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Abstract

We propose a novel model-based offline Reinforcement Learning (RL) frame-1

work, called Adversarial Model for Offline Reinforcement Learning (ARMOR),2

which can robustly learn policies to improve upon an arbitrary reference policy re-3

gardless of data coverage. ARMOR is designed to optimize policies for the worst-4

case performance relative to the reference policy through adversarially training5

a Markov decision process model. In theory, we prove that ARMOR, with a6

well-tuned hyperparameter, can compete with the best policy within data coverage7

when the reference policy is supported by the data. At the same time, ARMOR8

is robust to hyperparameter choices: the policy learned by ARMOR, with any ad-9

missible hyperparameter, would never degrade the performance of the reference10

policy, even when the reference policy is not covered by the dataset. To validate11

these properties in practice, we design a scalable implementation of ARMOR,12

which by adversarial training, can optimize policies without using model ensem-13

bles in contrast to typical model-based methods. We show that ARMOR achieves14

competent performance with both state-of-the-art offline model-free and model-15

based RL algorithms and can robustly improve the reference policy over various16

hyperparameter choices.17

1 Introduction18

Offline reinforcement learning (RL) is a technique for learning decision-making policies from19

logged data (Lange et al., 2012; Levine et al., 2020; Jin et al., 2021; Xie et al., 2021a). In com-20

parison with alternate learning techniques, such as off-policy RL and imitation learning (IL), offline21

RL reduces the data assumption needed to learn good policies and does not require collecting new22

data. Theoretically, offline RL can learn the best policy that the given data can explain: as long as23

the offline data includes the scenarios encountered by a near-optimal policy, an offline RL algorithm24

can learn such a near-optimal policy, even when the data is collected by highly sub-optimal policies25

and/or is not diverse. Such robustness to data coverage makes offline RL a promising technique for26

solving real-world problems, as collecting diverse or expert-quality data in practice is often expen-27

sive or simply infeasible.28

The fundamental principle behind offline RL is the concept of pessimism, which considers worst-29

case outcomes for scenarios without data. In algorithms, this is realized by (explicitly or implic-30

itly) constructing performance lower bounds in policy learning which penalizes uncertain actions.31

Various designs have been proposed to construct such lower bounds, including behavior regulariza-32

tion (Fujimoto et al., 2019; Kumar et al., 2019; Wu et al., 2019; Laroche et al., 2019; Fujimoto and33

Gu, 2021), point-wise pessimism based on negative bonuses or truncation (Kidambi et al., 2020; Jin34

et al., 2021), value penalty (Kumar et al., 2020; Yu et al., 2020), or two-player games (Xie et al.,35

2021a; Uehara and Sun, 2021; Cheng et al., 2022). Conceptually, the tighter the lower bound is, the36

better the learned policy would perform; see a detailed discussion of related work in Appendix D.37
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Figure 1: Robust Policy Improvement: ARMOR can improve performance over the reference policy
(REF) over a broad range of pessimism hyperparameter (purple) regardless of data coverage. ORL
denotes best offline RL policy without using the reference policy, and reference is obtained by
behavior cloning on expert dataset.

Despite these advances, offline RL still has not been widely adopted to build learning-based deci-38

sion systems beyond academic research. One important factor we posit is the issue of performance39

degradation: Usually, the systems we apply RL to have currently running policies, such as an engi-40

neered autonomous driving rule or a heuristic-based system for diagnosis, and the goal of applying41

a learning algorithm is often to further improve upon these baseline reference policies. As a result,42

it is imperative that the policy learned by the algorithm does not degrade the base performance. This43

criterion is especially critical for applications where poor decision outcomes cannot be tolerated.44

However, running an offline RL algorithm based on pessimism, in general, is not free from perfor-45

mance degradation. While there have been algorithms with policy improvement guarantees (Laroche46

et al., 2019; Fujimoto et al., 2019; Kumar et al., 2020; Fujimoto and Gu, 2021; Cheng et al., 2022),47

such guarantees apply only to the behavior policy that collects the data, which might not necessar-48

ily be the reference policy. In fact, quite often these two policies are different. For example, in49

robotic manipulation, it is common to have a dataset of activities different from the target task. In50

such a scenario, comparing against the behavior policy is meaningless, as these policies do not have51

meaningful performance in the target task.52

In this work, we propose a novel model-based offline RL framework, called Advesarial Model for53

Offline Rinforcement Learning (ARMOR), which can robustly learn policies that improve upon54

an arbitrary reference policy by adversarially training a Markov decision process (MDP) model, re-55

gardless of the data quality. ARMOR is designed based on the concept of relative pessimism (Cheng56

et al., 2022), which aims to optimize for the worst-case relative performance over uncertainty. In57

theory, we prove that, owing to relative pessimism, the ARMOR policy never degrades the perfor-58

mance of the reference policy for a range of hyperparameters which is given beforehand, a property59

known as Robust Policy Improvement (RPI) (Cheng et al., 2022). In addition, when the right hy-60

perparameter is chosen, and the reference policy is covered by the data, we prove that the ARMOR61

policy can also compete with any policy covered by the data in an absolute sense. To our knowl-62

edge, RPI property of offline RL has so far been limited to comparing against the data collection63

policy (Fujimoto et al., 2019; Kumar et al., 2019; Wu et al., 2019; Laroche et al., 2019; Fujimoto64

and Gu, 2021; Cheng et al., 2022). In ARMOR, by adversarially training an MDP model, we extend65

the technique of relative pessimism to achieve RPI with arbitrary reference policies, regardless of66

whether they collected the data or not (Fig. 1).67

In addition to theory, we design a scalable deep-learning implementation of ARMOR to validate68

these claims that jointly trains an MDP model and the state-action value function to minimize the69

estimated performance difference between the policy and the reference using model-based rollouts.70

