cell densities, with62

nuclei whose signal-to-noise ratio, shape, and brightness vary with position. These properties63

make this benchmark challenging but well representative of data from real research.64

• 3D complete annotation: All cells are annotated, and all labels are 3D. Compared with65

sparse annotation or 2D annotation, NIS3D can provide a more comprehensive evaluation,66

including the evaluation of false positives.67

• Confidence score: A confidence score is computed for each cell, allowing more nuanced68

testing and performance comparison.69

• Multiple species: NIS3D contains the three most commonly used species in this field70

(zebrafish, drosophila, and Mus Musculus) to provide enough diversity.71

To facilitate the 3D annotation, we developed a semi-automatic annotation tool. It can generate a72

suggestive 3D boundary on all z-slices for the user-identified cell, without tedious labeling on each73

z-slice. The suggestive boundary can even outperform human annotation in low-quality regions, but74

annotators still have the authority and flexibility to further fine-tune unsatisfied cell boundaries. The75

tool not only significantly speeds up the annotation workflow but also reduces human bias.76
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Table 1: Existing benchmarks

Name Data Label Annotator # Complete label Sample # Year

Cell tracking challenge[14] 3D 2D 3 No 3,000+ 2014
BBBC039v1 [20] 2D 2D 1 Yes 23,000+ 2018
2018 Data Science Bowl[12] 2D 2D 1 Yes 30,000+ 2018
S-BSST265[19] 2D 2D N/A Yes 7813 2020

BBBC032v1[17] 3D 3D N/A Yes 57 2018
BBBC050[18] 3D 3D N/A Yes 1,814 2020
C.elegans[21] 3D 3D 1 Yes 15,000+ 2022

NIS3D (ours) 3D 3D 3 Yes 22,000+ 2023
*For Cell tracking challenge, we only consider the 3D embryonic data. N/A annotator number means that the work didn’t mention it.

Figure 3: Representive examples of existing benchmarks. The numbers on the left top indicate the
resolution of this data. All data shown here are the full data or z-slices from the corresponding dataset
and are not cropped. Different colors represent different ground truth labels. The over-segment and
under-segment issues in BBBC050 are indicated by white arrows.

2 Related work77

Existing benchmarks Table 1 summarizes the existing benchmarks in this field and Figure 378

shows examples of them. The cell tracking challenge is considered as the most commonly-used79

benchmark in this field, but it only provides sparse annotation for embryonic data, making the false80

positive evaluation infeasible. BBBC039v1, 2018 data science bowl, and S-BSST265 are also popular81

benchmarks providing nuclei data, but they are not embryonic and have a relatively low nuclei82

density with nuclei well separated. As a result, they cannot be used to comprehensively evaluate the83

segmentation algorithms dealing with densely packed nuclei. Moreover, all these benchmarks only84

provide 2D annotations while various biological questions require algorithms to detect the boundary85

in 3D space. It should be pointed out that BBBC032v1 and BBBC050 do provide 3D annotations86

of animal embryos of mouse and drosophila, but they are at very early developmental stages with87

two critical issues: unusually low nuclei density and small sample size. Moreover, BBBC050 is not88

initially made as a benchmark and has some quality issues. Figure 3 shows obvious under-segment89

and over-segment problems for the ground truth of BBBC050. C.elegans is a better option, but it not90

only suffers from low diversity but also has discrepancies such as incomplete or erroneous labels,91

which is hard to avoid for ground truth from only one annotator. Additional information can be found92

in the supplementary.93

Existing segmentation methods The existing segmentation methods can be classified into two94

groups: semantic segmentation and instance segmentation. Semantic segmentation assigns the95
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same label to the object of the same class. For nuclei images, it can only get foreground rather96

than individual cells. Some famous models, like ilastik[22], labkit[23], and 3D U-Net [24] belong97

to this class. Such models work well for many low cell-density data. But for embryonic data98

analysis, they are far from satisfactory, and thus instance segmentation is necessary. There are popular99

tools, such as Vaa3D[25], MorphoLibJ[26], and 3D Suite[27], providing unsupervised methods for100

instance segmentation. Those methods are easy to use but generally fail to deal with the complex101

morphological and intensity patterns of embryonic data. There are also some supervised models,102

for instance, methods proposed in recent years, like Mesmer[15], QCAnet[18], Cellpose[11], and103

