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The equation numbers and result references without prefixes correspond directly to those presented1

in the main paper. Throughout this supplementary material, labels are prefixed with “S” to facilitate2

easy cross-referencing with the corresponding sections in this document.3

In this supplement, we expand on material from the main paper, addressing each point as follows:4

1. An in-depth comparison with related work is covered in Section S1.5

2. Section S2 presents the datasets and details of the attackers, and includes additional experi-6

mental results, inference time, and model size to reinforce our model’s effectiveness.7

3. Theoretical proofs supporting assertions made in the main paper are presented in Section S3.8

4. A concrete example to illustrate our claims is provided in Section Section S4.9

5. The complete summary of the algorithm can be found in Section Section S5.10

6. Lastly, we address the limitations of our work and discuss its broader impact.11

S1 Related Work12

In what follows, we briefly review a few concepts closely related to our work.13

Graph Adversarial Attacks and Defenses. In modification attacks, adversaries can perturb a graph’s14

topology by adding or removing edges [1–9]. To improve the modification attack performance,15

adversaries are also permitted to perturb node attributes [4–7, 10, 11]. In injection attacks, adversaries16

can only inject malicious nodes into the original graph [12–15] while the edges and nodes inside17

the original graph are not allowed to be perturbed. For defense methods against adversarial attacks,18

multiple robust GNN models have been proposed. Examples include RobustGCN [16], GRAND19

[17], ProGNN [18], GLNN [19], GAUGM [20], STABLE [21] and RWL-GNN [22]. In addition,20

preprocessing-based defenders including GNN-SVD [23] and GNNGuard [24] may help to improve21

GNN robustness.22

In this paper, we use different attacks to test GNNs robustness. We compare graph neural flows with23

different stability settings with the above-mentioned defense methods as robustness benchmarks.24

Stable Graph Neural Flow Networks. While traditional GNNs perform message passing on a25

simple, discrete and flat space, graph neural flows model the message passing as a continuous26

diffusion process that occurs on a smooth manifold. GRAND [25] and GRAND++ [26] use heat27

diffusion to achieve feature information exchange. BLEND [27] exploits the Beltrami diffusion where28

the nodes’ positional information is updated along with their features. GraphCON [28] adopts the29

coupled oscillator model that preserves the graph’s Dirichlet energy over time and thus mitigates30

the oversmoothing problem. In general, [29] shows that graph neural PDEs are Lyapunov stable and31

exhibit stronger robustness against graph topology perturbation than traditional GNNs.32

While most of the above-mentioned graph neural flows are Lyapunov stable, whether the notion of33

Lyapunov stability leads to better adversarial robustness is an open question. In this paper, we argue34

that Lyapunov stability does not necessarily imply adversarial robustness.35
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Hamiltonian Neural Networks. Hamiltonian equations have been applied to conserve an energy-like36

quantity in (graph) neural networks. The references [30–32] train a neural network to infer the37

Hamiltonian dynamics of a physical system, where Hamiltonian equations are solved using neural38

ODE solvers. In [33], the authors propose to learn a Hamiltonian function of the system by a neural39

network to capture the dynamics of physical systems from observed trajectories. They shows that40

the network performs well on noisy and complex systems such as a spring-chain system. To forecast41

dynamics, the work [34] use neural networks that incorporate Hamiltonian dynamics to efficiently42

learn phase space orbits and demonstrate the effectiveness of Hamiltonian neural networks on several43

dynamics benchmarks. The paper [35] builds a Hamiltonian-inspired neural ODE to stabilize the44

gradients so as to avoid gradient vanishing and gradient exploding.45

In this paper, inspired by existing Hamiltonian neural networks, we introduce several energy-46

conservative graph neural flows. We are neither simulating a physical system nor forecasting a47

forecast the dynamics for a physical problem. Instead, we combine the Hamiltonian mechanics48

concept with graph neural networks to develop a new robust GNN.49

S2 More Experiments50

S2.1 Data and Attackers51

The datasets and attack budgets utilized in Table 2 and Table 3 are outlined in Table S1 and Table S2,52

respectively. These datasets span various domains and scales, thereby providing a diverse base for our53

study. The adopted attack budget aligns consistently with the specifications set out in the paper [36].54

Table S1: Dataset Details
Dataset # Nodes # Edges # Features # Classes

Cora 2708 5429 1433 7

Citeseer 3327 4732 3703 6

PubMed 19717 44338 500 3

Coauthor 18,333 81,894 6,805 15

Computers 13,752 245,861 767 10

Ogbn-Arxiv 169343 1166243 128 40

Table S2: Attacks’ budgets for GIA. ∗ refers to
targted GIA.