Our implementation achieves state-of-the-art (SoTA) performance on D4RL benchmarks (Fu et al.,71

2020), while using only a single model (in contrast to ensembles used in existing model-based72

offline RL works). This makes ARMOR a better framework for using high-capacity world models73

(e.g.(Hafner et al., 2023)) for which building an ensemble is too expensive. We also empirically74

validate the RPI property of our implementation.75

2 Preliminaries76

Markov Decision Process We consider learning in the setup of an infinite-horizon discounted77

Markov Decision Process (MDP). An MDP M is defined by the tuple ⟨S,A, PM , RM , γ⟩, where78

S is the state space, A is the action space, PM : S × A → ∆(S) is the transition dynam-79

ics, RM : S × A → [0, 1] is a scalar reward function and γ ∈ [0, 1) is the discount factor.80
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A policy π is a mapping from S to a distribution on A. For π, we let dπM (s, a) denote the dis-81

counted state-action distribution obtained by running π on M from an initial state distribution d0,82

i.e dπM (s, a) = (1− γ)Eπ,M [
∑∞

t=0 γ
t
1 (st = s, at = a)]. Let JM (π) = Eπ,M [

∑∞
t=0 γ

trt] be the83

expected discounted return of policy π on M starting from d0, where rt = RM (st, at). We de-84

fine the value function as V π
M (s) = Eπ,M [

∑∞
t=0 γ

trt|s0 = s], and the state-action value function85

(i.e., Q-function) as Qπ
M (s, a) = Eπ,M [

∑∞
t=0 γ

trt|s0 = s, s0 = a]. By this definition, we note86

JM (π) = Ed0
[V π

M (s)] = Ed0,π[Q
π
M (s, a)]. We use [0, Vmax] to denote the range of value functions,87

where Vmax ≥ 1. We denote the ground truth MDP as M⋆, and J = JM⋆88

Offline RL The aim of offline RL is to find the policy that maximizes J(π), while using89

a fixed dataset D collected by a behavior policy µ. We assume the dataset D consists of90

{(sn, an, rn, sn+1)}Nn=1, where (sn, an) is sampled from dµM⋆ and rn, sn+1 follow M⋆; for sim-91

plicity, we also write µ(s, a) = dµM⋆(s, a).92

We assume that the learner has access to a Markovian policy class Π and an MDP model classM.93

Assumption 1 (Realizability). We assume the ground truth model M⋆ is in the model classM.94

In addition, we assume that we are provided a reference policy πref . In practice, such a reference95

policy represents a baseline whose performance we want to improve with offline RL and data.96

Assumption 2 (Reference policy). We assume access to a reference policy πref , which can be97

queried at any state. We assume πref is realizable, i.e., πref ∈ Π.98

If πref is not provided, we can still run ARMOR as a typical offline RL algorithm, by first performing99

behavior cloning on the data and setting the cloned policy as πref . In this case, ARMOR has RPI100

with respect to the behavior policy.101

Robust Policy Improvement RPI is a notion introduced in Cheng et al. (2022), which means that102

the offline algorithm can learn to improve over the behavior policy, using hyperparameters within103

a known set. Algorithms with RPI are more robust to hyperparameter choices, and they are often104

derived from the principle of relative pessimism (Cheng et al., 2022). In this work, we extend the105

RPI concept to compare with an arbitrary reference (or baseline) policy, which can be different from106

the behavior policy and can take actions outside data support.107

3 Adversarial Model for Offline Reinforcement Learning (ARMOR)108

ARMOR is a model-based offline RL algorithm designed with relative pessimism. The goal of109

ARMOR is to find a policy π̂ that maximizes the performance difference J(π̂)− J(πref) to a given110

reference policy πref , while accounting for the uncertainty due to limited data coverage. ARMOR111

achieves this by solving a two-player game between a learner policy and an adversary MDP model:112

π̂ = argmax
π∈Π

min
M∈Mα

JM (π)− JM (πref) (1)

based on a version space of MDP models113

Mα = {M ∈M : ED(M)− min
M ′∈M

ED(M ′) ≤ α}, (2)

where we define the model fitting loss as114

ED(M) :=
∑

D − logPM (s′|s, a) + (RM (s,a)−r)2/V 2
max (3)

and α ≥ 0 is a bound on statistical errors such thatM⋆ ∈Mα. In this two-player game, ARMOR is115

optimizing a lower bound of the relative performance J(π)−J(πref). This is due to the construction116

that M⋆ ∈Mα, which ensures minM∈Mα
JM (π)− JM (πref) ≤ JM⋆(π)− JM⋆(πref).117

One interesting property that follows from optimizing the relative performance lower bound is that π̂118

is guaranteed to always be no worse than πref , for a wide range of α and regardless of the relationship119

between πref and the data D.120

Proposition 1. For any α large enough such that M⋆ ∈Mα, it holds that J(π̂) ≥ J(πref).121

3



Figure 2: A toy MDP illustrating the RPI property of ARMOR. (Top) The true MDP has deter-
ministic dynamics where taking the left (al) or right (ar) actions takes the agent to corresponding
states; start state is in yellow. The suboptimal behavior policy only visits only the left part of the
state space. (Bottom) A subset of possible data-consistent MDP models in the version space. The
adversary always chooses the MDP that makes the reference maximally outperform the learner. In
response, the learner will learn to mimic the reference outside data support to be competitive.