StarDist [28]. Some of those methods like Mesmer can only be used for 2D images. QCAnet consists104

of two submodels, which can detect the foreground and nuclei center separately, then it uses the105

marker-based watershed to generate the segmentation result. Cellpose and StarDist are originally106

designed for 2D data, but they both make 3D extensions based on assumptions of 3D cell shape. The107

Cellpose 3D extension is still trained on 2D data, but it does 2D segmentation for xy plane, xz plane,108

and yz plane separately first, and then thresholds the average cell probability from 3 directions to109

reconstruct the 3D segmentation result. StarDist 3D extension estimates both cell probability and110

radial distance to the boundary for each pixel, then reconstructs the 3D segmentation result.111

3 NIS3D112

NIS3D collects 6 large volume embryonic nuclei images from the three most widely used species in113

the field with over 22,000+ manually annotated cells. In this section, we will give the details of data114

collection, annotation, and recommended evaluation metrics. Additional information can be found in115

the supplementary.116

3.1 Data Collection117

Zebrafish 1 (in-house dataset) Transgenic zebrafish embryos with fluorescent nuclei marker118

Tg(bactin2:H2BmCherry), inside their chorions, were embedded in 1% low melting point agarose119

prepared in E3 medium, enclosed by glass capillary before extruded into the imaging chamber. Images120

were acquired with Zeiss LightSheet 7 Microscopy, with 20x/N.A. 1.0 detection objective (additional121

optical zoom factor 0.55x) and dual-side 10x/N.A. 0.3 illumination objectives. Fluorescence was122

activated by 561nm laser and detected with LP585 filter. Time-lapse imaging was performed at123

2-minute interval from 4 to 20 hours post fertilization. Within each time interval, four 3D volumes124

were acquired with 90-degree rotation in between to achieve full-embryo multiview coverage. The125

z-stack was set to have the voxel size of 0.43 um x 0.43 um x 2.5 um, so that each cell nuclei is126

sectioned by at least 3 planes. We picked a time point in the middle of this time-lapse data. The127

nuclei in this data don’t have strong texture and the nuclei shapes are consistent, but the data suffers128

from low SNR, especially in the first 40 z-slices. The voxel size is 0.43 um x 0.43 um x 2.5 um.129

Zebrafish 2 The data are the first time-point of embryo 3 in the public dataset [7]. Zebrafish 2130

recorded the tailbud of a zebrafish in a late stage of embryo development. There is a significant amount131

of blurring within more anterior portions of the tail, which is hard even for human to distinguish the132

boundary and we use the undefined mask to mask it out. This data have very high cell density and133

small cell size. The voxel size is 1 um x 1 um x 1 um.134

Drosophila (fruit fly) 1&2 The two drosophila images are selected from [10]. Drosophila images135

are picked at time-point 20 and 50 of the brachyenteron (byn) gene reporter data. The data are136

for early Drosophila embryogenesis and the cells are large and relatively sparse. This data shows137

complicated textures within cells and bright background noise. The voxel size is 1 um x 1 um x 1 um.138

Mus musculus (mouse) 1&2 The Mus musculus data are selected from [9]. The image is picked139

at the time-point 150 and 200 of embryo 4. It was recorded during relatively late Mus musculus140

embryogenesis. The center of this image is very blurry, and we use an undefined mask to mask it.141
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This data shows various cell shapes and strong textures within cells. The voxel size is 1 um x 1 um x142

1 um.143

3.2 Data annotation144

The workflow consists of three steps: independent annotation, label fusion, and manual reviewing.145

Independent annotation We first train our annotators on how to distinguish the nuclei, noise,146

background, texture within cells, and the gap between cells for nuclei images. Then we train the147

annotator how to use PrinCut, the semi-automatic annotation tool we developed for this project.148

PrinCut can automatically generate a suggestive boundary for the user-identified cell at the surface149

with continuous positive principal curvature. The suggestive boundary is sensitive to the weak150

intensity changes that humans may ignore, which can reduce human bias in low-quality regions.151

