Supplemental materials
A Path to Simpler Models Starts With Noise

A Proof for Theorem [2|

We state and prove Theorem 2] below.

Theorem [2] (Variance increases with label noise). Consider infinite true data distribution D, and
uniform label noise, where each label is flipped independently with probability p. Let D, denote
the noisy version of D. Conszder 0-1 loss 1, and assume that there exists at least one funcnon
[ € F such that Lp(f) < & —~. For a fixed f € F, let *(f,D,) be the variance of the loss,

o?(f,D,) = Var.p,l(f, z) on data distribution D ,. For any 0 < p1 < pa < %,
0-2<f7 DPI) < 02(f7 Dpz)'

Proof. Recall that the true risk for 0-1loss Lp(f) = E.—(q,)~p[l(f,2)] = E@y)~p[Lif@)2y]-
Without loss of generality, let y € {0, 1}. Drawing from z, ~ D, is equivalent to drawing z ~ D
and changing label y to 1 — y with probability p. More explicitly, let 77 ~ Bernoulli(p), then the
flipped label is XOR(y,7n) = 1,y . For any given f € F we have that:

Lp,(f) = Eyeper(o) Ewymn (L #XOR(u, il
= Eyper(p) By~ [ f(x)aéy = )] +Eynser(p) E@y)~p [Li()=4)7]
= Eu)~0 Enener(p) (L = 0)] + Ey)~d Eneserto) [17(2)=y)"]
=E )~ (L)) En~Ber<p) [(1 =] + E@ )~ [Li7)=y) Egmper(o) 0]
= (1= p)E@y)~p (L5 201] + PE@y)~p [Lif)=y]
=P E@y~p (@] + 7 (1= Ewy~d (@]

=(1
=1 =p)Lp(f) +p (1= Lp(f))
= (1=2p)Lp(f) + p.

Note, following the technique above, a similar statement is true about dataset S instead of true
distribution D, meaning that for a given f € F,

Es, Ls,(f) = (1 —2p)Ls(f) + p. 3)

Recall that we take expectation with respect to different ways of adding noise to labels, therefore S,
and S have the same z, but different y. We do not use (3) for the proof of Theorem 2, but use it in
Appendix[J}

For true distribution D, since [ is 0-1 loss, then for a given model f, [( f, z) is Bernoulli distributed
with mean pge, = E.pl(f, 2) = Lp(f) and variance a]% = pBer(1=pBer) = Lp(f)(1=Lp(f)).
Therefore, the expected variance for a given model f € R¢(F,~) on distribution D,, is:

Var..p, [l(f,z)] =Ep, Lp,(f)(1 — LD (f)

=Ep, Lp,(f) — Ep, (Lo, (f))?
=Ep, Lp,(f) — Ep,(Lp,(f))?
—ED LD ( ) (ED LD ( ))2 VarDP[LDp(f)]

= Lp(f)(1 = 2p) + p— (Lp(f)(1 = 2p) + p)* = Varp, [Lp,(p)]

= Lp(f) (1 = 2p) = 2p(1 = 2p)) — L5 (f)(1 = 2p)* + p— p* = Varp,[Lp,(p)]
= (1=2p)*(Lp(f) = LH(f) +p— p* = Varp,[Lp, 5]

= (1-2p)* (Lp(f)(1 = Lp(f))) + p(1 = p) = Varp,[Lp,s)]

= (1=2p)* (Lp(f)(1 = Lp(f))) + p(1 — p),
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Note that, by our assumption, there exists f such that Lp(f) < 3 — 7, so Lp(f*) < 3 — 7, where
f* is optimal model. Then for any fixed f € F, we get Lp(f) < Lp(f*) +~ < % which implies
that Lp(f)(1 — Lp(f)) < 7.

Forp € (0,1), Var..p, [I(f, z)] is monotonically increasing in p, since:
0 0
55 WVaren, 104,2)] = 5 [(1= 20" (Lo(£)(1 = Lo() + (1 = p)]

= —4(1=2p) (Lo(f)(1 = Lp(f))) + (1 = 2p)
= (1=2p) (1 —4Lp(f)(1 = Lp(/)))

1 1
1-2x = 1—-4x=>)=0.
>< ><2)< ><4> 0

Consider p; < pa. Since Var..p, [I(f,z)] is monotonically increasing in p for a fixed f, then
o?(f,D,,) < o*(f,D,,), and we proved that variance increases with random uniform label noise.

O

In Theorem [2, the statement of the theorem is correct for any fixed f € F. Corollary [3 follows
directly from Theorem@ Here, instead of a fixed model f € F, we consider models in the Rashomon
sets that maximize expected variance.

Corollary [3/ (Maximum variance increases with label noise). Under the same assumptions as in
Theorem[2] we have that

sip oA(f;Dp)< s 0*(f.Dy,).
fERset,Dpl (F,7) fERset»Dpz (Fv)

Proof. Let fi"* and f5"" be maximizers of the variance of the loss in their respective Rashomon
sets:

flsup S arg sup VvaT’zw'DP1 [l(fv Z)] )
feRsetDpl (]:77)

5P € arg sup Var.p,, [l(f, 2)].
fe€Rsetp , (F)

Given that for any f € Rserp, (F,7), Varzap,, [I(f,2)] < Var..p,, [I( 57, 2)] and since
Var..p, [l(f, z)] is monotonically increasing in p, we have that:
sup a*(f, D,,) = Var..p,, [I( TP 2)]
feRset‘Dpl (]:77)
< VarZNDp2 (", 2)]
<Var..p,, [I( 5 2)

2 2)]
= sup 02(f, D,,).
fERsetDpz (-7:7"/)

O

Next, we generalize the statement of Theorem 2 to the non-uniform label noise case, where each
sample z = (z,y) is flipped with probability p, that depends on x. We show that under this
non-uniform label noise, the variance of the loss increases in Theorem [12]

Theorem 12 (Variance increases with non-uniform label noise). Consider 0-1 loss 1, infinite true
data distribution D, and a hypothesis space F. Assume that there exists at least one function

f € F such that Lp(f) < % — . Forafixed f € F, let 0*(f, D) be the variance of the loss:

o?(f, D) = Var,pl(f, z) on data distribution D. Consider non-uniform label noise, where each
label y is flipped independently with probability p, (x,y) ~ D. Let D, denote the noisy version of
D. Forany 6 > 0, let D ;s be a noisier data distribution than D ,, meaning that for every sample
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(x,y) the probabilities of labels being flipped are higher by §: pg = py + 0. If for a fixed model
JeF, LDP(; (f) < 0.5, then

c72(f7 D,) < 02(f, D,s).

Proof. Recall that the true risk for 0-1 loss Lp(f) = E.—(, y)ND[ (f,2)] = Ey)~p L f2)20)-
Without loss of generality, let y € {0, 1}. Drawing from z, ~ D,, is equivalent to drawing z ~ D
and changing label y to 1 — y with probability p,. More explicitly, let 7 ~ Bernoulli(p,, ), then the
flipped label is XOR(y,n) = 1,,. For any given f € F we have that:

Lp,(f) = E(z.y)~D EgnBer(p,) [1[f<z>¢XOR(y,n)1]
= E(a,y)~D EnmBer(pn) (L) (1 — )]

+E(o,)~D EnnBer(p) [Li(@)=917]
= E(z,y)~D [Ls(2) 2y EymBer(p.) [( =] +Ey)~p [Lif@)=y) En~Berto,) 1]
= E(z.y)~D [Li7() 2] EnmBer(o) [(1 = M)]] + By [(1 = Lip)2)) BnmBer(on) 1]
=E@y~p []1 £ (@)#9] En~Ber(p,) (1 — 1) ] + E(e,y)~D [EHNBer(pT ] = Ly ()0) En~Ber(pn) [0 ]]
=E@y~p []1 [f (z)#y] n~Ber ) [(1- 277)]] + Egy)~D [ n~Ber(pz) [77}]
=E(uy)~p (L)) (1= 202)] + Egy)mp o

Now we will show that Lp ; (f) > Lp,(f):

Lp ,(f) = Lo, (f) = E(m 0D [Lp) 2 (1= 200)] + Egeyy~p 95
(a)~D [ L)) (1= 202)] + B )~ po
= E(m,y)w [L15() 41 ( 205 +202)] +E(u o (02— P2)
=E@y~p []l x)#y )} + E@,y)~p (9)

= (=20)E(zy)~p [ [f(w)#y]} +9
=0(1—=2Lp(f)) > 0.

Note that, by our assumption, there exists f such that Lp(f) < § —7,s0 Lp(f*) < 3 — 7, where
f* is an optimal model. Then for any fixed f € Rge:(F, ), we get Lp(f) < Lp(f*) + < , and
then 1 — 2Lp(f) > 0. Since § > 0, we have shown that Lp (f) > Lp, (f).