This fact can be easily reasoned: Since πref ∈ Π, we have maxπ∈Π minM∈Mα
JM (π)−JM (πref) ≥122

minM∈Mα
JM (πref) − JM (πref) = 0. In other words, ARMOR achieves the RPI property with123

respect to any reference policy πref and offline dataset D.124

This RPI property of ARMOR is stronger than the RPI property in the literature. In comparison,125

previous algorithms with RPI (Fujimoto et al., 2019; Kumar et al., 2019; Wu et al., 2019; Laroche126

et al., 2019; Fujimoto and Gu, 2021; Cheng et al., 2022) are only guaranteed to be no worse than127

the behavior policy that collected the data. In Section 3.2, we will also show that when α is set128

appropriately, ARMOR can provably compete with the best data covered policy as well, as prior129

offline RL works (e.g., Xie et al., 2021a; Uehara and Sun, 2021; Cheng et al., 2022).130

3.1 An Illustrative Toy Example131

Why does ARMOR have the RPI property, even when the reference policy πref is not covered by the132

dataD? While we will give a formal analysis soon in Section 3.2, here we provide some intuitions as133

to why this is possible. First, notice that ARMOR has access to the reference policy πref . Therefore,134

a trivial way to achieve RPI with respect to πref is to just output πref . However, this naïve algorithm135

while never degrading πref cannot learn to improve from πref . ARMOR achieves these two features136

simultaneously by 1) learning an MDP Model, and 2) adversarially training this MDP model to137

minimize the relative performance difference to πref during policy optimization.138

We illustrate this by a one-dimensional discrete MDP example with five possible states as shown139

in Figure 2. The dynamic is deterministic, and the agent always starts in the center cell. The agent140

receives a lower reward of 0.1 in the left-most state and a high reward of 1.0 upon visiting the right-141

most state. Say, the agent only has access to a dataset from a sub-optimal policy that always takes142

the left action to receive the 0.1 reward. Further, let’s say we have access to a reference policy that143

demonstrates optimal behavior on the true MDP by always visiting the right-most state. However, it144

is unknown a priori that the reference policy is optimal. In such a case, typical offline RL methods145

can only recover the sub-optimal policy from the dataset as it is the best-covered policy in the data.146

ARMOR can learn to recover the expert reference policy in this example by performing rollouts147

with the adversarially trained MDP model. From the realizability assumption (Assumption 1), we148

know that the version space of models contains the true model (i.e., M⋆ ∈Mα). The adversary can149

then choose a model from this version space where the reference policy πref maximally outperforms150

the learner. In this toy example, the model selected by the adversary would be the one allowing the151

expert policy to reach the right-most state. Now, optimizing relative performance difference with152

respect to this model will ensure that the learner can recover the expert behavior, since the only153

way for the learner to stay competitive with the reference policy is to mimic the reference policy154

in the region outside data support. In other words, the reason why ARMOR has RPI to πref is that155

its adversarial model training procedure can augment the original offline data with new states156

and actions that would cover those generated by running the reference policy.1157

1Note that ARMOR does not depend on knowledge of the true reward function and similar arguments hold
in the case of learned rewards as we illustrate in Appendix F.
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3.2 Theoretical Analysis158

Now we make the above discussions formal and give theoretical guarantees on ARMOR’s absolute159

performance and RPI property. To this end, we introduce a single-policy concentrability coefficient,160

which measures the distribution shift between a policy π and the data distribution µ.161

Definition 1 (Generalized Single-policy Concentrability). We define the generalized single-policy162

concentrability for policy π, model class M and offline data distribution µ as CM(π) :=163

supM∈M
Edπ [E⋆(M)]
Eµ[E⋆(M)] , where E⋆(M) = DTV (PM (·|s, a), P ⋆(·|s, a))2 + (RM (s,a)−R⋆(s,a))2/V 2

max.164

Note that CM(π) is always upper bounded by the standard single-policy concentrability coefficient165

∥dπ/µ∥∞ (e.g., Jin et al., 2021; Rashidinejad et al., 2021; Xie et al., 2021b), but it can be smaller in166

general with model classM. It can also be viewed as a model-based analog of the one in Xie et al.167

(2021a). A detailed discussion around CM(π) can be found in Uehara and Sun (2021).168

First, we present the absolute performance guarantee of ARMOR, which holds for a well-tuned α.169

Theorem 2 (Absolute performance). Under Assumption 1, there is an absolute constant c such that170

for any δ ∈ (0, 1], if we set α = c · (log(|M|/δ)) in Eq. (2), then for any reference policy πref and171

comparator policy π† ∈ Π, with probability 1 − δ, the policy π̂ learned by ARMOR in Eq. (1)172

satisfies that J(π†)− J(π̂) is upper bounded by173

O
((√

CM(π†) +
√
CM(πref)

)
Vmax

1−γ

√
log(|M|/δ)

n

)
Roughly speaking, Theorem 2 shows that π̂ learned by ARMOR can compete with any policy π†

174

with a large enough dataset, as long as the offline data µ has good coverage on π† (good coverage175

over πref can be automatically satisfied if we simply choose πref = µ, which yields CM(πref) = 1).176

Compared to the closest model-based offline RL work (Uehara and Sun, 2021), if we set πref = µ177

(data collection policy), Theorem 2 leads to almost the same guarantee as Uehara and Sun (2021,178

Theorem 1) up to constant factors.179

In addition to absolute performance, below we show that, under Assumptions 1 and 2, ARMOR180

has the RPI property to πref : it always improves over J(πref) for a wide range of parameter α.181

Compared with the model-free ATAC algorithm in Cheng et al. (2022, Proposition 6), the threshold182

for α in Theorem 3 does not depend on sample size N due to the model-based nature of ARMOR.183

Theorem 3 (Robust strong policy improvement). Under Assumptions 1 and 2, there exists an abso-184

lute constant c such that for any δ ∈ (0, 1], if: i) α ≥ c · (log(|M|/δ)) in Eq. (2); ii) πref ∈ Π, then185

with probability 1− δ, the policy π̂ learned by ARMOR in Eq. (1) satisfies J(π̂) ≥ J(πref).186

4 Practical Implementation187

We design a scalable implementation of ARMOR (Algorithm 1) to approximate the solution of the188

two-player game in Eq. (1). Algorithm 1 extends the design of model-free ATAC algorithm (Cheng189

et al., 2022, Algorithm 2) to the model-based case, where we adversarially train the MDP model and190

its Q function using model rollouts, while optimizing the policy against the adversary.191