Dataset max # Nodes max # Edges

Cora 60 20

Citeseer 90 10

PubMed 200 100

Coauthor 300 150

Ogbn-Arxiv∗ 120 100

Computers∗ 100 150

55

S2.2 Implementation Details56

The raw node features are compressed to a fixed dimension, such as 64, using a fully connected57

(FC) layer to generate the initial features q(0) in (9). At time t = 0, p(0) and q(0) are initialized58

identically. For t > 0, both q(t) and p(t) undergo updates using a graph ODE. The ODE is solved59

using the solver from [37]. It is observed that different solvers deliver comparable performance in60

terms of clean accuracy. However, to mitigate computational expense, the Euler solver is employed in61

our experiments, with an ablation study on different solvers provided for further insight. The integral62

time T acts as a hyperparameter in our model. Interestingly, the performance of the model exhibits63

minimal sensitivity to this time T . For all datasets, we establish the time T as 3 and maintain a fixed64

step size of 1. This setup aligns with a fair comparison to three-layer GNNs.65

All the baseline models presented in Table 2 and Table 3 are implemented based on the original work66

of [36]. The baseline model results in Table 4 are directly extracted from the paper [38]. This is done67

as we employ the same clean and perturbed graph datasets provided in their research [38].68

Our experiment code is developed based on the following repositories:69

• https://github.com/tk-rusch/GraphCON70

• https://github.com/twitter-research/graph-neural-pde71

• https://github.com/LFhase/GIA-HAO72

• https://github.com/ChandlerBang/Pro-GNN73
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S2.3 White-box Attack74

In our main study, we utilized black-box attacks. Now, we extend our experiments to incorporate75

white-box, injection, and evasion attacks. In the context of white-box attacks, the adversaries have76

full access to the target model, enabling them to directly attack the target model to generate a77

perturbed graph. This represents a significantly more potent form of attack than the black-box variant.78

Moreover, we execute inductive learning tasks the same as Table 2, with the corresponding results79

reported in Table S3. We observe that, under white-box attack conditions, all other baseline models80

exhibit severely reduced performance, essentially collapsing across all datasets. The classification81

accuracy of the HANG model experiences a slight decline on the Cora, Citeseer, and Pubmed82

datasets. However, its performance remains substantially superior to other diffusion models or GNN83

models. Intriguingly, our HANG-quad model remains virtually unaffected by the white-box attacks,84

maintaining a performance level similar to that observed under black-box attacks. This observation85

underscores the robustness of HANG-quad and reiterates the critical role that the energy conservation86

property plays in fortifying the model against adversarial attacks.87

Table S3: Node classification accuracy (%) on graph injection, evasion, non-targeted, white-box
attack in inductive learning. The best and the second-best result for each criterion are highlighted in
red and blue respectively.

Dataset Attack HANG HANG-quad GraphCON GraphCurv GRAND GAT GraphSAGE GCN

Cora

clean 87.13±0.86 79.68±0.62 86.27±0.51 86.13±0.51 87.53±0.59 87.58±0.64 86.65±1.51 88.31±0.48
PGD 67.69±3.84 78.04±0.91 42.09±1.74 37.16±1.69 36.02±4.09 30.95±8.22 29.79±7.56 35.83±0.71

TDGIA 64.54±3.95 77.35±0.66 19.01±1.45 15.46±1.98 14.72±1.97 4.81±1.19 17.83±6.62 33.05±1.09

Citeseer

clean 74.11±0.62 71.85±0.48 74.84±0.49 69.62±0.56 74.98±0.45 67.87±4.97 63.22±9.14 72.63±1.14
PGD 67.54±1.52 72.21±0.71 42.78±1.54 32.24±1.21 38.57±1.94 25.87±6.69 29.65±4.11 30.69±2.33

TDGIA 63.29±3.15 70.62±0.96 33.55±1.10 16.26±1.20 30.11±1.43 17.46±3.34 17.83±1.56 21.10±2.35

CoauthorCS

clean 96.16±0.09 95.27±0.12 95.10±0.12 93.93±0.48 95.08±0.12 92.84±0.41 93.0±0.39 93.33±0.37
PGD 93.40±0.71 93.25±1.02 7.80±1.18 13.21±4.21 8.0±0.06 11.96±7.10 10.73±6.84 11.02±5.04

TDGIA 93.38±0.71 94.12±0.43 7.35±1.61 10.38±1.07 4.53±1.33 1.35±0.55 2.89±1.65 3.61±1.77

Pubmed

clean 89.93±0.27 88.10±0.33 88.78±0.46 86.97±0.37 88.44±0.34 87.41±1.73 88.71±0.37 88.46±0.20
PGD 68.62±2.82 87.64±0.39 36.86±2.63 39.34±0.77 39.52±3.35 38.04±4.91 38.76±4.58 39.03±0.10