For true distribution D, since [ is 0-1 loss, then for a given model f, I( f, z) is Bernoulli distributed
with mean pge, = E.p I(f, 2) = Lp(f) and variance 0']2c = pBer(1=pBer) = Lp(f)(1—Lp(f)).
Therefore, the expected variance for a given model f € F on distributions D, and D s is:
Var.~p, [I(f,2)] = Lp,(f)(1 = Lp,(f))

< Lo, ()1~ Lp ,(f)

= Varoup, I(£.2)],
where the inequality arises from the fact that the parabola 2(1 — z) is monotonic along the interval
x € [0,0.5]. This implies that o*(f,D,) < 02(f, D,s ).

O

We also show that the variance of losses increases under margin noise for data that come from
Gaussian distributions (in Theorem [I5). We model margin noise by moving two Gaussians closer
together along the vector that connects the two means. Before stating and proving the theorem we
discuss two lemmas that are helpful for the proof.

Lemma 13. Consider distribution X € R™ and a linear model f = wTxz+b, wherew € R™, w # 0
and b € R. Let x — Az + c be a bijective affine transformation, where A € R™*™ and ¢ € R™.
For the linear model g(x) = f(A~Y(z — ¢)) and the distribution Z = AX + c, we have that:

Ponx (f(z) > 0) = Ponz(9(2) > 0).
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Proof. The proof follows from the lemma’s statement and the assumption that A is a bijective affine
transformation, and thus is invertible:

P..z(9(2) > 0) = Prox(g(Az+c) > 0) = PxNX(f(A_l(A:E—i—c—c)) >0) = Prox(f(z) > 0).
O
Lemma 14. Consider a Gaussian distribution X ~ N (u, I), where u € R™, and a linear model

f=wlz+0b wherew € R™, w#0and b € R. Letr = RS signed distance from y to

lleoll

the decision boundary of f. Then,
Poox(f(z) > 0) = o(r),
where ® is the CDF of the univariate normal distribution N'(0, 1).

Proof. Let O € R™*™ be a matrix with the first row equal to m, and let the other rows be chosen

so that the rows of O form an orthonormal basis of R™. Note that O is an orthogonal matrix,
so O is bijective and OTO = 00T = I. Let g(t) = f(O~*(t + Ou)) and e; be a unit vector
e1 = {1,0,...,0}, then:
g(t) = F(O7H(t+0p)) = F(O™ "t +p) = f(OTt + p)
=wTOTt +wlpy+b=|w|(elt) +wlpu+b
lwll t1 +w"u+b,

where t1 is the first element of ¢, and w? OT = ||w|| ] comes from the fact that w is orthogonal to
every row of O except for the first row. Note that g(¢) > 0 when ||w|| t; +w? g+ b > 0, which leads

totq > —“ﬁ:}‘mb = —r. Correspondingly, g(t) < 0 when t; < —r.

Now, let Z = O(X — p). From the properties of the normal distribution, Z ~ N (0, I) since:
Z=0(X — ) ~ N(O(p— p), 0I0T) = N (0, ).

Moreover, since the standard multivariate normal distribution is the joint distribution of independent
univariate normal distributions, z; ~ A(0, 1).

From Lemma [13and definitions of O, g, Z, we get that P, x(f(z) > 0) = P..z(g(z) > 0).
Therefore:

Poox(f(z) >0) = Pouz(g(z) >0) = P.oz(z1 > —1)
= zle(O,l)(Zl > —7“) = Pz1~N(0,1)(Z1 < 7“)
= ®(r),

where the strict inequality becomes non-strict since for the Gaussian distribution, the probability
P, n0,1)(zi =7) = 0. Thus, Py (f(x) > 0) = ®(r) as desired. O

Now, we show that the variance of losses increases under margin noise in the theorem below:

Theorem 15. Consider data distribution D = X x Y, where, X € R™, Y € {—1, 1}, classes are
balanced P(Y = —1) = P(Y = 1) and generated by Gaussian distributions P(X|Y = —1) =
N(0,%), P(X|Y =1) = N (i1, %), where ¥ is a diagonal matrix with non-zero elements. Let the
hypothesis space F be the set of linear models, f = w’z + b, where w € R™. w # 0 and b € R. We
add margin noise by moving the means of the Gaussians towards each other by a factor of k, where
0 < k < 1, meaning that the mean of the positive class becomes i, = k - p. For a fixed f € F, if
L“( f) < 0.5, we get that the variance of losses increases with more noise,

U(f7 :U’) < U(f7 Mk)

Proof. Without loss of generality, we will show that the variance of the losses increases for data
generated from two Gaussian distributions P(X|Y = —1) = N(0,1) and P(X|Y = 1) = N (i, I)
(where I is the identity matrix) when we move them towards each other. More spﬁiﬁcally, since

normalization by variance (%) is a bijective linear transformation, by Lemma|l3 we can work
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92(2)

Before Lemma After Lemma

Figure 4: An illustration of how Lemma|[14 rotates each of the Gaussians A(p1, I), N (12, 1) and
the decision boundary f(z) in order to compute loss as CDF of the signed distances (71, 72) from
means (1, i2) to the rotated boundaries (g1 (), g2(2)). Note that we apply Lemma|14|separately to
each Gaussian, thus there are two rotation operators O1, and Os

with P(X|Y = —1) = N'(0, I) and P(X|Y = 1) = A(u, I) instead of P(X|Y = —1) = N(0, %)
and P(X|Y =1) = N (1, X).

T
Letry = ﬁ and ry = “’”T“”H’ be the signed distances from the centers of the two Gaussians to the
decision boundary. Then, from Lemma T4 (see illustration in Figure[d), the loss can be computed
using the CDFs based on the signed distance:

Lu(f) = P(f(z) > Oy = =1)P(Y = =1) + P(f(x) <Oy = 1)P(Y =1)
= SP(f() > 0y = —1) + 5 (1= P(f(x) > 0]y =1))

1
5 1(@0r) + (1= ().

Next, we will show that w”p > 0. If L,,(f) < 1, then we get that 2[(®(r1) + (1 — ®(r2))] < 1,
which means that ®(r3) > ®(r1). Since the CDF of the Gaussian distribution N (0, ) is strictly

increasing, we have that ro > r1, which means that H‘Tb > Tol H , and so wT > 0.

Recall that we induce noise by moving the Gaussians towards each other by decreasing k. Now we
will show that loss is monotonically decreasing with respect to increasing values of k, or equivalently

that %Luk(f) < 0:

0

sebn = g (31000 + (1 = 8]

({H (o) === (“557)))

_ K (k:w u+b)] _ _1wTu¢<kwTu+b> <0,
0 o] 2 lwll ]

since as we showed above, w’ y1 > 0, and ¢ is the PDF of normal distribution A/(0, I) which is
always positive. Therefore, L,,, (f) is monotonically decreasing with respect to k, and we have that
L,(f) <Ly, (f)forall0 < k < 1.

For the true distribution D, since [ is 0-1 loss, then for a given model f, I(f, z) is Bernoulli distributed
with mean pge, = E.op I(f, 2) = Lp(f) and variance 07 = pper(1—pper) = Lo (f)(1—Lp(f)).
Therefore, the expected variance for a given model f € R, (F,y) on distributions D, and D,,,
obeys:

o?(f, 1) = Lu(f)A = Lu(f))
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< Ly ()1 = Ly (f))

= 02 (f s Mk )7
where the inequality arises from the fact that the parabola z:(1 — x) is monotonically increasing along
the interval = € [0, 0.5], and ug = kp is closer to 0 than p. O

Note, that we can generalize Theorem [I3]to the case when X is any positive-definite matrix that is not
necessarily diagonal (covariance matrices are always positive semi-definite, and we now additionally
assume that ¥ does not have zero eigenvalues). Since X is real and symmetric, by the spectral
theorem, there exists an orthogonal matrix Q € R™*" such that D = QX QT where D is diagonal
and contains eigenvalues of . The diagonal elements of D must be real and positive since X is
positive-definite. Then, consider the data distribution (QX’) x ). From the properties of the Gaussian
distribution, QX is Gaussian with mean Qu and covariance matrix QXQ” = D. Thus, we can
generalize the results of Theorem [T3]to apply to positive-definite non-diagonal matrices X.

For a fixed model, we additionally verify the results of Theorem [I5 empirically, by generating
Gaussian distributions and introducing margin noise by moving the Gaussians closer together (see
Figure E(b).) The variance of losses increases with additive and uniform random attribute noise as
well, as we show empirically in Figure [5(c)-(d).

While the results of Theorems |12, [15 are for a given and fixed model f, they hold for the f that
achieves the maximum variance in the Rashomon set as well, meaning that Corollary [3 extends to
Theorems|[12} [15}

B Bernstein’s and Hoeffding’s inequalities

In this section, we compare Bernstein’s and Hoeffding’s inequalities and show that, under certain
assumptions on variance, Bernstein’s inequality is tighter than Hoeffding’s inequality. We provide
Bernstein’s inequality in Lemma|l6{and Hoeffding’s inequality in Lemma

Lemma 16 (Bernstein’s inequality for loss class). Consider a hypothesis space F. For a fixed f € F,
let loss | be bounded by C' > 0 such that |I(f, z)| < C for every z € Z. For any ¢ > 0,

ne2
P(L() = LAf) > €) <™ T77, )
where 07 = Var.p I(f, z), and n is number of samples in S = {z;}7_, ~ D.