However, principal curvature can also be over-sensitive to cell texture and insensitive to the shape152

of cells. We request the annotators to merge and split the suggestive boundaries or manually draw153

the boundary by brush until the boundaries meet the annotator’s expectations. For the region that154

annotators do believe there are cells but cannot identify the boundaries due to image quality, annotators155

will label it as an undefined mask. By the end of this step, we get three sets of independent labels for156

each image.157

Label fusion We first match the labels from different annotators, as shown in Figure 4. We consider158

labels from three annotators as matched if they have an intersection over union (IoU) greater than159

0.5 between each other. For labels that meet these criteria, we consider them to be associated with160

the same ground truth, and we calculate the boundary of this ground truth label based on the three161

matched labels (more details in supplementary). The same approach is applied to find all ground162

truths and their corresponding labels. If the ground truth is associated with x labels from different163

annotators, its confidence score is x/3. About 1.76% of labels belong to conflict labels, which usually164

means the regions in those labels are very confusing. Those labels will be further manually reviewed.165

Figure 4: The top row shows criteria for determining the labels belonging to the same ground truth,
while the bottom row shows an example for this case. The three circles row represent the three labels
from different annotators and we will calculate the Intersection over Union (IoU) between them.
"IoU<0.5" generally means that two labels belong to different ground truths. "IoU>0.5" generally
means that two labels belong to the same ground truth. The green circles in the top row represent the
labels belonging to the ground truth while the red circles represent the label unrelated to this ground
truth. For example, annotator A and annotator B created annotation for 2/3 confidence score ground
truth while annotator C didn’t create any annotation for this ground truth, and the confidence score of
this ground truth is 2/3.
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Table 2: Confidence score distribution.

Data
Score 1/3 2/3 3/3

Zebrafish 1 529 1762 10423
Zebrafish 2 1668 1745 2224

Drosophila 1 13 85 1596
Drosophila 2 1 1 488

Mus Musculus 1 N/A 369 1191
Mus Musculus 2 N/A 395 660

By the end of this step, we get a set of ground truth labels with different confidence scores and a166

group of conflict labels for each image.167

Manual reviewing For the conflict label with bad image quality, the label will be manually set168

as an undefined mask, otherwise, we pick the best candidate label as the ground truth label and set169

the confidence score as 1/3. For low-quality data, extra undefined masks are also drawn on specific170

low-quality regions. The Mus Musculus images have strong textures within cells, we manually set171

all ground truth with 1/3 confidence score to uncertain labels. Table 2 shows the distribution of the172

confidence score as a reference of human annotation variation.173

3.3 Evaluation metrics174

Choosing the correct metric that adequately reflects the biological nature is important but usually175

neglected [29]. The existing metric of the cell tracking challenge and the 2018 Data Science Bowl176

give results that are inconsistent with human intuition, thereby affecting the evaluation process. To177

address these issues, we have reformulated the evaluation metric to align more closely with our178

specific objectives. For instance, a high W-F1 score coupled with a low W-SEG score now indicates179

successful cell detection while indicating room for boundary enhancement. Similarly, a high W-IoU180

score combined with a low W-SEG score signifies accurate foreground detection, while highlighting181

potential over-segmentation or under-segmentation concerns.182

Preprocessing and truth positive criteria To initiate the process, we exclude detections where183

more than 50% of their pixels fall within the undefined mask. Then for a given detection Di, we184

determine it matches with ground truth Gj if and only if both of the two following condition holds:185

Di = argmax
Dk

IoU(Dk, Gj) Gj = argmax
Gk

IoU(Di, Gk), (1)

where Dk and Gk are all possible choices from detections and ground truth, and IoU(A,B) is the186

intersection over the union between A and B.187

Weighted precision(W-Precision), recall(W-Recall), and F1(W-F1) The weighted scores are188

based on the confidence score.189

The weighted true positive (W-TP) and false negative (W-FN) are calculated as follows:190

W-TP =
∑

CiTi W-FN =
∑

Ci(1− Ti), (2)

where Ci is the confidence score of ground truth Gi and Ti is the detection flag of Gi. Ti = 1191

indicates if Gi is detected, otherwise Ti = 0.192

The weighted precision (W-Precision), recall (W-Recall), and F1 (W-F1) are calculated as follows:193