TDGIA 69.56±3.16 87.91±0.46 31.49±1.87 30.15±1.30 36.19±7.04 24.43±4.10 38.89±0.76 42.64±1.41

S2.4 Attack Strength88

We assess the robustness of the HANG model and its variant under varying attack strengths, with89

the node classification results displayed in Table S4. Our analysis reveals that the HANG model90

demonstrates superior robustness as the attack budget escalates. It’s noteworthy, however, that under91

larger attack budgets, HANG-quad may relinquish its robustness attribute in the face of PGD and Meta92

injection attacks. This result implies that the amalgamation of Lyapunov and Conservative stability93

facilitates enhanced robustness only under minor graph perturbations. On the contrary, the HANG94

model, which solely incorporates Conservative stability, exhibits a consistently high-performance95

level regardless of the increasing attack strength.96

S2.5 Nettack97

We further evaluate the robustness of our model under the targeted poisoning attack, Nettack [4].98

Adhering to the settings outlined in [38], we select nodes in the test set with a degree greater than99

10 to be the target nodes. We then vary the number of perturbations applied to each targeted node100

from 1 to 5, incrementing in steps of 1. It’s important to note that Nettack only involves feature101

perturbations. The test accuracy in Table S5 refer to the classification accuracy on the targeted nodes.102

As demonstrated in Table S5, our HANG-quad model exhibits exceptional resistance to Nettack,103

thereby underlining its superior robustness. This suggests that the combination of Lyapunov stability104

and energy conservative stability significantly enhances robustness in the face of graph poisoning105

attacks, as Lyapunov stability has been shown to offer robustness against minor feature perturbations106

in the input graph [29]. Furthermore, our HANG model also displays superior resilience compared107

to other PDE models, reinforcing the fact that the energy conservative principle contributes to its108

robustness.109
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Table S4: Node classification accuracy (%) on graph injection, evasion, non-targeted, black-box
attack in inductive learning under various attack strength.

Dataset Attack # nods/edges injected HANG HANG-quad GraphCON GraphCurv GRAND GAT GraphSAGE GCN

Cora

PGD 80/40 75.78±3.46 78.41±0.71 33.60±2.62 33.74±2.84 34.04±1.87 32.83±3.51 26.79±6.53 31.31±0.06
PGD 100/60 74.25±1.39 76.74±0.48 62.69±0.83 33.65±2.50 32.72±1.47 31.25±2.13 25.94±7.24 31.23±0.0
PGD 120/80 71.01±2.60 70.69±1.83 33.46±1.95 34.88±3.66 32.21±0.83 31.28±0.15 25.57±7.28 31.23±0.0
PGD 140/100 69.72±2.94 59.75±3.57 34.02±1.97 36.98±4.87 33.31±1.79 30.26±3.49 25.11±7.56 31.23±0.0
PGD 160/120 68.12±2.93 45.06±4.77 33.34±2.27 39.78±4.15 33.07±1.34 31.28±0.15 24.87±7.80 31.23±0.0
PGD 180/140 66.51±4.17 36.69±4.02 33.19±1.74 45.11±4.76 33.12±1.64 31.41±0.52 24.79±7.90 31.23±0.0
PGD 200/160 66.01±4.10 29.58±5.11 32.99±2.40 50.51±3.94 32.18±0.89 31.47±0.70 24.74±7.96 31.23±0.0

TDGIA 80/40 79.47±2.57 78.48±0.54 21.69±1.51 28.70±3.18 22.34±2.18 25.33±6.27 25.43±3.22 26.51±3.36
TDGIA 100/60 78.73±1.20 78.74±0.94 24.32±4.16 36.07±2.27 27.10±2.04 27.67±5.38 30.63±0.62 30.68±0.34
TDGIA 120/80 78.48±1.91 78.20±0.78 29.22±1.91 36.43±2.58 29.06±2.24 29.67±6.34 30.37±0.41 31.28±0.87
TDGIA 140/100 79.40±2.20 77.42±0.71 23.54±1.49 25.54±4.26 27.04±3.25 26.99±6.05 28.85±2.75 31.94±3.26
TDGIA 160/120 79.37±1.30 78.05±1.23 24.27±3.00 32.40±2.37 24.56±2.92 19.74±6.83 29.78±1.66 30.09±0.88
TDGIA 180/140 78.49±2.34 76.90±0.57 31.20±1.34 41.67±6.30 31.44±0.32 30.15±4.67 31.23±0.0 31.23±0.0
TDGIA 200/160 78.85±2.22 76.70±1.02 24.94±3.18 34.32±1.11 29.37±1.49 24.64±6.93 31.07±0.34 31.14±0.38