Lemma 17 (Hoeffding’s inequality for loss class). Consider a hypothesis space F. For a fixed
f € F, let loss | be bounded by a,b > 0 such that a < I(f,z) < b forevery z € Z. For any € > 0,

—2ne?

P(L(f) = L(f) > ¢) < eTe2, 5)

where n is the number of samples in S = {z;}_, ~ D.

Note that for 0-1 loss in the lemmas above, a = 0, b = 1, and C' = 1. Now we show that Bernstein’s
(b—a)?

2 -
Theorem 18 (Bernstein’s inequality is stronger than Hoeffding’s for lower variance). For a fixed
f € F letlossl € [a,b] so that a < I(f,z) < bforevery z € Z. Then, Bernstein’s inequality is

stronger than Hoeffding’s inequality for all € € (0,b — a) ifJ]% < (bz;)z or lf‘L(f) — aTer| > b_Tg

inequality is stronger than Hoeffding’s if variance is lower than

where afp = Var,.p ([, 2).

Note that since the true risk and empirical risk can only differ by at most b — a, € is not meaningful if
e>b—a.
Proof. According to Hoeffding’s inequality (5)), we have that

—2ne?

P (‘L(f) o i/(f)‘ > 5) < 2e0-a2
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Figure 5: The variance of losses increases with margin (b) and additive attribute (c, d) noise. For (b)
and (c) we generated data from Gaussians in 3, 5, 7, and 10 dimensions. For margin noise (b), as
illustrated in (a), the negative class is generated from N (z1, I) and positive from N (g2, I), where
I is the identity matrix, i3 = —m/2 x 1, i = m/2 x 1, and m controls the distance between
Gaussians that determines the amount of margin noise. For additive noise, data is generated from
N (0, 1) and N (2, I). The noise model is ' = x + €, where € ~ N'(0, o I) is the noise vector added
to every sample and o determines how much noise is added to the data. For evaluation, as a fixed
model we consider a random linear model from the Rashomon set. For (d), we chose 3 features with
the highest AUC value and introduced uniform noise by negating the attribute values with probability
Pa- As a fixed model, we consider a tree generated by the CART algorithm that uses at least one of
the features to which noise was applied (this is because if the model does not use these features, the
variance of losses for that model will not change). All plots are based on 0-1 loss and are averaged
over 10 iterations.

Recall that Bernstein’s inequality (4) states
— ’7152

P([L(f) = L(p)| > ¢) < 277777

where C' = 252 Without loss of generality, let I'(f, z) = I(f,z) — “t% so that I’ € [~C, C]. Then,
we get that L'(f) = L(f) — <2, Var.wp I'(f,2) = Var.upl(f,z), and L'(f) = L(f) — £
Therefore, we can rewrite Bernstein’s inequality as

—2ne?

P(|ewn - 1| > <) =P (L) - L()] > £) < 27T,

Consider afc < % Then, we can upper-bound the right side of Bernstein’s inequality by

2ne? 2 —2ne?

— e _ 2ne
Qe 1rTROTOE £ 9eT hma)?/5+20-0)2 /5 = Qe (b-a)?
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—2ne?

where 2e (®-»? is the bound given by Hoeffding’s inequality. Therefore, we showed that, if U)2c <

%, then Bernstein’s inequality is stronger than Hoeffding’s inequality for all ¢ € (0,b — a).

We now consider |L(f) — %“’| > b’Tg. Recall that L'(f) = L(f) — “£2, so we can rewrite this as
|L'(f)| > 252, Since —C < I'(f, 2) < C, we know that

V6
Varp(l'(f, 2)) = Beun(((f,2))?) ~ (Bon(U(f, 2)))?
< C* - ()7
_(-a? (p—ay
- 4 6
(b—a)?
12

Then, we can follow the same argument as in the previous case to conclude that Bernstein’s inequality
is stronger than Hoeffding’s inequality for all € € (0,0 — a). O

C Proof for Theorem 4

For a discrete hypothesis space, Theorem 4| bounds generalization error with a term that depends on
the size of the true Rashomon set and maximum variance of the loss. Recall Theorem 4]

Theorem E (Variance-based “generalization bound”). Consider dataset S, 0-1 loss |, and finite
hypothesis space F. With probability at least 1 — 6, we have that for every f € Rger(F,7):

L(f)—i(f)é?ilog(W) +\/Z;210g<w>7

where 0® = supscp ,(F ) Varz~p I(f, 2), and n is number of samples in S = {z;}_, ~ D.

Proof. For each fixed model f € Rsq.:(F, ) in the true Rashomon set, from Bernstein’s inequality,
using that the maximum value for the 0-1 loss is 1, we have that

—ne?

P(L(f) = L(f) > €) < 77/,
According to the union bound:

P(3f € RaF ) L) - L >e) < > P(L-L(f) >e)
FER et (F )

—ne?

< 2 : ezaf,+25/3
feRsct (]:7'7)

—ne?

< § e202+2¢/3
fE€Rset(F,)
7TL52

= ‘Rset("ra’}/” : 6m,

1

1
- —_ a1 . ..
7F <e *PreRset(FM7F = e 52, since the exponential function is

where we used the fact that e
monotonic.
771.52

Let § = |Rset(F, )| €2-7+2:/3, then we have the following quadratic equation to find £:
2 ; 20° s
2 210 [Bsee(F ) 297 1og (Rt (F )Y _
3n 0 n ]
[Rset (F,7)]
15 0l )

, we find that the roots of the quadratic equation with respect to ¢ are:

a 1 a\ 2
- _ _ 2
£=5.37%3 (3) +4ac”.

Setting a = 2 log (

22



Since 4ac? > 0, we see that 5% — 14/ (%) + 4a0? < 0 which is not a valid root as £ > 0. Thus,

1 | Ryt (F, )] 1 [Reet(F, 1)\ | 202 |Reet(F, )|
5—3nlog(6 + 3—nlog — 5 —&-Tlog — 5
2
S 3 lOg |Rset (‘Fv ’Y)‘ 4 2L IOg ‘Rset (]:a ’7)| ,
3n 0 n 1)

where the latter inequality arises from the inequality v/a + b < \/a + v/b. Therefore, we get that
with probability at least 1 — §:

UF € RuFi) s LT - (1) < = o tog ot 7)')+\/2;L‘210 (el 22,

O

D Proof for Proposition

We recall and provide proof for Proposition [5| below.

Proposition[5|(ERM can be close to the true Rashomon set). Assume that through the cross-validation

process, we can assess & such that L(f) — L(f) < & with high probability (at least 1 — e¢) with
2ne?

respect to the random draw of data. Then, for any € > 0, with probability at least 1 — e~ — €
with respect to the random draw of training data, when & + € < =y, then f € Rget(F, 7).

Proof. For afixed f € F for 0-1 loss by Hoeffding’s inequality (5)):
PL(f) - L(f) > 6} < e

Therefore, with probability at least 1 —e~2"¢ with respect to the random draw of data, L(f)— L(f) <

e. This is true for the optimal model as well, thus with high probability L(f*) — L(f*) < e.

Since f is the empirical risk minimizer, and € 4 ¢ < ~y by assumption, we have that L(f) < L(f*).
We use that for two events A and B, P(~(AU B)) = 1 — P(AU B) > 1 — P(A) — P(B), where
A is the event that cross-validation gives us an incorrect generalization bound, and B is the event
that f* does not generalize. Thus, P(A) < 2" and P(B) < e¢. Thus, with probability at least
1— 6727162 — €,

L(f) SLH)+E<LU)+ES L) +e+ €< L)+

Therefore f € Ryet(F, 7).

IN

E Proof for Proposition [6]

For the hypothesis space of decision trees, the number of possible decision trees in the hypothesis
space grows exponentially fast with the depth of the tree and the number of features. In Proposition 6]
we show that the Rashomon set growth rate is smaller than the growth rate of the hypothesis space,
and thus this leads to larger Rashomon ratios for simpler hypothesis spaces. We recall Proposition 6]
below.

Proposition|6|(Rashomon ratio is larger for decision trees of smaller depth). For a dataset S = X XY
with binary feature matrix X € {0,1}"*™, consider a hypothesis space F g of fully grown trees

. . d ;

of depth d. Let the number of dimensions m < 22°. Assume: (Leaves are correct) all leaves in
all trees in the Rashomon set have at least [0n] more correctly classified points than incorrectly
classified points; (Bad features) there is a set of mpaq > d “bad” features such that the empirical risk

minimizer of models using only the bad features is not in the Rashomon set. Then Rmtw(}" a+1,0) <
Rratio(]:da 9)
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Proof. The hypothesis space of fully-grown trees of depth d contains

d
| Fal =22 T](m—k+1)>""
k=1
trees, where 2 is the number of label options each leaf can have, 24 is the number of leaves we have,
szl is the product over all depth levels in a tree, 27! is the number of nodes we have at that
level, and (m — (k — 1)) is the number of options we have to choose from given that the previous
features were used in the path from the root. We do not count symmetric trees, meaning that we
always assume that split = 0 is on the left and = 1 is on the right.