4.1 Algorithm Details192

The algorithm takes as input an offline dataset Dreal, a policy π, an MDP model M and two critic193

networks f1, f2. At every iteration, the algorithm proceeds in two stages. First, the adversary194

is optimized to find a data-consistent model that minimizes the performance difference with the195

reference policy. We sample mini-batches of only states and actions Dmini
real and Dmini

model from the real196

and model-generated datasets respectively (Line 4). The MDP model M is queried on these mini-197

batches to generate next-state and reward predictions. The adversary then updates the model and198

Q-functions (Line 5) using the gradient of the loss described in Eq. (4), where199

LDM
(f, π, πref) := EDM

[f(s, π(s))− f(s, πref(s)]
EwDM

(f,M, π) := (1− w)EtdD (f, f,M, π) + wEtdD (f, f̄ ,M, π)

EDmini
real

(M) := EDmini
real

[− logPM (s′|s, a) + (RM (s,a)−r)2/V 2
max]
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Algorithm 1 ARMOR (Adversarial Model for Offline Reinforcement Learning)
Input: Batch data Dreal, policy π, MDP model M , critics f1, f2, horizon H , constants β, λ ≥ 0,
τ ∈ [0, 1], w ∈ [0, 1],

1: Initialize target networks f̄1 ← f1, f̄2 ← f2 and Dmodel = ∅
2: for k = 0, . . . ,K − 1 do
3: Sample minibatch Dmini

real from dataset D and minibatch Dmini
model from dataset Dmodel.

4: Construct transition tuples using model predictions

DM :=
{
(s, a, rM , s

′
M ) : rM = RM (s, a), s′M ∼ PM (·|s, a), (s, a) ∈ Dmini

real ∪ Dmini
model

}
5: Update the adversary networks; for i = 1, 2,

ladversary(f,M) := LDM
(f, π, πref) + β

(
EwDM

(f,M, π) + λEDmini
real

(M)
)

(4)

M ←M − ηfast
(
∇M l

adversary(f1,M) +∇M l
adversary(f2,M)

)
fi ← ProjF (fi − ηfast∇fi l

adversary(fi,M)) and f̄i ← (1− τ)f̄i + τfi

6: Update actor network with respect to the first critic network and the reference policy

lactor(π) := −LDM
(f1, π, πref) (5)

π ← ProjΠ(π − ηslow∇πl
actor(π))

7: If k%H = 0, then reset model state: S̄π ← {s ∈ Dmini
real } and S̄πref

← {s ∈ Dmini
real }

8: Query the MDP model to expand Dmodel and update model state

Āπ := {a : a ∼ π(s), s ∈ S̄π} and Āπref
:= {a : a ∼ πref(s), s ∈ S̄πref

}
Dmodel := Dmodel ∪ {S̄π, Āπ} ∪ {S̄πref

, Āπref
}

S̄π ← {s′|s′ ∼ detach(PM (·|s, a)), s ∈ S̄π, a ∈ Āπ}
S̄πref

← {s′|s′ ∼ detach(PM (·|s, a)), s ∈ S̄πref
, a ∈ Āπref

}

9: end for

LDM
is the pessimistic loss term that forces the f to predict a lower value for the learner than200

the reference on the sampled states. EwDM
is the Bellman surrogate to encourage the Q-functions201

to be consistent with the model-generated data DM . We use the double Q residual algorithm202

loss similar to Cheng et al. (2022), which is defined as a convex combination of the temporal203

difference losses with respect to the critic and the delayed target networks, EtdD (f, f ′,M, π) :=204

ED
[
(f(s, a)− r − γf ′(s′, π))2

]
. ED(M) is the model-fitting loss that ensures the model is data-205

consistent. β and λ control the effect of the pessimistic loss, by constraining Q-functions and models206

the adversary can choose. Once the adversary is updated, we update the policy (Line 6) to maximize207

the pessimistic loss as defined in Eq. (5). Similar to Cheng et al. (2022), we choose one Q-function208

and a slower learning rate for the policy updates (ηfast ≫ ηslow).209

We remark that EwDM
not only affects f1, f2, but also M , i.e., it forces the model to generate transi-210

tions where the Q-function is Bellman consistent. This allows the pessimistic loss to indirectly affect211

the model learning, thus making the model adversarial. Consider the special case where λ = 0 in212

the loss of Line 4. The model here is no longer forced to be data consistent, and the adversary can213

now freely update the model via EwDM
such that the Q-function is always Bellman consistent. As a214

consequence, the algorithm becomes equivalent to IL on the model-generated states. We empirically215

study this behavior in our experiments (Section 5).216

Lines 7 and 8 describe our model-based rollout procedure. We incrementally rollout both π and πref217

from states in Dmini
real for a horizon H , and add the generated transitions to Dmodel. The aim of this218

strategy is to generate a distribution with large coverage for training the adversary and policy, and219

we discuss this in detail in the next section.220

Finally, it is important to note the fact that neither the pessimistic nor the Bellman surrogate losses221

uses the real transitions; hence our algorithm is completely model-based from a statistical point of222
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Dataset ARMOR MoREL MOPO RAMBO COMBO ATAC CQL IQL BC
hopper-med 101.4 95.4 28.0 92.8 97.2 85.6 86.6 66.3 29.0

walker2d-med 90.7 77.8 17.8 86.9 81.9 89.6 74.5 78.3 6.6
halfcheetah-med 54.2 42.1 42.3 77.6 54.2 53.3 44.4 47.4 36.1

hopper-med-replay 97.1 93.6 67.5 96.6 89.5 102.5 48.6 94.7 11.8
walker2d-med-replay 85.6 49.8 39.0 85.0 56.0 92.5 32.6 73.9 11.3