MetaGIA 80/40 74.41±2.74 78.10±0.71 34.73±3.45 33.58±2.74 33.43±1.20 32.16±1.71 29.58±3.90 31.28±0.10
MetaGIA 100/60 73.23±2.64 76.01±0.64 33.90±3.43 33.48±3.02 33.0±1.53 30.30±3.02 28.48±3.78 31.22±0.04
MetaGIA 120/80 73.63±1.86 18.21±7.41 32.91±1.47 47.80±4.06 32.79±2.59 31.23±0.0 24.76±7.93 31.23±0.0
MetaGIA 140/100 72.05±2.87 59.47±2.71 33.11±1.97 38.77±5.09 33.12±1.05 31.65±1.22 26.46±5.89 31.23±0.0
MetaGIA 160/120 70.93±2.20 17.78±7.89 33.51±2.36 57.77±3.18 32.46±1.0 31.42±0.60 24.69±8.02 31.23±0.0
MetaGIA 180/140 67.37±4.45 30.31±0.33 32.42±1.01 47.48±4.76 33.07±0.94 29.15±6.26 25.42±7.15 31.23±0.0
MetaGIA 200/160 68.44±2.71 16.69±6.29 32.68±1.38 64.38±1.73 32.52±1.04 28.79±7.09 24.69±8.02 31.23±0.0

Citeseer

PGD 110/30 72.23±0.79 71.98±0.70 25.06±3.41 41.09±14.36 27.48±3.54 18.49±1.94 20.55±4.44 18.63±0.92
PGD 130/50 71.61±0.84 71.44±0.72 22.90±4.73 43.05±13.60 26.42±6.16 18.33±1.75 19.16±2.95 17.85±1.66
PGD 150/70 72.01±0.68 70.33±0.97 24.28±4.68 38.89±13.86 30.63±4.89 18.15±1.77 18.73±2.19 17.42±0.51
PGD 170/90 71.22±0.67 67.81±1.11 23.79±4.70 26.14±4.72 21.49±2.54 19.09±2.83 17.51±0.41 17.65±0.75
PGD 190/110 71.18±0.54 62.26±1.51 22.88±3.01 29.57±7.91 19.95±2.03 17.31±3.40 17.44±0.34 17.85±1.15
PGD 210/130 71.13±0.72 50.15±1.88 24.90±3.30 31.26±4.51 20.65±1.23 17.33±3.40 17.39±0.33 17.67±0.90
PGD 230/150 71.13±0.85 36.03±2.13 28.16±3.98 35.71±4.84 21.36±2.23 17.31±3.40 17.38±0.34 17.75±1.28

TDGIA 110/30 72.48±0.67 72.30±0.82 24.30±1.73 26.31±1.64 23.85±1.25 19.26±3.59 20.24±1.97 18.80±2.45
TDGIA 130/50 72.26±0.72 72.32±0.69 27.34±2.72 32.0±2.62 23.37±1.07 18.15±1.68 21.16±2.68 20.08±2.78
TDGIA 150/70 72.15±0.58 72.41±0.86 26.41±1.68 27.39±1.25 22.21±1.82 19.26±3.08 19.54±2.25 20.39±2.18
TDGIA 170/90 72.41±0.64 72.06±0.98 21.63±1.18 25.25±1.94 20.05±1.46 18.16±2.49 19.09±2.28 19.37±2.30
TDGIA 190/110 72.80±0.85 72.39±0.65 24.56±2.34 26.97±2.04 19.94±1.44 18.04±1.59 20.13±1.72 21.53±2.92
TDGIA 210/130 72.35±0.42 71.78±0.82 24.58±3.51 24.49±1.19 21.46±1.93 18.49±2.13 20.16±2.43 18.46±1.72
TDGIA 230/150 71.77±0.71 71.76±0.81 19.01±2.74 28.85±1.65 19.28±1.72 18.97±2.65 20.76±4.0 18.76±2.02

MetaGIA 110/30 72.22±1.38 72.43±0.67 22.48±2.28 20.95±2.29 30.29±4.58 21.77±2.91 22.18±2.88 18.72±0.27
MetaGIA 130/50 72.18±1.17 71.96±0.86 23.28±4.32 19.81±1.44 25.91±3.65 20.44±2.63 20.67±2.39 18.16±0.16
MetaGIA 150/70 71.83±0.98 71.05±0.93 24.68±4.59 19.72±1.82 26.82±2.76 19.64±2.85 20.24±3.80 18.19±0.07
MetaGIA 170/90 71.76±1.22 68.81±0.77 22.48±2.22 20.80±1.97 29.07±8.81 18.82±2.68 19.20±2.75 18.27±0.0
MetaGIA 190/110 71.85±0.60 64.54±0.78 23.29±4.28 22.91±2.98 26.28±2.84 18.59±2.01 18.70±2.24 18.28±0.03
MetaGIA 210/130 71.39±0.72 56.44±2.42 22.56±3.09 24.97±2.53 26.84±3.41 18.71±2.64 18.61±2.09 18.27±0.0
MetaGIA 230/150 71.52±0.65 13.48±3.49 24.13±3.08 48.37±2.85 26.81±3.78 18.58±1.83 18.59±2.06 18.27±0.0

Table S5: Node classification accuracy (%) under modification, poisoning targeted attack (Nettack)
in transductive learning. The best and the second-best result for each criterion are highlighted in red
and blue respectively.