Now let’s compute the size of the Rashomon set. First, since each leaf of every tree in the Rashomon
set has correctly classified [#n] points more than misclassified, flipping the label of this leaf will add
more than 6 to the loss and thus will push the tree out of the Rashomon set. Therefore, for every tree,
every leaf label is determined by the data.

Second, since the empirical risk minimizer of models using only the bad features my,q is not in
the Rashomon set, every tree that has only features from the set my,q is not in the Rashomon set.
Therefore, trees in the Rashomon set must have at least one “good” feature at some node, where good
means that the feature is not in mp.4. The cardinality of the set of good features is m = m — |Mpadl,
then the cardinality of the Rashomon set is:

d d

~ 2]9—1 2k71

Ret(Fa,0) = [[(m—k+ 1> —[[m—m—k+1)* ",

k=1 k=1
meaning that among all models, we do not consider those that consist of bad features only (since
Mpad > d, there exists at least one such tree). Then the Rashomon ratio is:

A d k—1 d _
Brasio(Fa, 0) = [Rset(Fa,0)] _ [lima(m —k+ 1>  —[[y(m—m—k+1)
ratio d» ‘-Fd| 224, Hd ( _k + 1)2k—1
k=1
R M (m—m—k+1)2""
2 [T (m = b+ 12

1 d m \2
22d<1_kl:[1<1_m—k+1> )

2k71

_1—a(d)
=
o2 . _
where a(d) = 2:1 (1 — m%k“) . Sinced > 1,7m > 1, and #]ﬁl > = for k > 2, we get

that

k—1

d m » my 2 m
‘“<d>—kl_1(1m_k+1> <IT0-7) <10

Note as well that a(d) < 1 for any d. Recall that m < 22d, then for the ratio of ratios:
Rratio(‘/rdye) _ ‘Rset(JT'.dye” |~Fd+1 |

Rratio(]:d+1» 9) |‘7:d I |Rset(fd+1v 9)‘
Cl—a(d 22" i 1-a(d)
27 1—a(d+1) T 1-a(d+1)
2d 2¢ _ _ @
> 22'(1 — a(d)) > 2 (1 (1 m))

17 1
= 2 =1

Thus we showed that Rratio(]: a,0) > Rmtio(]—" 4+1,0), meaning that the Rashomon ratio grows as
we consider less deep trees.

O
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F Proof for Theorem

Recall Theorem 7k

Theoremﬂ](Rashomon ratio increases with noise for ridge regression). Consider dataset S = X XY,

X is a non-zero matrix, and a hypothesis space of linear models F = {f = wTz,w € R™ wTw <
max/C}. Let €;, such that €; ~ j\f(O7 Al) (A > 0, I is identity matrix), be i.i.d. noise vectors

added to every sample: x, = x; + €;. Consider options \; > 0 and Ao > 0 that control how

much noise we add to the dataset. For ridge regression, if \y < \g, then the Rashomon ratios obey

Rratio,\l (]:7 9)) < Eratio,\Q (]:a 9))

Proof. For simplicity denote E, . - @,xr) as Ec. To find the optimal solution, under added
noise, we would like to minimize expected regularized least squares:

((x; + ei)Tw - yi)2 + CwTw]

(afw—y)? + 27 w(@fw —y;) + wlee] w) | + Cw'w

w(xzrw — )+ wl E. [eie?] w) + OCwTw

M= =
S
— -

8

KGN

S

&

+

[\

=

= %Z (zfw—y)? + " (M)w) + Cw’w

Z(xlTw —u)? 4+ (C+ Mwlw

where E, [qeiT] = A1, I is identity matrix, and E [¢;] = 0.

Therefore, adding attribute noise to the training data becomes equivalent to /5-regularization, and
the new regularization parameter is C' + A. According to Theorem 10 in Semenova et al. [39], the
Rashomon volume can be computed as:

m

m+l Hm

where o; are singular values of matrix X, and I'(-) is the Gamma-function.

V(Rsetx (]:’ 9))

On the other hand, for the regularization parameter C + )\, the hypothesis space is defined as
(C+ )\)wTw < I:max, meaning that wlw < %_;j{ The volume of the ball defined by the ¢5-norm

1
in m-dimensional space with radius R, ||z[2 = (X", |2;]?)* < R, can be computed as:

T
V2(R R™.
R YR
Since for ||w||3 = wlw < %fj\‘, we have radius Ry = g“f/’\‘, we get that the Rashomon ratio
obeys:
: V(Rset, (F.0))
Rra 20 ]:70 = > 7
t A( )) V2 (Rk)
@ [ 1 JrEenernt
L(g+1) e} o2 +C+ A\ T (ﬁmax)%
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Since 0 < A1 < A9, C' > 0, without loss of generality, let A\c = A1 + C, and A\¢ + J = Ag + C,
where § = Ao — Ay > 0. Consider function ==, where a > 0. This function is monotonically

+
increasing for all x > 0, since 8% (H%) = o7 +m)2 > 0. Therefore, for all non-zero 02
Ao Ao+ 0
2 <= .
o; + Ao o; + Ao+ 0

Since X is a non-zero matrix, there is at least one non-zero singular value o7. Given monotonicity of
the square root function, we have that for the Rashomon ratios for noise levels A\; and As:

ﬂm

max> H O. +)\C
)\0+5

= Rratioxc+5 (-7:; 0)) = RratioA2 (}',9))

Therefore we proved that with the additive attribute noise, the Rashomon ratio increases.

Rratiokl (Fa 9)) = -I%Tatio/\c (Fv 9)) = (

O

Compared to the Rashomon ratio, the relationship between the regularization parameter and the
Rashomon volume is inverted: the stronger the regularization, the smaller the Rashomon volume.
This means that adding more noise leads to stronger regularization and smaller Rashomon volume. In
some ways, this is consistent with what we saw in Figure[I{b), where CART preferred shorter trees
in the presence of noise.

Next we show that the variance of losses (recall notation o( f, D) = Var,.p l(f, z)) increases for
the least squares loss function under additive attribute noise, as in Step 1 of the path in Section 4}

Theorem 19 (Variance of least squares loss increases with noise). Consider dataset S = X x Y,
where X € R"™™, Y € R", z; = (v, ;). Let €; = {€;;}]L,, such that €;; ~ N(0,0%)), be i.id.
noise vectors added to every sample: x}, = xz; + €;. Consider 0_%\/1 >0, UJQ\/Z > 0 that control how
much noise is added to the dataset. For the least squares loss 1(z;) = r? = (wTx; — y;)? and a fixed
model f(x) = wTx, where w € R™, w #* 0, the variance of losses increases with more noise: if
0%, < ORpyr then: 0 (f, 8oy, ) < 0°(f, S0y, )

Proof. For simplicity, denote K¢, . ¢ . e, enn a Ee and Eg, . as E,. The vari-
ance of losses for the least squares loss under the additive normal noise is: o2(f,S,,) =

Var, e [((:17, + ei)Tw — yi)Q]. Also, for simplicity, we will omit index 7 over samples (but keep

index j over the dimensions). Recall that r = 27

that:

w — y. From the definition of the variance we have

Var, e [((x +e)lw— y)z} =Var, ¢ [((a?Tw —y)+ eTw)Q] =Var, ¢ [(r +€ w) ]

4 27 2 ©)
=FE.: [(r + eTw) } — (Ez’g [(r + eTw) D )

Since €; ~ N(0,03/), we have that E, [¢;] = 0, E, [(¢;)?] = o3, Ec, [(¢;)?] = 0 (this is a
property of Gaussian random variables), and E.. [(6j)4] = 30’;1\/. Also recall that the multinomial
theorem states:

m

. — 1 2, . qFm
Zaﬂ Z R Y S e AR
=1

ki+ko+...+km=t

The multinomial theorem helps us to compute coefficients of the first four moments for ¢’ w. More
specifically, for the first and second moment:
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j=1 J=1 j=l.m,k=1..m,j#k

2
E: [(eToJ)Q} = E; { Zejwj = E; Z ejwj Z €W ERWE
E

For the third moment, notice that from the multinomial theorem, k; + - - - + k,,, = 3. Then there
are three possible combinations of the values of k;: some k, = 3 and the rest are 0, some k, = 2,
ky = 1, and the rest are 0, and finally some k, = 1, k, = 1, k. = 1 and the rest are 0. All of these
cases will lead to the presence of either e? or ¢; in the product. Since E, [¢;] = 0, and E, [eﬂ =0,
we have that

E: [(eTw)S] =0.