halfcheetah-med-replay 50.5 40.2 53.1 68.9 55.1 48.0 46.2 44.2 38.4
hopper-med-exp 103.4 108.7 23.7 83.3 111.1 111.9 111.0 91.5 111.9

walker2d-med-exp 112.2 95.6 44.6 68.3 103.3 114.2 98.7 109.6 6.4
halfcheetah-med-exp 93.5 53.3 63.3 93.7 90.0 94.8 62.4 86.7 35.8

pen-human 72.8 - - - - 53.1 37.5 71.5 34.4
hammer-human 1.9 - - - - 1.5 4.4 1.4 1.5

door-human 6.3 - - - - 2.5 9.9 4.3 0.5
relocate-human 0.4 - - - - 0.1 0.2 0.1 0.0

pen-cloned 51.4 - - - - 43.7 39.2 37.3 56.9
hammer-cloned 0.7 - - - - 1.1 2.1 2.1 0.8

door-cloned -0.1 - - - - 3.7 0.4 1.6 -0.1
relocate-cloned -0.0 - - - - 0.2 -0.1 -0.2 -0.1

pen-exp 112.2 - - - - 136.2 107.0 - 85.1
hammer-exp 118.8 - - - - 126.9 86.7 - 125.6

door-exp 98.7 - - - - 99.3 101.5 - 34.9
relocate-exp 96.0 - - - - 99.4 95.0 - 101.3

Table 1: Performance comparison of ARMOR against baselines on the D4RL datasets. The values
for ARMOR denote last iteration performance averaged over 4 random seeds, and baseline values
were taken from their respective papers. The values denote normalized returns based on random and
expert policy returns similar to Fu et al. (2020). Boldface denotes performance within 10% of the
best performing algorithm. We report results with standard deviations in Appendix G.

view, that the value function f is solely an intermediate variable that helps in-model optimization223

and not directly fit from data.224

Connection to the Theoretical Formulation Solving the optimization problem in Eq. (1) can be225

computationally prohibitive in practice as it requires backpropagation through model-generated tra-226

jectories for the full horizon. Therefore, we design Algorithm 1 to approximately solve a Stackelberg227

game variation of Eq. (1):228

π̃ ∈ argmax
π

LD̄(π, f) s.t. fπ ∈ argmin
M,f

LD̄(π, f) + β (ED̄(π, f,M) + λED(M)) ,

where f : S × A → [0, Vmax] is a critic function, D̄ is a state-action dataset containing states and229

actions inD and from model rollouts,LD̄(π, f) := ED̄[f(s, π)−f(s, πref)] is a policy discriminative230

term (Kumar et al., 2020; Cheng et al., 2022), and ED̄(π, f,M) is an estimator of squared Bellman231

erroron the state-action dataset D̄. We defer the detailed discussion to Appendix C.232

5 Experiments233

We test the efficacy of ARMOR on two major fronts: (1) performance comparison to existing offline234

RL algorithms, and (2) robust policy improvement over a reference policy that is not covered by the235

dataset, a novel setting that is not applicable to existing works2. We use the D4RL (Fu et al., 2020)236

continuous control benchmarks datasets for all our experiments and the code will be made public.237

Experimental Setup: We parameterize π, f1, f2 and M using feedforward neural networks, and238

set ηfast = 5e − 4, ηslow = 5e − 7, w = 0.5 similar to Cheng et al. (2022). In all our experiments,239

we vary only the β and λ parameters which control the amount of pessimism; others are fixed.240

Importantly, we set the rollout horizon to be the max episode horizon defined in the environment.241

The dynamics model is pre-trained for 100k steps using model-fitting loss on the offline dataset.242

ARMOR is then trained for 1M steps on each dataset. Refer to Appendix G for more details.243

5.1 Comparison with Offline RL Baselines244

By setting the reference policy to the behavior-cloned policy on the offline dataset, we can use245

ARMOR as a standard offline RL algorithm. Table 1 shows a comparison of the performance246

2In Appendix G we empirically show how imitation learning can be obtained as a special case of ARMOR
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Figure 3: Verfication of RPI over the reference policy for different β (purple). ORL denotes the
performance of offline RL with ARMOR ( Table 1), and REF is the performance of reference policy.3

of ARMOR against SoTA model-free and model-based offline RL baselines. In the former cate-247

gory, we consider ATAC (Cheng et al., 2022), CQL (Kumar et al., 2020) and IQL (Kostrikov et al.,248

2021), and for the latter we consider MoREL (Kidambi et al., 2020), MOPO (Yu et al., 2020), and249

RAMBO (Rigter et al., 2022). We also compare against COMBO (Yu et al., 2021) which is a hybrid250

model-free and model-based algorithm. In these experiments, we initially warm start the optimiza-251

tion for 100k steps, by training the policy and Q-function using behavior cloning and temporal dif-252

ference learning respectively on the offline dataset to ensure the learner policy is initialized to be the253

same as the reference. Overall, we observe that ARMOR consistently outperforms or is competitive254

with the best baseline algorithm on most datasets. Specifically, compared to other purely model-255

based baselines (MoREL, MOPO and RAMBO), there is a marked increase in performance in the256

walker2d-med, hopper-med-exp and walker2d-med-exp datasets. We would like to highlight two257

crucial elements about ARMOR, in contrast to other model-based baselines - (1) ARMOR achieves258

SoTA performance using only a single neural network to model the MDP, as oppposed to complex259

network ensembles employed in previous model-based offline RL methods (Kidambi et al., 2020;260

Yu et al., 2021, 2020; Rigter et al., 2022), and (2) to the best of our knowledge, ARMOR is the261

only purely model-based offline RL algorithm that has shown performance comparable with model-262

free algorithms on the high-dimensional Adroit environments. The lower performance compared to263