Dataset Ptb HANG HANG-quad GraphCON GraphCurv GRAND GAT GCN RGCN GCN-SVD Pro-GNN

Cora

1 75.54±3.10 76.99±3.16 73.25±3.91 63.73±2.25 80.12±1.81 76.04±2.08 75.06±1.02 76.75±1.71 77.23±1.82 81.81±1.66
2 73.73±3.64 76.51±2.60 67.83±3.0 62.41±2.94 76.27±1.79 70.24±1.43 70.60±1.10 70.96±1.14 72.53±1.60 75.90±1.43
3 68.43±4.23 73.13±2.85 68.19±2.10 61.20±3.08 70.48±3.74 65.54±1.34 67.95±1.72 66.51±1.60 66.75±1.54 70.12±1.93
4 66.02±2.21 72.53±2.14 57.59±2.34 56.51±2.72 65.30±2.40 61.69±0.90 61.57±1.47 59.28±2.68 60.72±1.63 65.66±1.35
5 60.12±3.63 68.80±2.55 55.30±4.77 51.93±2.77 57.95±2.38 58.31±2.03 55.54±1.66 55.30±1.66 57.71±1.82 64.34±1.72

Citeseer

1 76.03±3.51 79.05±1.38 76.03±3.44 68.89±2.67 80.0±1.05 81.27±1.38 78.41±1.62 78.25±0.73 80.16±2.04 81.75±0.79
2 74.76±2.50 77.94±2.29 68.73±6.62 67.62±3.11 74.28±7.47 77.43±4.89 74.92±3.54 75.40±2.04 79.84±0.73 81.27±0.95
3 74.76±2.18 77.14±2.48 60.47±5.24 60.63±3.87 57.14±9.28 60.85±2.99 63.97±3.69 60.31±1.19 77.14±2.86 79.68±1.98
4 73.49±3.02 78.41±1.62 55.55±6.23 53.17±6.48 59.84±2.75 61.59±4.64 55.40±2.60 55.49±1.75 69.52±3.31 77.78±2.84
5 72.06±3.56 73.49±3.48 51.75±2.77 48.73±4.60 48.41±8.10 55.56±6.28 47.62±5.17 47.44±2.01 69.21±2.48 71.27±4.99

Polblogs

1 97.06±0.66 97.37±0.37 87.07±1.35 68.17±3.25 96.41±0.87 97.22±0.25 96.83±0.17 97.00±0.07 97.56±0.20 96.83±0.06
2 96.39±1.16 96.89±0.16 82.92±1.53 65.48±2.85 92.93±4.21 96.11±0.65 95.61±0.20 95.87±0.23 97.12±0.09 97.17±0.12
3 96.02±0.93 96.65±0.15 80.76±0.74 62.59±1.99 91.96±4.22 95.81±0.56 95.41±0.18 95.59±0.27 96.61±0.14 96.93±0.12
4 93.81±3.86 96.26±0.53 77.46±1.59 58.68±0.40 86.83±6.28 94.80±0.66 94.24±0.24 94.37±0.26 96.17±0.19 96.89±0.16
5 91.65±4.67 95.91±0.33 75.30±2.71 59.02±3.19 83.69±5.88 93.28±1.43 93.00±0.48 93.20±0.43 95.13±0.25 96.13±0.25
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S2.6 ODE solvers110

The results from various ODE solvers are depicted in Table S6. We consider fixed-step Euler and111

RK4, along with adaptive-step Dopri5, from [37], and Symplectic-Euler from [28]. The Symplectic-112

Euler method, being inherently energy-conserving, is particularly suited for preserving the dynamic113

properties of Hamiltonian systems over long times. Our observations suggest that while the choice114

of solver slightly influences the clean accuracy for some models, their performance under attack115

conditions remains fairly consistent. Consequently, there was no specific optimization for solver116

selection during our experiments. For computational efficiency, we opted for the Euler ODE solver in117

all experiments presented in the main paper.118

Table S6: Node classification accuracy (%) on graph injection, evasion, non-targeted, black-box
attack in inductive learning of Citeseer dataset.