4
Similarly, for E¢ {(Z =1 ejwj> } we get non-zero terms for some of the combinations and the

others are 0. In particular, non-zero terms arise when some k, = 4 and the rest are 0, and some
ko = 2, ki, = 2, and the rest are 0s. This gives us:

4
m
Ee [(eTw)4] =E¢ Z €W;
j=1
m
=Y Ee[ef]wi+6 > Ee (€] wiEe [ei] wi
j=1 j=1..m,k=1..m,j#k
m
= 30j1\/ Z w? + 60}1\[ Z w?w,z
j=1 j=l.m,k=1..m,j#k
=30 (ww)?.

Let’s focus on the first term of the variance equation (6):

E. ¢ {(r + eTw)ﬂ =E.[r* +4r%"w + 6r%(e"w)? + 4r(e"w)?® + (" w)?]
=E, [r'] +4E. [r®] Ec [e"w] + 6E. [r?] Ee [(¢"w)?]
+4E. [r] Ee [("w)?] + Ee [(¢"w)*]
=E. [r'] + 603w wE, [r*] 4+ 30} (w w)?.

Now, we focus of the second term of the variance equation (]§[):

(IEZ@ [(r + eTw)Q} )2 -

(E... [7~2 +2re’w + (Fw)?])?

= (E. [1°] +E: [2r] e [¢"0] + Ee [("w)’])”
= (B: [r*] + o%w W)Q

= (E. [*])* + 2030 WE, [12] + ol
Therefore, for the variance we get that:

Var, e [(r + eTw)Q} =E. [r'] + 603w WwE. [r?] + 30}/ (w'w)?
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— (E. [rz])z —20%wTWE, [r?] - o (wlw)?
— 204 (W w)? + 403w WE, [r?] + 2 (E. [r*])° + E. [r*] — 3 (E. [?])?
=2 (02w w +E. [r?])? + E. [r*] - 3 (E. [r2])”.

Next, we will take the derivative of the variance with respect to o3:

7] 0

507 (Var.e [(r+€"w)’]) = 5o (2 (o}w"w + . 1)) + E. [r*] - 3 (E. [+*])°)

=4 (ojw'w+E, [r?])w’w >0,

since o3, > 0 by assumption, wTw > 0since w # 0, and the risk of the least squares loss [E, [ ] > 0.

Therefore, the Varlance of losses for a fixed model f = w” z monotonically increases for o3, > 0.
Thus, for 3 n, < o3 A, We have that:

0*(f,Sor,) < 0*(f, Sous,)-
O

As before, CorollaryE] is easily extendable to the results of Theorem[I9] meaning that the maximum
variance of losses, 0% = Supscp__, (7 ,+) Var,pl(f,z), will also increase for the least squares loss
under increasing additive attribute noise.

Next, we show that when the maximum variance o2 increases, the generalization bound becomes
worse for the least squares loss and the continuous hypothesis space. Cucker and Smale [[11]] proved
the generalization bound based on Bernstein’s inequality for the least squares loss (Theorem B). We
state and provide proof of the theorem for the true Rashomon set. To derive the generalization bound,
we use the covering number over the true Rashomon set. Recall that for the functional space F
and any ¢ > 0, the {, covering number N (F,¢) of F is the minimum number of balls of radius e,
such that they can cover F, meaning that there exist hy, ..., hx(F,) € F, such that for every f € F
there is k < N(F,¢€) such that || f — hgllcc = maxgzex | f(x) — hi(z)] < e. Now we focus on the
theorem.

Theorem 20 (Variance-based “generalization bound” for least squares loss). Consider data distribu-
tion D over Z = X x Y, dataset S = {z;}_, ~ D, hypothesis space F, and the least squares loss
I(f,2z) = (f(z) — y)?. Let the loss be bounded by C? > 0 such that [(f,z) < C? for every z € Z.
For any e > 0:

N —n(e/2)2
P ( sup L(f) = L(f) > 5) <N (Rset(F v), 860) e20%+C%e/3

feRset (]:77)

2

where 0 = supp__, (r ) Var.eol(f, z).

Proof. For each fixed model f € R (F,~) in the true Rashomon set, from Bernstein’s inequality
and given that loss is bounded by C, we have that

—ne?

PL(f) = L(f) > &) < ™72,
Let B;,...B N(Roet(Fin)rss ) be an {, cover of radius g of the true Rashomon set, meaning that
set ' BE

set ]: El . . .
Reet(F,7) € Uiy N(R ":5e) By, where N (Rset(]-', v), %) is the covering number. Since the

loss is bounded, l(f, z) = (f(x) —y)? < C? then |f(z) — y| < C. Forevery f € By, we have that
Ilf = hrllo < g, Where hy is the center of the ball By. Therefore:

(L(f) = L(f) = (L(h) = L(hw)) = (L(f) = L(hw)) + (L) = L(f))
= Eanp [I(f,2) = Ui, 2)] + Eepos [, 20) — U, 20)]
= Eop [(f(@) = 9)® = (hi(@) = 9)°] + Eeoms [(f(@0) = 90)* = (ha(i) = )]
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=E.op [(f(2) — hi(@)) (f () = y) + (hi(z) — y))]
B (i) = he(2)) ((F(22) = ) + (h() — 13)]

< Eeonp [I1f = Pklloo (C+ O) + Eoons [IIf = hilloo (C+ C))]
=40 f — Ml <4C = <

8C 2
Therefore, if L(f) — L(f) > €, we have L(hy,) — L(hy) > (L(f) — L(f)) —
holds for every f € By, and thus for argsup s, as well:

€ __ € H
>€7§—§.Thls

\Slfe

P <sup L(f) - L(f) > s> < P (L) = L(h) > 5. %

feBy

. . . o2 _a ..
Since the exponential function is monotonic, e ( hk) < e~ <2, Based on the definition of the
covering number, according to the union bound and (7)) we have that:

P( sup  L(f) — L(f) >5> :P<3feRset(]—‘,7):L(f)—ﬁ(f) >s)

fERset (F,y)
N(Rset(F7),55)
<P U 3f € By : L(f) — L(f) > ¢
k=1
N(Roet(F),55)

< > P(3feBcLhH-Lif) >e)

k=1
N(Rset(F1),55)

~ 9
< Z P (L(hk) — L(hy) > 5)
k=1
N(Boet F1)50) _—niern?
< Y e
k=1

N(Roet(F1),55 ) —n(e/2)2

§ e202+C2¢/3

k=1

IN

—n(e/2)2

€ _—nle/=s)
=N (Rset("ra ’Y)v @) e207+C%e/3
Therefore we obtained the desired bound. ]
Since e~/ monotonically increases for z > 0, in Theorem as the maximum variance of losses

increases, the bound on the right side increases as well, and thus the generalization bound becomes
worse.

G Pattern Diversity and Other Metrics of the Rashomon set

In this appendix, we discuss similarities and differences between pattern diversity and pattern
Rashomon ratio as well as expected pairwise disagreement (as in [5]).

Pattern Rashomon ratio. Pattern Rashomon ratio measures how expressive the Rashomon set is
compared to the whole hypothesis space. Interestingly, for the hypothesis space of linear models, for
different datasets with the same number of samples and attributes, as long as no m — 1 points are
collinear, the denominator of the pattern Rashomon ratio is the same and equal to 2 Z:’;O (";1) [101].
If we focus only on the numerator of the pattern Rashomon ratio, it is the number of distinct predic-

tions, whereas the pattern diversity is the average Hamming distance between distinct predictions.
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Intuitively, the more distinct prediction we have, the more different they are from each other, and
the higher pattern diversity we should expect. However, it is not always the case, and there exists
datasets such that we can have a large number of patterns with very small Hamming distance and a
small number of patterns with larger Hamming distance.

Similarly to pattern diversity, we can upper-bound the number of patterns in the pattern Rashomon
set by a bound that depends on the empirical risk of the empirical risk minimizer and the Rashomon
parameter 6. We discuss this bound in Lemmal|21]

Lemma 21. Given the dataset S of size n, the pattern Rashomon set 7(F, 0), the empirical risk of
the empirical risk minimizer L(f), and the Rashomon parameter 0, the cardinality of the pattern
Rashomon set obeys:

[nL(f)+no]

mFol < > (Z)

k=1

Proof. For every model from the Rashomon set f, L(f) < L(f) + 6, which means that, in the
worst case, the Hamming distance between pattern p/ and vector of true labels Y = [y;]; is
[nL(f) + nd]. Thus, patterns in the pattern Rashomon set can make one mistake, two mistakes, and

so on up to [nL(f) 4+ n#] mistakes, which means there are at most > ,D:—;(f )4nf] (%) patterns in the
pattern Rashomon set.