RAMBO on halfcheetah-med and halfcheetah-med-replay may be attributed to that the much larger264

computational budget used by RAMBO is required for convergence on these datasets.265

5.2 Robust Policy Improvement266

Next, we test whether the practical version of ARMOR demonstrates RPI of the theoretical version.267

We consider the medium and medium-replay versions of D4RL locomotion tasks, as well as the268

human and cloned versions of the Adroit tasks, with the reference policy set to be the stochastic269

behavior cloned policy on the expert dataset. We chose these combinations of dataset quality and270

reference, to ensure that the reference policy takes out-of-distribution actions with respect to the data.271

Unlike Sec. 5.1 here the reference policy is a black-box given as a part of the problem definition.272

This opens the question of how the learner should be initialized, since we can not trivially initialize273

the learner to be the reference as in the previous experiments. In a similar spirit to Sec. 5.1, one might274

consider initializing the learner close to the reference by behavior cloning the reference policy on275

the provided dataset during warmstart, i.e, by replacing the dataset actions with reference actions.276

However, when the reference chooses out of support actions, this procedure will not provide a good277

global approximation of the reference policy, which can make the optimization problem harder.278

Instead, we propose to learn a residual policy where the learned policy outputs an additive correction279

to the reference (Silver et al., 2018). This is an appropriate choice since ARMOR does not make280

any restrictive assumptions about the structure of the policy class. Figure 3 shows the normalized281

return achieved by ARMOR for different β, with fixed values for remaining hyperparameters. We282

observe that ARMOR is able to achieve performance comparable or better than the reference policy283

for a range of β values uniformly across all datasets, thus verifying the RPI property in practice.284

Specifically, there is significant improvement via RPI in the hammer, door and relocate domains,285

where running ARMOR as a pure offline RL algorithm(Sec. 5.1) does not show any progress 4.286

3The variation in performance of the reference for different dataset qualities in the same environment is
owing to different random seeds.

4We provide comparisons when using a behavior cloning initialization for the learner in Appendix G.
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6 Discussion287

The RPI of ARMOR is highly valuable as it allows easy tuning of the pessimism hyperparameter288

without performance degradation. We believe that leveraging this property can pave the way for289

real-world deployment of offline RL. Thus, we next present a discussion of RPI.5290

When does RPI actually improve over the reference policy?291

Given ARMOR’s ability to improve over an arbitrary policy, the following question naturally arises:292

Can ARMOR nontrivially improve the output policy of other offline algorithms, including itself?293

If this were true, can we repeatedly run ARMOR to improve over itself and obtain the best policy294

any algorithm can learn offline? Unfortunately, the answer is negative. Not only can ARMOR not295

improve over itself, but it also cannot improve over a variety of algorithms (e.g., absolute pessimism296

or minimax regret). In fact, the optimal policy of an arbitrary model in the version space Mα is297

provably unimprovable ( Corollary 10; Appendix E). With a deep dive into when RPI gives nontrivial298

improvement (Appendix E), we found some interesting observations, which we highlight here.299

Return maximization and regret minimization are different in offine RL These objectives gen-300

erally produce different policies, even though they are equivalent in online RL. Their equivalence301

in online RL relies on the fact that online exploration can eventually resolve any uncertainty. In302

offline RL with an arbitrary data distribution, there will generally be model uncertainty that cannot303

be resolved, and the worst-case reasoning over such model uncertainty (i.e., Mα) leads to defi-304

nitions that are no longer equivalent. Moreover, it is impossible to compare return maximization305

and regret minimization and make a claim about which is better. They are not simply an algorithm306

design choice, but are definitions of the learning goals and guarantees themselves—and are thus307

incomparable: if we care about obtaining a guarantee for the worst-case return, the return maxi-308

mization is optimal by definition; if we are more interested in a guarantee for the worst-case regret,309

then regret minimization is optimal. We also note that analyzing algorithms under a metric that is310

different from the one they are designed for can lead to unusual conclusions, e.g., Xiao et al. (2021)311

show that optimistic/neutral/pessimistic algorithms are equally minimax-optimal in terms of their312

regret guarantees in offline multi-armed bandits. However, the algorithms they consider are opti-313

mistic/pessimistic with respect to the return (as commonly considered in the offline RL literature)314

not the regret which is the performance metric they are interested in analyzing.315

πref is more than a hyperparameter—it defines the performance metric and learning goal316

Corollary 10 in Appendix E shows that ARMOR has many different fixed points: when πref is317

chosen from these fixed points, the solution to Eq. (1) is also πref . Furthermore, some of them may318

seem quite unreasonable for offline learning (e.g., the greedy policy to an arbitrary model inMα or319

even the optimistic policy). This is not a defect of the algorithm. Rather, because of the unresolv-320

able uncertainty in the offline setting, there are many different performance metrics/learning goals321

that are generally incompatible/incomparable, and the agent designer must make a conscious choice322

among them and convey the intention to the algorithm. In ARMOR, such a choice is explicitly323

conveyed by πref , which makes ARMOR subsume return maximization and regret minimization as324

special cases.325

7 Conclusion326

We have presented a model-based offline RL framework, ARMOR, that can improve over arbi-327

trary reference policies regardless of data coverage, by using the concept of relative pessimism.328

ARMOR provides strong theoretical guarantees with general function approximators, and exhibits329

robust policy improvement over the reference policy for a wide range of hyper-parameters. We have330

also presented a scalable deep learning instantiation of the theoretical algorithm. Empirically, we331

demonstrate that ARMOR indeed enjoys the RPI property, and has competitive performance with332

several SoTA model-free and model-based offline RL algorithms, while employing a simpler model333

architecture (a single MDP model) than other model-based baselines that rely on ensembles. This334

also opens the opportunity to leverage high-capacity world models (Hafner et al., 2023) with offline335

RL in the future. However, there are also some limitations. While RPI holds for the pessimism336

parameter, the others still need to be tuned. Further, runtime is slightly slower than model-free337

algorithms owing to extra computations for model rollouts.338

5Due to space limit, we defer the complete discussion to Appendix E and only provide salient points here.
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A Proofs for Section 3448

A.1 Technical Tools449

Lemma 4 (Simulation lemma). Consider any two MDP modelM andM ′, and any π : S → ∆(A),450

we have451

|JM (π)− JM ′(π)| ≤ Vmax

1− γ
Edπ [DTV (PM (·|s, a), PM ′(·|s, a))] + 1

1− γ
Edπ [|RM (s, a)−RM ′(s, a)|] .