W-Precision =
W-TP

W-TP + FP
W-Recall =

W-TP
W-TP + W-FN

W-F1 =
2W-TP

2W-TP + FP + W-FN
(3)

Weighted IoU Weighted IoU (W-IoU) is used to show the accuracy of foreground of detection.194

W-IoU =

∑
i∈A∩B f(i)∑

i∈A f(i) +
∑

i∈B/A 1
(4)
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Figure 5: Examples of baseline methods results. The raw data and ground truth are from Zebrafish 2
and are also shown in Figure 1(C). The different colors represent different detection instances.

where A is the pixel belong to ground truth, B is the pixel belong to detection, and f(i) is the195

confidence score of i-th pixel.196

Weighted SEG Weighted SEG (W-SEG) score is used to show the average IoU score of all cells.197

W-SEG =

∑
CiGi

W-TP + W-FN + FP
, (5)

where Gi is the IoU score of the i-th ground truth.198

4 Experiments199

In this section, we test baseline methods on our benchmark dataset. The baseline methods we200

choose are: 3D Suite [27], Cellpose [11], StarDist [28], Vaa3D [25], and QCAnet [18]. The primary201

reason for selecting these particular methods over others is their capability to perform 3D instance202

segmentation and their relatively better performance, combined with the fact that the developers have203

provided software with a user-friendly interface accompanied by detailed instructions for usage. In204

this way, it is feasible for us to tune the methods on the data in NIS3D so that we can provide a fair205

performance analysis. In this section, we will present the experimental settings, evaluate the results,206

and discuss the limitation of baseline methods.207

4.1 Experimental settings208

All experiments are conducted on our workstation with NVIDIA V100 GPU and Intel Xeon Platinum209

8268 CPU in this work. We provide the correct cell size and resolution as parameters for all methods.210

3D suite includes multiple unsupervised methods, where we choose iterative thresholding due to its211

best performance. Cellpose also provides several models, and we choose "cyto" and "nuclei" for212

the same reason. In this section, the results of supervised methods are based on pre-trained models213

because some of them can only be trained on 2D data and it is unfair to train others. Other settings214

for each method are summarized in the supplementary.215
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4.2 Benchmark result216

The experiment results of baseline methods are summarized in Table 3 and examples of the results217

are visualized in Figure 5. Evaluation metrics are introduced in Section 3.3. The IoU represents the218

intersection over the union between foreground and background to evaluate the binary segmentation219

performance, while SEG represents the average IoU treating every cell individually to evaluate the220

instance segmentation performance. When a method’s SEG score is much lower than the IoU score,221

it generally means that this method has a lot of instance segmentation errors, such as under-segment222

multiple cells or over-segment one cell. 3D suite, an iterative threshold method, tends to only detect223

the bright region of cells and miss many dim cells. As a result, it usually gives high precision224

but low recall and SEG. The performance of Cellpose cyto varies from data, which can miss the225

majority of cells for some data and give a very low IoU score. Cellpose nuclei tend to over-segment226

Table 3: The table of experiment result.

Data name Method name W-F1 W-Prec W-Recall W-IoU W-SEG Time (s)

Zebrafish 1 3D Suite 0.477 0.998 0.313 0.102 0.076 718
Cellpose_cyto 0.098 0.769 0.053 0.013 0.007 1271
Cellpose_nuclei 0.492 0.363 0.761 0.339 0.073 1303
StarDist 0.586 0.770 0.473 0.263 0.192 1620
Vaa3D 0.041 0.992 0.021 0.209 0.002 1200
QCAnet 0.510 0.885 0.359 0.276 0.158 8070
Human 0.967 0.971 0.963 0.927 0.905 N/A

Zebrafish 2 3D Suite 0.462 0.985 0.302 0.110 0.066 180
Cellpose_cyto 0.661 0.949 0.507 0.492 0.237 740
Cellpose_nuclei 0.654 0.971 0.492 0.263 0.167 242
StarDist 0.529 0.977 0.363 0.380 0.183 60
Vaa3D 0.101 0.995 0.053 0.703 0.007 56
QCAnet 0.031 0.849 0.016 0.446 0.003 496
Human 0.880 0.915 0.848 0.805 0.610 N/A