Expected pairwise disagreement (as in [S]). Following [6] and [30], empirical expected pair-

wise disagreement I(Rs.+(F,0)) over the Rashomon set can be defined as I(Rset(F,0)) =
]th FarBaus (F0) E.~s1{f (x)#f(x)]- EXpected pairwise disagreement measures the average dis-
agreement between every two hypotheses from the Rashomon set, while pattern diversity measures
the average disagreement between two patterns from the Rashomon set. The expected pairwise dis-
agreement is equivalent to pattern diversity when every pattern is achievable with the same probability
by models from the Rashomon set. However, these metrics can be very different and we can have a
small expected pairwise disagreement and larger pattern diversity as we show next.

Proposition 22 (Same pattern diversity but different expected pairwise disagreement). Consider
finite Rashomon set Raot (F,0) of size d > 2. Let w(F, 0) be the pattern set of size I, 2 < TI < d.
Assume that every pattern except py is achievable by only one hypothesis in the Rashomon set,
and thus py is achievable by d — 11 4+ 1 hypotheses. Let d* be the current value of d, then as
d — oo (for example, by replicating hypotheses that realize p1 an infinite number of times), expected

pairwise disagreement converges to zero, I(Rset(F 4, 0)) — 0, and pattern diversity does not change,

div(Ryer(Fa,0)) = div(Roer(Fa-,0)).

Proof. The proof proceeds in two steps.

Pattern diversity. As d increases, the pattern set does not change, therefore for any d > d*,

diU(Rset (.Fd, 9)) = diU(Rset (-Fd* ) 0))

Expected pairwise disagreement. Given a pattern p € 7(F,0), let P 5 (x4 [p=p/] bea
probability with which this pattern is achieved by models from the Rashomon set. Since support
for all patterns except p; is 1, then P, = PfNRm(]_-ﬂ) [pk = pf] = % for k = 2..I1. And for p; we

have P, = PfN Bovs (F.0) [pl =p/ } = %. Then expected pairwise disagreement:

I(Rset(Fa,0) =By 1 r. 7.0 Bans it ()22 ()]

I
M=

11
. L1
Pt froesir0) [P =P'] D Pp iy [Pi = '] —H bk, pj)
=1

>
Il

1
21
= (Pf~Rset(f,e) [pl = pf]) gH(pl,pl)
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II
1
2P oy P =01 D Prog ) [P = PT] —H(p1p))

Jj=2
< 1
+Z fNRéet .7:0 pk - Z fNRbet(‘Fo) } H(pkapj)
m o
d—IT1+1 1 1
—0+2d7 : nH(plapj (TZZ% pkap]
j=2 k=2 j=2
I o 1
1 m-1 1 1 1
= lo(1-—=—= —H( - Z
32 )z rep) + 533 L H o)
Therefore, as d — 00, I(Rsei(Fg,0)) — 0. O

As we see from Proposition 22, we can change expected pairwise disagreement, for example,
by adding multiple copies of the same functions f to the hypothesis space. Expected pairwise
disagreement measures predictive multiplicity [6], but it has the issue we showed above that it
can depend on the weighting of hypotheses in the hypothesis space. In the case we described
in Proposition 22, the multiplicity is small because one subset of hypotheses (which produce the
same pattern) is weighted very heavily. Thus, expected pairwise disagreement can be influenced
by overparameterization or poor choice of parameter space. We further illustrate the effect of re-
parameterization on pairwise disagreement on a simple one-dimensional example in Figure[6] Pattern
diversity does not depend on the parameter space and is computed in the pattern space. It is not
impacted by any probability distribution or weighting on the hypotheses. Moreover, we can compute
the pattern diversity by enumerating all possible patterns of the given finite dataset as described
in Appendix We cannot do the same for the pairwise disagreement metric without additional
assumptions on the patterns’ support.

H Proof for Theorem

Recall that a; is sample agreement over the pattern Rashomon set. Then we can compute the pattern
diversity based on sample agreement as in Theorem[9]

Theorem [9](Pattern diversity via sample agreement). For 0-1 loss, dataset S, and pattern Rashomon
set w(F,0), pattern diversity can be computed as div(Rge,(F,0)) = 237" a;(1 — a;), where
a; = % 2113:1 ]l[PZ —y,] is sample agreement over the pattern Rashomon set.

Proof. Lety € {0,1}. We can transform y € {—1,1} to {0, 1}, simply by adding one and dividing
by two.

Recall that Hamming distance H (p;,pr) = >4 ]I[Pji'?ép)‘;]‘ Alternatively, we can rewrite logical

XORas L 41 = pi(1—p})+pj(1—p’). Denote b; = f; Z?:l P}, then from the pattern diversity
definition:

R R
div(Roct(F,0)) = —= Z

I

DD L) =

k=11

1 II I n . . ' .

= = > YD [ - ph) + b1 p))]

k=11

I

>

j=1 i=1
1 11 n
= 2> > 7 + v — 2]
7j=1k=11i=1
TN L L
= Z ﬁzp3+ﬁzp2*2ﬁzpkpj
=1 j=1 k=1 k=1 k=1
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Figure 6: Illustration of how reparameterization changes pairwise disagreement metric.

Consider a separable dataset of four data points with a real-valued feature in one dimension: S =
{(1,0),(2,0),(3,1), (4,1)} and a hypothesis space of linear models. Let the Rashomon parameter
be § = 0.25. There are three patterns in the Rashomon set: 0111, 0011, and 0001. The pattern
diversity (c) is 0.444. Consider two different parameterizations for the hypothesis space of linear
models: ax £+ 1 and +x + b. These two parameterizations produce the same decision boundaries for
the dataset S. For the parameterization +x + b (b), each pattern is achieved with the same number
of models. For the parameterization ax 4 1 (a), more models will support patterns that are closer
to the origin. The support of each pattern is shown in a different color. The pairwise disagreement
metric is 0.321 for axz £ 1 and 0.444 for 4z + b. (For the parameterlzatlon ax + 1, we see that
the pattern 0001 occurs when a € (1, 3), the pattern 0011 occurs when a € (3 and the pattern

2

29 3)7
12 _ (.666, the

0111 occurs when a € ( Therefore, the pattern 0001 has probability w;, =

3’4)
1

pattern 0011 has probability we = z - 5 0.222, and the pattern 0111 has probability wsg = %; 1=
4 4

0.111. Recall that H(cdot, -) is the Hamming distance, then the pairwise disagreement metric is
wlng(OOOl, 0011) + ’LU1’LU3H(0001, 0111) + 7.1)2’LU3[{(00117 0111) = wiws + 2w w3z + wowz =
0.321. For the parameterization = + b, each pattern has equal probability % We can then similarly
calculate that the pairwise disagreement metric is 0.444). Note that if the data points are shifted
together to the left, the difference in pairwise disagreement metrics for parameterizations in (a) and
(b) will only grow.

=1 j=1
I |1, 1w 1o,
=L g r g b2 Db
i=1 Jj=1 Jj=1 Jj=1
1 n

On the other hand, according to logical XNOR, we have that 1,; _, | = pjyi + (1 — pi) (1 — i),
therefore we can rewrite a; as:

1
@i =5 > Lipgu
k

=1

A

IT
1 , .
=5 2 [Phyi + (1= pp) (1 — )]
k=1
1 .
= ﬁz [2p%yi + 1 — yi — pi]
k=1

11
prkJrl—yz ZP%
k:l

:l
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=2y;b; +1 —y; —b;.

Since y; € {0,1}, then y? = y; and we have that:
gia-(lfa«)fgi@ i + 1 —y; — b;)(—2y:b; +yi + bi)
n — ? 1) T n Pt y’L 2 yl ? y’L 2 y'L K2

2 n
= Z(—‘lyib? + 2y3b; + 2y} — 2yibi + yi + b;
=1

+ 2yib; — yi — yibi + 2u:b7 — yib; — b7)

2 n
= ;Zl(bi —b7)
2 n

Therefore we get:

n

div(Reut(F, 0)) = % S b1 — by) = % Y aii - a)

i=1

I Proof for Theorem

Before providing the proof for Theorem[I0] we show that average sample agreement over hypotheses
that realize patterns in the pattern Rashomon set is negatively proportional to the average loss of these
hypotheses. We use this intuition to derive an upper bound for average sample agreement and then
discuss the upper bound for pattern diversity.

Let hypothesis pattern set Hr(F,0) C Raer (F, 0) be a set of unique hypotheses corresponding to each
patter in 7(F, 0), meaning that there is no fT, f' € Hr(r ), such that fT # fF, yet pfT = pls.

Theorem 23. Average sample agreement over the pattern Rashomon set is negatively proportional to
the average loss of models in the hypothesis pattern Rashomon set H.(F,0),

1 & .
- > ai =1 Lavg(H«(F,0)),
i=1

where Lyg(Hr(F,0)) = & 25:1 L(fF). Moreover, when the Rashomon parameter 0 = 0, then

1< .
ﬁ;aizl—L(f).