Attack Solver HANG HANG-quad GraphCON GraphCurv GRAND

clean

Euler 74.11±0.62 71.85±0.48 74.84±0.49 69.62±0.56 74.98±0.45
rk4 73.71±1.58 72.63±0.56 75.80±0.38 74.46±0.68 75.32±0.78

symplectic euler 71.35±1.91 72.80±0.64 75.43±0.62 69.87±0.78 75.70±0.71
dopri5 75.20±0.93 – 76.24±0.76 74.63±0.70 75.14±0.56

PGD

Euler 72.31±1.16 71.07±0.41 40.56±0.36 55.67±5.35 36.68±1.05
rk4 71.85±2.04 72.38±0.52 41.26±0.89 41.51±1.76 41.21±1.57

symplectic euler 70.57±1.74 72.46±0.53 40.87±2.62 49.09±7.82 39.72±1.54
dopri5 73.59±0.38 – 42.20±2.21 40.07±0.87 40.53±1.14

TDGIA

Euler 72.12±0.52 71.69±0.40 36.67±1.25 34.17±4.68 36.67±1.25
rk4 71.03±1.64 72.85±0.78 36.19±2.03 37.90±1.70 34.21±1.63

symplectic euler 71.79±2.03 73.31±0.58 35.32±1.78 28.40±0.91 35.12±1.62
dopri5 72.14±0.71 – 38.04±1.71 40.63±1.60 34.39±1.19

MetaGIA

Euler 72.92±0.66 71.60±0.48 48.36±2.12 45.60±4.31 46.23±2.01
rk4 70.25±1.45 72.39±0.61 42.57±1.09 43.38±0.88 41.01±0.92

symplectic euler 71.56±1.07 72.86±0.72 42.57±1.09 44.72±6.28 41.0±0.64
dopri5 71.83±1.26 – 42.61±0.57 42.93±0.61 41.74±0.69

S2.7 Computation Time119

The average inference time and model size for different models used in our study are outlined in120

Table S7. This analysis is performed using the Cora dataset, with all graph PDE models employing121

the Euler Solver, an integration time of 3, and a step size of 1. Additionally, for fair comparison, all122

baseline models are configured with 3 layers. Upon examination, it is observed that our HANG and123

HANG-quad models necessitate more inference time compared to other baseline models. This is124

primarily due to the requirement in these models to initially calculate the derivative. However, when125

compared to other defense models, such as GCNGUAD, our models are still more efficient, thus126

validating their practical utility.127

Table S7: Average inference time and model size

Model HANG HANG-quad GraphCON GraphCurv GRAND GAT GraphSAGE GCN GCNGUARD RGCN

Inference Time (ms) 17.16 14.41 2.60 6.18 2.25 4.13 3.85 3.93 95.90 2.50

Model Size(MB) 0.895 0.936 0.732 0.734 0.732 0.381 0.380 0.380 0.380 0.735

S3 Proof of Theorem S1128

.129

In the main paper, the statement of Theorem S1 contains some superfluous assumptions, which we130

revise herein, supplying proofs as required.131

Theorem S1. Given that AG is right stochastic, GRAND demonstrates both BIBO and Lyapunov132

stability for any α ≥ 1. Moreover, if α > 1, it achieves asymptotic stability under any perturbation.133

For α = 1, if we take the normalized adjacent matrix AG = WD−1, where D is the diagonal node134

degree matrix, GRAND conserves a quantity that can be interpreted as energy. Additionally, when135

α = 1, it attains asymptotic stability if the graph is aperiodic and strongly connected, and if the136

perturbation on X(0) preserves unchanged column summations.137
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Proof. Recall that138

dX(t)

dt
= (AG(X(t))− αI)X(t) := AG(X(t))X(t), (S1)

where AG is right stochastic and α ≥ 1.139

Without loss of generality, we assume X ∈ R|V|×1 since the results can be generalized to X ∈ R|V|×r140

component-wise.141

As AG(X(t)) is consistently right-stochastic and α ≥ 1, the eigenvalues of AG(X(t)) =142

AG(X(t))− αI always have non-positive real parts [39][Theorem 8.1.22]. We define a Lyapunov143

function as V (X(t)) = ∥X(t)∥2 := X(t)⊺X(t) where ∥ · ∥ is the euclidean norm.144

Take the derivative of V with respect to time, we have145

V̇ (X(t)) = X
⊺
(t)Ẋ(t) + Ẋ

⊺
(t)X(t) = X

⊺
(t)

(
AG(X(t)) +A

⊺
G(X(t))

)
X(t) (S2)

Since the eigenvalues of AG(X(t)) possess negative real parts, we infer that V̇ (X(t)) ≤ 0. This146

shows that V (X(t)) is non-increasing over time, thereby implying that X(t) remains bounded. In147

effect, we also prove Lyapunov stability concerning the equilibrium point X = 0.148

To prove asymptotic stability for the equilibrium point X = 0 when α > 1, we need to show that the149

system not only remains bounded but also approaches X = 0 as t → ∞. This is indicated by the fact150

that the eigenvalues of AG(X(t)) have negative real parts when α > 1, which means V̇ (X(t)) < 0151

unless X(t) = 0. This signifies that V (X(t)) strictly declines over time unless X(t) = 0, thereby152

showing that the system will converge to X = 0 as t → ∞.153

We next show that if AG is chosen as WD−1, GRAND conserves a quantity that can be regarded as154

energy. The “energy” is the sum of the elements of X(t). This quantity is conserved if 1⊺AG = 0⊺,155

where 1 is an all-ones vector, which is evident given that WD−1 is column stochastic.156