Drosophila 1 3D Suite 0.879 0.859 0.900 0.265 0.207 362
Cellpose_cyto 0.550 0.397 0.894 0.815 0.257 320
Cellpose_nuclei 0.607 0.457 0.903 0.421 0.151 215
StarDist 0.924 0.881 0.972 0.691 0.586 480
Vaa3D 0.260 0.988 0.149 0.671 0.025 278
QCAnet 0.275 0.585 0.180 0.595 0.051 2334
Human 0.997 0.995 0.998 0.915 0.906 N/A

Drosophila 2 3D Suite 0.877 0.785 0.993 0.339 0.273 420
Cellpose_cyto 0.092 0.048 0.982 0.606 0.028 478
Cellpose_nuclei 0.278 0.162 0.990 0.413 0.057 236
StarDist 0.684 0.526 0.979 0.563 0.325 245
Vaa3D 0.446 0.651 0.339 0.428 0.094 307
QCAnet 0.402 0.685 0.284 0.399 0.133 2790
Human 0.996 0.992 0.999 0.909 0.903 N/A

Mus Musculus 1 3D Suite 0.463 0.824 0.322 0.175 0.102 600
Cellpose_cyto 0.536 0.509 0.566 0.339 0.142 602
Cellpose_nuclei 0.356 0.240 0.688 0.37 0.056 570
StarDist 0.594 0.789 0.476 0.256 0.191 480
Vaa3D 0.207 1.000 0.116 0.515 0.018 780
QCAnet 0.454 0.726 0.330 0.451 0.127 4133
Human 0.981 0.975 0.988 0.973 0.897 N/A

Mus Musculus 2 3d Suite 0.667 0.841 0.553 0.127 0.090 92
Cellpose_cyto 0.371 0.412 0.338 0.099 0.045 188
Cellpose_nuclei 0.378 0.285 0.561 0.235 0.054 264
StarDist 0.540 0.549 0.531 0.311 0.158 221
Vaa3D 0.270 0.967 0.157 0.510 0.032 147
QCAnet 0.298 0.689 0.190 0.391 0.067 1472
Human 0.959 0.967 0.950 0.887 0.809 N/A

9



and give very low precision. StarDist has the overall best performance since it has relatively fewer227

overall under-segment or over-segment issues. However, StarDist still gives a considerable amount228

of false positives and false negatives. Vaa3D can usually detect the foreground well but tends to229

under-segment cells, which leads to high precision and IoU but low recall and SEG scores. QCAnet230

tends to under-segment and gives low recall as well. For some data, QCAnet may detect a large region231

full of noise. The human-level performance is also evaluated and provided. For human performance,232

the SEG score of Zebrafish 2 is lower than other data because of their smaller cell size.233

5 Conclusion & Discussion234

NIS3D presents a 3D, high cell density, large-volume, and completely annotated Nuclei Image235

Segmentation benchmark with over 22,000+ cells from commonly studied species in the field. To the236

best of our knowledge, NIS3D is the first benchmark to provide a publicly available 3D nuclei image237

annotation of this scale and offers method developers a valuable opportunity to comprehensively238

evaluate their techniques, establishing an essential foundation for further method development. For239

supervised models, We also provide two suggestive training/test split settings, one is an in-image240

split setting and one is a cross-image split setting. For the in-image split, we use 50% of the image as241

the training set and the other 50% as the test set. For cross-image split, we use 3 full images as the242

training set and the rest as the test set. check the supplementary for more details about the supervised243

learning result and suggestive splitting.244

It is worth noting that existing segmentation methods are partially limited by their reliance on245

natural image segmentation principles and place the primary focus on predicting cell foregrounds.246

Consequently, these methods often suffer from both over-segmentation and under-segmentation247

issues when objects are densely packed. Considering the fact that these issues are highly related to248

cell boundary detection and cell boundaries are relatively easier to be detected in nuclei data, we249

suggest that future method developers not only estimate the probability of cells for each pixel but250

also estimate the probability of cell boundaries.251
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