Lemma 4 is the standard simulation lemma in model-based reinforcement learning literature, and its452

proof can be found in, e.g., Uehara and Sun (2021, Lemma 7).453

A.2 MLE Guarantees454

We use ℓD(M) to denote the likelihood of model M = (P,R) with offline data D, where455

ℓD(M) =
∏

(s,a,r,s′)∈D

PM (s′|s, a). (6)

For the analysis around maximum likelihood estimation, we largely follow the proving idea of Agar-456

wal et al. (2020); Liu et al. (2022), which is inspired by Zhang (2006).457

The next lemma shows that the ground truth model M⋆ has a comparable log-likelihood compared458

with MLE solution.459

Lemma 5. Let M⋆ be the ground truth model. Then, with probability at least 1− δ, we have460

max
M∈M

log ℓD(M)− log ℓD(M
⋆) ≤ log(|M|/δ).

Proof of Lemma 5. The proof of this lemma is obtained by a standard argument of MLE (see, e.g.,461

van de Geer, 2000). For any M ∈M,462

E [exp (log ℓD(M)− log ℓD(M
⋆))] = E

[
ℓD(M)

ℓD(M⋆)

]
= E

[ ∏
(s,a,r,s′)∈D PM (s′|s, a)∏
(s,a,r,s′)∈D PM⋆(s′|s, a)

]

= E

 ∏
(s,a,r,s′)∈D

PM (s′|s, a)
PM⋆(s′|s, a)


= E

 ∏
(s,a)∈D

E
[
PM (s′|s, a)
PM⋆(s′|s, a)

∣∣∣∣ s, a]


= E

 ∏
(s,a)∈D

∑
s′

PM (s′|s, a)


= 1. (7)

Then by Markov’s inequality, we obtain463

P [(log ℓD(M)− log ℓD(M
⋆)) > log(1/δ)]

≤ E [exp (log ℓD(M)− log ℓD(M
⋆))]︸ ︷︷ ︸

=1 by Eq. (7)

· exp [− log(1/δ)] = δ.

Therefore, taking a union bound overM, we obtain464

P [(log ℓD(M)− log ℓD(M
⋆)) > log(|M|/δ)] ≤ δ.

This completes the proof.465
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The following lemma shows that, the on-support error of any model M ∈ M can be captured via466

its log-likelihood (by comparing with the MLE solution).467

Lemma 6. For any M = (P,R), we have with probability at least 1− δ,468

Eµ

[
DTV (P (·|s, a), P ⋆(·|s, a))2

]
≤ O

(
log ℓD(M

⋆)− log ℓD(M) + log(|M|/δ)

n

)
,

where ℓD(·) is defined in Eq. (6).469

Proof of Lemma 6. By Agarwal et al. (2020, Lemma 25), we have470

Eµ

[
DTV (P (·|s, a), P ⋆(·|s, a))2

]
≤ − 2 logEµ×P⋆

[
exp

(
−1

2
log

(
P ⋆(s′|s, a)
P (s′|s, a)

))]
, (8)

where µ× P ⋆ denote the ground truth offline joint distribution of (s, a, s′).471

Let D̃ = {(s̃i, ãi, r̃i, s̃′i)}ni=1 ∼ µ be another offline dataset that is independent to D. Then,472

− n · logEµ×P⋆

[
exp

(
−1

2
log

(
P ⋆(s′|s, a)
P (s′|s, a)

))]
= −

n∑
i=1

logE(s̃i,ãi,s̃′i)∼µ

[
exp

(
−1

2
log

(
P ⋆(s̃′i|s̃i, ãi)
P (s̃′i|s̃i, ãi)

))]

= − logED̃∼µ

[
exp

(
n∑

i=1

−1

2
log

(
P ⋆(s̃′i|s̃i, ãi)
P (s̃′i|s̃i, ãi)

)) ∣∣∣∣∣ D
]

= − logED̃∼µ

exp
 ∑

(s,a,s′)∈D̃

−1

2
log

(
P ⋆(s′|s, a)
P (s′|s, a)

) ∣∣∣∣∣∣ D
 . (9)

We use ℓP (s, a, s′) as the shorthand of− 1
2 log

(
P⋆(s|s,a)
P (s′|s,a)

)
, for any (s, a, s′) ∈ S×A×S. By Agar-473

wal et al. (2020, Lemma 24) (see also Liu et al., 2022, Lemma 15), we know474

ED∼µ

exp
 ∑

(s,a,s′)∈D

ℓP (s, a, s
′)− logED̃∼µ

exp
 ∑

(s,a,s′)∈D̃

ℓP (s, a, s
′)

 ∣∣∣∣∣∣ D
− log |M|

 ≤ 1.

Thus, we can use Chernoff method as well as a union bound on the equation above to obtain the475

following exponential tail bound: with probability at least 1− δ, we have for all (P,R) =M ∈M,476

− logED̃∼µ

exp
 ∑

(s,a,s′)∈D̃

ℓP (s, a, s
′)

 ∣∣∣∣∣∣ D
 ≤ − ∑

(s,a,s′)∈D

ℓP (s, a, s
′) + 2 log(|M|/δ). (10)

Plugging back the definition of ℓP and combining Eqs. (8) to (10), we obtain477

n · Eµ

[
DTV (P (·|s, a), P ⋆(·|s, a))2

]
≤ 1

2

∑
(s,a,s′)∈D

log

(
P ⋆(s|s, a)
P (s′|s, a)

)
+ 2 log(|M|/δ).