Finally, we aim to prove that GRAND is asymptotic stable concerning a specified equilibrium vector157

when α = 1 and the graph is aperiodic and strongly connected.158

Consider the matrix WD−1; given that WD−1 is column stochastic and the graph is strongly159

connected and aperiodic, the Perron-Frobenius theorem as stated in [39][Lemma 8.4.3., Theorem160

8.4.4] confirms that the value 1 is the unique eigenvalue equal to the spectral radius. This infers161

that the modified adjacency matrix AG = WD−1 − I has an eigenvalue of 0, with the rest of the162

eigenvalues having strictly negative real parts. Representing AG = SJS−1 as the Jordan canonical163

form, we conclude that J contains a block of only a single 0 (for simplicity, we assume 0 is the first164

Jordan block).165

As our system of equations is a linear time-invariant ordinary differential equation (ODE), the solution166

to (S1) can be expressed as:167

X(t) = eAGtX(0)

= SeJtS−1X(0) (S3)

Further, the Jordan canonical form of WD−1 is represented as SJ̄S−1 where J̄ = J+ I with the168

first Jordan block being 1 and the rest having eigenvalues strictly less than 1. Based on [39][Theorem169

3.2.5.2.], we observe that limk→∞(WD−1)k = limk→∞ SJ̄kS−1 = SΛS−1, where Λ is a diagonal170

matrix with the first element as 1 and all the others as 0:171

Λ =


1

0
. . .

0


Since limk→∞(WD−1)k maintains its column stochasticity and the rank of SΛS−1 is 1, we deduce172

that the first row of S−1 is a1⊺ with a being a scalar and 1 an all-ones vector. According to [39][3.2.2],173

it follows that174

lim
t→0

X(t) = lim
t→0

SeJtS−1X(0) = SΛS−1X(0) (S4)
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If s := 1⊺X(0) remains constant, we have that limt→0 X(t) = sas where s is the first column of175

S. We thus conclude that if the perturbation on X(0) maintains the column summations, i.e. the176

“energy”, unchanged, the asymptotic convergence to the equilibrium vector sas remains unaffected.177

The proof is now complete.178

S4 Example 1179

𝑨 𝑨 + 𝜺

misclassification

Class 1

Class 2

Figure S1: Lyapunov stability and adversarial robustness

We provide here an example to demonstrate our claim: consider the Lyapunov stable ODE180

ẋ(t) =

(
−1 0
0 −5

)
x(t) (S5)

with initial condition x(0) = [x1(0), x2(0)]
⊺

. The solution to this ODE is given by x(t) =181

x1(0)e
−t[1, 0]

⊺

+ x2(0)e
−5t[0, 1]

⊺

. For all initial points in R2, we have x(t) → 0 as t → ∞.182

Furthermore, as t → ∞, the trajectory x(t) for any initial point is approximately parallel to the x-axis.183

We draw the phase plane in Fig. S1.184

Assume that the points on the upper half y-axis belongs to class 1 while we have a linear classifier that185

seperates class 1 and class 2 as shown in Fig. S1. We observe that for the initial point A belonging to186

class 1, the solution from a small perturbed initial point A+ ϵ is misclassified as class 2 for a large187

enough t for any linear classifier. We see from this example that Lyapunov stability does not imply188

adversarial robustness in graph neural diffusion models.189

S5 Complete Algorithm Summary190

We present the complete algorithm of HANG in Algorithm 1, which unfortunately had been delayed191

in its inclusion within the main paper due to space constraints.192
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Algorithm 1: Graph Node Embedding Learning with HANG
1 Initialization: Initialize the network modules including Hamiltonian function network Hnet, the

raw node features compressor network FC, and the final classifier.

2 I. Training:
3 for Epoch 1 to N do
4 1) Perform the following to obtain the embedding qk(T ) for each node k:
5 Input: G = (V, E) with raw node features
6 Apply FC to compress raw features for each node and get {(qk(0),pk(0))}|V|

k=1. Here, we
divide the 2r dimensions into two equal segments. The first half functions as the feature
vector qk(0) = (q1k, . . . , q

r
k), while the second half acts as “momentum” vectors

pk(0) = (p1k, . . . , p
r
k) that guide system evolution. For simplification, in code

implementation, we set the output feature dimension of the compressor FC as r and
designate pk(0) = qk(0).

7 2) To better express the evolution dynamics mathematically, concatenate and relabel the node
features as:

q(0) =
(
q1(0), . . . qr|V|(0)

)
=

(
q1(0), . . . ,q|V|(0)

)
.

p(0) =
(
p1(0), . . . pr|V|(0)

)
=

(
p1(0), . . . ,p|V|(0)

)
, (S6)

Note that in the actual code implementation, the concatenation of node features is not
necessary as Hnet is realized as either (11) or (12). The concatenate operation is only for
mathematical formulation.