Proof. For a given (z;,y;), when hypothesis f[" realizes pattern p/* = py,, we have that pi, = f7 (z;).
Consider average sample agreement:

1 n 1 n 1 11
w2 = 2 2 e

=1
1 & 1 &
52 1—ﬁ;1[p;;¢yi]

'Since there could be many hypotheses that achieve the same pattern, H(F,6) is not unique. We can work
with any of them, as H (o) is simply a representation of the pattern set in the hypothesis space.

33



I
k=1
=1 — Lavy(H(F,0))
When 0 = 0, for any k, L(f) = L(ff), therefore 1 Ly e =1— L(f). O

Given the definition of models in the Rashomon set, we can derive an upper bound on average sample
agreement in Corollary

Corollary 24. For any parameter 6 > 0, average sample agreement is upper and lower bounded by
the empirical loss of the empirical risk minimizer,

A 1 & i a
1—L(f)—9§;;aiS1—L(f)

Proof. Proof follows directly from Theorem|[23|and the fact that for every model f from the Rashomon
set, L(f) < L(f) < L(f) + 9. O

Finally, we provide proof for Theorem

Theorem [10 (Upper bound on pattern diversity). Consider hypothesis space F, 0-1 loss, and
empirical risk minimizer f. For any 6 > 0, pattern diversity can be upper bounded by

div(Rset(F,9)) < 2(L(f) +0)(1 = (L(f) + ) +26.
Proof. From the Cauchy—Schwarz inequality, we have that
n 2 n n n
<Zai> Slezaf:nZaf.
i=1 i=1 =1 i=1

Given this and from the definition of pattern diversity and Corollary 24 we get that:

div(]:?set F,0)) Zal 1—a;) = Zaz—fZa

2
2 — 2 [ 1 — 1 &
2<Z> (B (8

<2(1-L(f) —201 - L(f) - 6)?
f) ) +6) —2(L(f) +6)*

=2-2L(f) - 2+ 4(L(f)
=2(L(f) +0 = (L() +0)* +0)
=2(L(f) +0)(1 = (L(f) + 6)) +20.

When 6 = 0, then div( Ry (F,0)) < 2L(f)(1 — L(f)). O
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J Proof for Theorem

We state and prove Theorem [IT]below.

Theorem E Consider a hypothesis space F, 0-1 loss, and a dataset S. Let p € (0, %) be the
probability with which each label y; is flipped independently, and let S, ~ Q(S,) denote a noisy

version of S. For the Rashomon parameter 8 > 0, ifinfje 7 Eg, Lg, (f) < 3 — 0 and Ls(fs) < z,
then adding noise to the dataset increases the upper bound on pattern diversity of the expected
Rashomon set:

Udiv(RsetS (fa 9)) < Udiv(RsetEspNQ(SP) Sp (-7:7 6))

Proof. Given the noise model, hypothesis f is in the expected Rashomon set if Eg, ﬁgp( ) <
infrerEg, Ls, (f) + 0. Let f € F be such that f € arginfer Eg, Ls, (f). Since p € (0, 1), and

ﬁs( fs) < % by assumption, from (3) and the definition of the empirical risk minimizer, we have
that:

inf Eg, L =Es, Ls,(f
jnf Es, s,(f) =Es, Ls,(f)
= (1—2p)Ls(f) +p
> (1-2p)Ls(fs) +p
> jls(fs)-
Consider g(z) = 2(z 4+ 0)(1 — x — 0) + 20. For z € [0, 5 — 6), g(x) is monotonically increasing,

as g’ (z) =2(1 —2 —0) —2(z +60) =4 (% — 2 — ) > 0. Given monotonicity, assumption of the
theorem inf e 7 Eg, ]isp(f) < % — 0, and since ﬁs(fs) <infrcrEg, ﬁsp(f), we have that

Udiv(Rets (F,0)) = 2 (fis(fs) + 9) (1 — Ls(fs) - 9) + 20

<2 (}161;_]]‘:30 Ls,(f) +9> (1 — fig__Esp Ls,(f) — 9) + 26
- Udiv(Rsetﬂ;S Sp (]:a 9))
P
O
Interestingly, in the proof of Theorem E, the empirical risk minimizer of dataset .S, fs, also
minimizes the expected risks over noisy datasets, meaning that fs € arginf;cpEg, Ls, (f). To see
this, assume that fg ¢ arginfrep Eg, f/sp (f), then there is f € arginfjep Es, f/Sp (f), such that:

Es, Ls,(f) < Es, Ls,(fs).
Applying (3) to both sides of the inequality above, we get that:

(1=2p)Ls(f) +p < (1= 2p)Ls(fs) + p,
which after simplification becomes:
Ls(f) < Ls(fs).
This is a clear contradiction, since fs is the empirical risk minimizer on S, and thus ﬁs( fs) <

ES( f) for any f € F, including f. Therefore our assumption was incorrect, and fg €
arginfrer Eg, Ls, (f).

K Setup for experiments

K.1 Datasets Description

Please see Table [K.T for the description of datasets used in the paper and all the processing steps. We
normalize all real-valued features.
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Table 1: Preprocessed datasets

Dataset Number of Number of Notes
Samples Features

Car Evaluation 1728 16 We use one-hot encoding for features

Breast Cancer Wis- 699 11 We use one-hot encoding for features

consin

Monks 1 124 12 We use one-hot encoding for features

Monks 2 169 12 We use one-hot encoding for features

Monks 3 122 12 We use one-hot encoding for features

SPECT 267 23 We use one-hot encoding for features

COMPAS 6907 13 Processed in [52]]

FICO 10459 18 Processed in [52]]

Bar 7 (Coupon) 1913 15 Processed in [52]]

Expensive Restaurant 1417 16 Processed in [52]

Carryout Takeaway 2280 16 Processed in [52]

Cheap Restaurant 2653 16 Processed in [52]

Coffee House 3816 16 Processed in [52]]

Bar 1913 16 Processed in [52]]

Telco Bin 7043 6 We use only the binary features

Iris 100 4 We consider classes Versicolour and Setosa

Wine 130 13

Wine 4 130 4 We use PCA to create 4 features

Seeds 4 140 4 We consider classes 1 and 2 and use PCA to
create 4 features

Immunotherapy 4 90 4 [21} 22]. We use one-hot encoding for fea-
ture “type”. We use PCA to create 4 features

Penguin 4 265 4 We use one-hot encoding for feature “island.”
We consider classes “adelie” and “gentoo”
only and use PCA to create 4 features

Digits 0-4 4 359 4 We consider digit 0 and digit 4. We use PCA

to create 4 features

K.2 Illustration of Cross-Validation Process in Step 3

We considered uniform label noise where each label is flipped independently with probability p. For
each dataset, we performed five random splits into a train set and a validation set, where the validation
set size is 20% of the number of samples. For the tree depth of CART, we considered the values
d € {1,...,m}, where m is the number of features for a given dataset.

For Figure [I(a), we tuned the parameters and then added noise to see what happens, which is
that performance degrades. For every train/validation split we performed 5-fold cross-validation
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Figure 7: Practitioner’s validation process in the presence of noise for gradient boosted trees. For
a fixed number of estimators, as we add noise, the gap between training and validation accuracy
increases (Subfigure a). As we use cross-validation to select the number of estimators, the best
number of estimators decreases with noise (Subfigure b).
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on the training set and computed the best depth. We fixed this depth (and thus hypothesis
space). Then, we start adding noise to the dataset. We considered six different noise levels,
p € {0,0.03,0.05,0.10,0.15,0.20.0.25}. For every level, we performed 25 draws of S,. For
every noise level, noise draw, and train/validation split, we evaluated train and validation performance
and reported the average.

For Figure [I(b), we tuned the parameters for each noise level. We will see that noisier datasets
lead us to use more regularization. We started adding noise to the dataset and then chose the best
parameter based on cross-validation. More specifically, we considered six different noise levels,
p € {0,0.03,0.05,0.10,0.15,0.20.0.25}. For every level, we performed 25 draws of S,. Then we
performed 5-fold cross-validation on the training data to choose the best depth for CART. For every
noise level, noise draw, and train/validation split, we report mean depth based on cross-validation
results.

We performed a similar experiment to Figure [I] for the gradient boosting algorithm, where we varied
the number of tree estimators. We observe similar behaviors, where, with more noise, the best
number of estimators (according to cross-validation) decreases. We used the same level of noise and
cross-validation procedure as discussed above. For the number of estimators, we considered values
d € {5,10,20,...,150}.

K.3 Branch and Bound Method to Compute Patterns in the Rashomon set

Here we describe a two-step method that allows us to compute all patterns in the pattern Rashomon
set. In the first step, we reduce the complexity of the problem, by discarding points that have low
sample agreement. In the second step, we use a branch-and-bound approach in order to enumerate
patterns and discard prefixes of those patterns that will not be in the Rashomon set based on the
Rashomon parameter and the empirical risk of the empirical risk minimizer.