8 3) The trajectory of feature evolution is modelled as per the following canonical Hamilton’s
equations:

q̇(t) =
∂Hnet

∂p
, ṗ(t) = −∂Hnet

∂q
, (S7)

with the initial features (q(0), p(0)) ∈ R2r|V|.
9 Various ODE solvers as provided by [37] and the symplectic-euler solver from [28] can be

employed to solve (S7). We refer readers to Section S2.6 for more details.
10 4) Acquire the evolved features at time T as q(T ), which is then decompressed into

individual node features qk(T )
|V|
k=1 for further utilization.

11 5) Utilize backpropagation to minimize the cross-entropy loss for node classification.
12 6) Perform validation over the validation split.
13 7) Save the model parameters.
14 II. Testing:
15 Load the model from the best validation epoch and perform Step I.1-4). to obtain the final feature

embedding over the test split. Perform node classification.

193

Limitations194

While our work on graph neural flows presents promising advancements in enhancing adversarial195

robustness of GNNs using Hamiltonian-inspired neural ODEs, it is not without limitations. As we196

demonstrated in the paper, the notions of stability borrowed from dynamical systems, such as BIBO197

stability and Lyapunov stability, do not always guarantee adversarial robustness. Our finding that198

energy-conservative Hamiltonian graph flows improve robustness is only one facet of the broader199

landscape of potential stability measures. It is possible that other notions of stability, not covered200

in this work, could yield additional insights into adversarial robustness. Our current Hamiltonian201

graph neural flows do not explicitly account for quasi-periodic motions in the graph dynamics.202

The Kolmogorov-Arnold-Moser (KAM) theory, a foundational theory in Hamiltonian dynamics,203

is renowned for its analysis of persistence of quasi-periodic motions under small perturbations in204

Hamiltonian dynamical systems. While the energy-conserving nature of our Hamiltonian-inspired205

model inherently offers some level of robustness to perturbations, an explicit incorporation of KAM206

theory could potentially further improve the robustness, particularly in the face of quasi-periodic207
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adversarial attacks. However, this is a complex task due to the high dimensionality of typical graph208

datasets and the intricacies involved in approximating quasi-periodic dynamics.209

Broader Impact210

This research, centered on enhancing adversarial robustness in graph neural networks (GNNs), carries211

implications for various sectors, such as social media networks, sensor networks, and chemistry. By212

improving the resilience of GNNs, we can boost the reliability of AI-driven systems, contributing to213

greater efficiency, productivity, and cost-effectiveness. The shift towards automation may displace214

certain jobs, raising ethical concerns about income disparity and job security. Moreover, while our215

models enhance robustness, potential system failures can still occur, with impacts varying based on the216

application. Lastly, the robustness conferred might be exploited maliciously. Our work underscores217

the importance of diligent oversight, equitable technology implementation, and continuous innovation218

in the development of AI technologies.219

References220

[S-1] J. Chen, Y. Wu, X. Xu, Y. Chen, H. Zheng, and Q. Xuan, “Fast gradient attack on network221

embedding,” ArXiv, 2018.222

[S-2] M. Waniek, T. P. Michalak, M. J. Wooldridge, and T. Rahwan, “Hiding individuals and223

communities in a social network,” Nature Human Behaviour, vol. 2, no. 1, pp. 139–147, 2018.224

[S-3] J. Du, S. Zhang, G. Wu, J. M. F. Moura, and S. Kar, “Topology adaptive graph convolutional225

networks,” ArXiv, vol. abs/1710.10370, 2017.226

[S-4] D. Zügner, A. Akbarnejad, and S. Günnemann, “Adversarial attacks on neural networks for227

graph data,” in Proc. Int. Conf. Knowl. Discovery Data Mining, 2018.228

[S-5] D. Zügner and S. Günnemann, “Adversarial attacks on graph neural networks via meta229

learning,” in Proc. Int. Conf. Learn. Representations, 2019.230

[S-6] Y. Ma, S. Wang, T. Derr, L. Wu, and J. Tang, “Graph adversarial attack via rewiring,” in Proc.231

Int. Conf. Knowl. Discovery Data Mining, 2021, p. 1161–1169.232

[S-7] Y. Sun, S. Wang, X. Tang, T.-Y. Hsieh, and V. Honavar, “Adversarial attacks on graph neural233

networks via node injections: A hierarchical reinforcement learning approach,” in Proc. Web234

Conf., 2020, p. 673–683.235

[S-8] X. Wan, H. Kenlay, B. Ru, A. Blaas, M. A. Osborne, and X. Dong, “Adversarial attacks on236

graph classification via bayesian optimisation,” arXiv preprint arXiv:2111.02842, 2021.237
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