Consider a dataset S = {z;} . For every point z; assume that we have sample agreement a;. If
a; = 0, it means that all patterns in the pattern Rashomon set assign an incorrect label to sample
z;. On the other hand, if a; = 1, all patterns assign the correct label. If we exclude all z; such that
a; = 0 or a; = 1 from the dataset, then the number of patterns will not change in the Rashomon
set. Therefore, for a given point 2, (kK = 1..n) we will try to answer a question: is there a model in
the Rashomon set such that it classifies z;, = (xx, —yx) correctly and still stays in the Rashomon
set. If there is no such model, then sample zj; has no influence on the pattern Rashomon set. Since it
is harder to optimize for 0-1 loss, we instead consider exponential loss. If the problem is separable
by 0-1 loss, then exponential loss will converge to a separable solution exponentially fast (which
is known from the convergence analysis of AdaBoost [4]]). Then given hypothesis space of linear
models F = {wTz}, for every z;, we aim to solve following optimization problem:

n

1 T
i — —Yiw T,
min - Z e 8)
=0
ypw’ xy <0, )

and then check if w” x is in the Rashomon set defined by 0-1 loss.

Since we optimize exponential loss, it is fast to solve the optimization problem with gradient descent.
More importantly, we can run the optimization in parallel for samples zj. After, we consider dataset
Sinside that contains only those samples for which models were in the Rashomon set that could
accommodate misclassified z;. We formally define the dicard point procedure in procedure DISCART
POINTS below:

procedure DISCARD POINTS(dataset S, ERM f , the Rashomon parameter 6)
Initialize Sgp.
for every z = (z,y) € S do ~
Solve optimization problem (8)-(9). Let f be a solution.
if L(f) > L(f) + 6 then
add z to Sy, (this point has a single predicted label for the entire Rashomon set).
end if
end for
return Sg,,.
end procedure
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In the second step, we build a search tree over the set of patterns that are formed by samples in Siyside-
We use breadth-first search over subsets of data. We “bound” (i.e., exclude part of the search space)
when the prefix of the pattern (which is the part of the dataset we are working with) misclassifies

more samples than the threshold to stay in the Rashomon set, which is L(f) + 6. Since not all
patterns can be realized by the model class. We “bound” if the prefix or pattern can not be achieved
(the pattern is achievable when all points with labels matching the pattern are classified correctly
by some model from the hypothesis space). In order to perform branch and bound more effectively,
given an empirical risk minimizer (ERM), we sort points in the dataset based on their distance to the
decision boundary of the ERM. More specifically, we split the points into four categories depending
on whether the point is a true positive, false positive, true negative, or false negative. Then for every
category, we compute the distances from each point to the decision boundary of the ERM and then
sort points from least distance to greatest distance. Finally, we cyclically choose one point from each
category until all samples have been considered. Conceptually, true positive and true negative samples
that are closest to the decision boundary determine most of the patterns in the pattern Rashomon set.
We add false positives and false negatives early to the order of points as they are more likely to be
misclassified, allowing us to bound the prefixes sooner. We describe the branch and bound procedure
in Algorithm (1] We use bit vectors to represent prefixes and patterns to speed up computations. Since
we apply this approach to linear models, we use logistic regression without regularization to check
the achievability of the patterns and their prefixes. However, the algorithm in general can be applied
to other hypothesis spaces and losses (for example, hinge loss).

Algorithm 1 Branch and bound approach to find the pattern Rashomon set

Input: The Rashomon parameter 6, dataset S = X x Y, ERM 1, algorithm A.
Output: Pattern Rashomon set 7(F, ).

1: Run DISCARD POINTS(S, f ,0) to exclude points that have the same predicted label for all
models in the Rashomon set. Let Sy, be the set of discarded points, and Siysige be the rest of the
points.

2: Divide points in Sj,ge into four categories: true positive, false positive, true negative, and false
negative.

3: Compute the distance from the decision boundary of f to every point for every category.

4: Sort points in ascending order for every category.

5: Create a new order of the points in Siyde by iteratively choosing points from each of the four
categories until all points in Siiqe are re-ordered.

6: Concatenate Sgp, and Sipsige to form S = X x Y based on the new order, where discarded points
are followed by the sorted points.

7: Initialize the prefix p;n;¢ of length |Sg,| based on the labels of the samples in Sg.

8: Initialize () as the queue for the breadth-first search over the prefixes.

9: while ¢ < |Siige| (loop over all points in Sipsige) do

10: for every elem in ) (loop over all prefixes in ()) do

11: for e € [0, 1] (loop over possible labels; this is a “branch” step) do

12: Y, =Ys,, Uelem U e (consider potential prefix).

13: Form the training data (X, Y,) to check if the prefix is achievable by algorithm A.
X, consists of the first |Sq,| + ¢ samples of sorted X .

14: Fit algorithm A on (X, Y,) and compute accuracy and loss.

15: if accuracy = 1 and loss < L(f) + 0 then

16: Q.append(elem U e) (the prefix is achievable and the pattern has the potential to
be achieved in the pattern Rashomon set, thus we add this element to the queue. This is a “bound”
step).

17: end if

18: end for

19: end for

20: end while
21: As we have now looped over all samples, () contains all the achievable patterns that are in the
Rashomon set, set 7(F,0) = Q.
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K.4 Computation of Rashomon Ratio and Pattern Rashomon Ratio for Step 4

We considered the hypothesis space of sparse decision trees of various depths and the hypothesis
space of linear models with a given number of non-zero coefficients.

For decision trees (Figure[2 (a)), we varied the depth of the maximum allowed decision tree from
1 to 7. To compute the numerator of the Rashomon ratio, we used TreeFARMS [52]]. We set the
Rashomon parameter to 5%. To compute the denominator of the Rashomon ratio, we considered
all possible sparse decision trees up to a given depth d and used the following recursive formula to
compute the size of hypothesis space with m features:

C(d,m) =2+mC(d—1,m —1)?,

where C'(0, ) = 2. In the base case, the only possible trees classify every point as 0, or every point
as 1. Then for decision trees up to depth d with m > d features, there are two cases. The first case is
when the tree has depth 0 which produces 2 possible trees. The other case is when the tree has depth
at least 1. In this case, there are m possible features to initially split on, and then the left and right
subtrees are of depth at most d — 1 with m — 1 features to choose from. The left and right subtrees
can be chosen independently of each other, so we have mC(d — 1, m — 1)? trees in this case, which
proves the overall recursive formula.

Note that for decision trees of depth exactly equal to d for every tree path, following recursive formula
holds

Ccomplete(d7 m) = chomplete (d - 17 m — 1>25

which is equivalent to closed-form solution described in appendix [E.

For the hierarchy of regularized linear models (Figure 2/ (b)), we considered regularization for 1
non-zero coefficient, 2 non-zero coefficients, 3 non-zero coefficients, and 4 non-zero coefficients. To
compute the numerator of the pattern Rashomon ratio, we used the approach described in Section
We set the Rashomon parameter to 3%. To compute the denominator of the Rashomon ratio,
we used the formula that gives the number of all possible patterns for the hypothesis space of linear

models: if no m — 1 points are coplanar, C(n,m) = 237" ("7") [10].

K.5 Experiments for Pattern Diversity and Label Noise for Linear Models
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Figure 8: Rashomon set characteristics such as the number of patterns in the Rashomon set (Subfigure
a) and pattern diversity (Subfigure b) tend to increase with uniform label noise for hypothesis spaces
of linear models.

For the hypothesis space of linear classifiers, we show the pattern diversity and the number of patterns
in the Rashomon set for different datasets in the presence of noise in Figure[§] We considered uniform
label noise, where each label is flipped independently with probability p. We set noise level p to
values in {0, 0.02, 0.04, 0.06,0.08, 0.10,0.15} and performed five draws of .S, for every noise level.
We then computed the pattern Rashomon set for each draw using the method described in Appendix
K.3|and finally computed the pattern diversity. Both the number of patterns and pattern diversity tend
to increase with label noise.
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Figure 9: (a) Curve of the hypothesis space complexity vs. Rashomon ratio (as in Figure [2) stays
the same shape for different Rashomon parameters for the Monks 3 dataset for the hypothesis space
of sparse decision trees. (b, c) Rashomon characteristics tend to increase with uniform label noise
for the hypothesis space of decision trees (as in Figure [3)) for different Rashomon parameters for the
Monks 3 dataset. For (b) and (c), we averaged over 25 iterations.

K.6 The Choice of the Rashomon Parameter does not Influence Results

For Figures 2(a) and 3, we set the Rashomon parameter to be 5%. In Figure 9} on the example
of Monks 3 dataset, we show that the results in Figures |Z(a) and E hold for different values of the
Rashomon parameter.

K.7 Computation Resources

We performed experiments on Duke University’s Computer Science Department cluster. We paral-
lelized computations for the majority of the figures. It took up to 3 hours to compute the Rashomon
sets for the hypothesis space of sparse decision trees for different noise levels and draws (Figures
and [9)), and up to 48 hours for the hypothesis space of linear models (Figures [2]and [8).
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