Therefore, we obtain478

n · Eµ

[
DTV (P (·|s, a), P ⋆(·|s, a))2

]
≲

∑
(s,a,s′)∈D

log

(
P ⋆(s|s, a)
P (s′|s, a)

)
+ log(|M|/δ)

= log ℓD(M
⋆)− log ℓD(M) + log(|M|/δ). (ℓD(·) is defined in Eq. (6))

This completes the proof.479
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A.3 Guarantees about Version Space480

Lemma 7. Let M⋆ be the ground truth model. Then, with probability at least 1− δ, we have481

ED(M⋆)− min
M∈M

ED(M) ≤ O (log(|M|/δ)) ,

where ED is defined in Eq. (3).482

Proof of Lemma 7. By Lemma 5, we know483

max
M∈M

log ℓD(M)− log ℓD(M
⋆) ≤ log(|M|/δ). (11)

In addition, by Xie et al. (2021a, Theorem A.1) (with setting γ = 0), we know w.p. 1− δ,484 ∑
(s,a,r,s′)∈D

(R⋆(s, a)− r)2 − min
M∈M

∑
(s,a,r,s′)∈D

(RM (s, a)− r)2 ≲ log(|M|/δ). (12)

Combining Eqs. (11) and (12) and using the fact of Vmax ≥ 1, we have w.p. 1− δ,485

ED(M⋆)− min
M∈M

ED(M)

≤ max
M∈M

log ℓD(M)− min
M∈M

∑
(s,a,r,s′)∈D

(RM (s,a)−r)2/V 2
max + ED(M⋆)

≲ log(|M|/δ).

This completes the proof.486

Lemma 8. For any M ∈M, we have with probability at least 1− δ,487

Eµ

[
DTV (PM (·|s, a), P ⋆(·|s, a))2 + (RM (s,a)−R⋆(s,a))2/V 2

max

]
≤ O

(
ED(M)−minM ′∈M ED(M ′) + log(|M|/δ)

n

)
,

where ED is defined in Eq. (3).488

Proof of Lemma 8. By Lemma 6, we have w.p. 1− δ,489

n · Eµ

[
DTV (PM (·|s, a), P ⋆(·|s, a))2

]
≲ log ℓD(M

⋆)− log ℓD(M) + log(|M|/δ). (13)

Also, we have490

n · Eµ

[
(RM (s, a)−R⋆(s, a))

2
]

(14)

= n · Eµ

[
(RM (s, a)− r)2

]
− n · Eµ

[
(R⋆(s, a)− r)2

]
(see, e.g., Xie et al., 2021a, Eq. (A.10) with γ = 0)

≲
∑

(s,a,r,s′)∈D

(RM (s, a)− r)2 −
∑

(s,a,r,s′)∈D

(R⋆(s, a)− r)2 + log(|M|/δ),

where the last inequality is a direct implication of Xie et al. (2021a, Lemma A.4). Combining491

Eqs. (13) and (14) and using the fact of Vmax ≥ 1, we obtain492

n · Eµ

[
DTV (PM (·|s, a), P ⋆(·|s, a))2 + (RM (s,a)−R⋆(s,a))2/V 2

max

]
≲ log ℓD(M

⋆)−
∑

(s,a,r,s′)∈D

(R⋆(s,a)−r)2/V 2
max − log ℓD(M) +

∑
(s,a,r,s′)∈D

(RM (s,a)−r)2/V 2
max + log(|M|/δ)

= ED(M)− ED(M⋆) + log(|M|/δ)

≤ ED(M)− min
M ′∈M

ED(M ′) + log(|M|/δ).

This completes the proof.493
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A.4 Proof of Main Theorems494

Proof of Theorem 2. By the optimality of π̂ (from Eq. (1)), we have495

J(π†)− J(π̂) = J(π†)− J(πref)− [J(π̂)− J(πref)]
≤ J(π†)− J(πref)− min

M∈Mα

[JM (π̂)− JM (πref)]

(by Lemma 5, we have M⋆ ∈Mα)

≤ J(π†)− J(πref)− min
M∈Mα

[
JM (π†)− JM (πref)

]
, (15)

where the last step is because of π† ∈ Π By the simulation lemma (Lemma 4), we know for any496

policy π and any M ∈Mα,497

|J(π)− JM (π)| ≤ Vmax

1− γ
Edπ [DTV (PM (·|s, a), P ⋆(·|s, a))] + 1

1− γ
Edπ [|RM (s, a)−R⋆(s, a)|]

≤ Vmax

1− γ

√
Edπ

[
DTV (PM (·|s, a), P ⋆(·|s, a))2

]
+
Vmax

1− γ

√
Edπ

[
(RM (s,a)−R⋆(s,a))2/V 2

max

]
≲
Vmax

1− γ

√
Edπ

[
DTV (PM (·|s, a), P ⋆(·|s, a))2 + (RM (s,a)−R⋆(s,a))2/V 2

max

]
(a ≲ b means a ≤ O(b))

≤
Vmax

√
CM(π)

1− γ

√
Eµ

[
DTV (PM (·|s, a), P ⋆(·|s, a))2 + (RM (s,a)−R⋆(s,a))2/V 2

max

]
≲
Vmax

√
CM(π)

1− γ

√
ED(M)−minM ′∈M ED(M ′) + log(|M|/δ)

n
(by Lemma 8)

≲
Vmax

√
CM(π)

1− γ

√
log(|M|/,δ)

n
(16)

where the last step is because ED(M)−minM ′∈M ED(M ′)− ≤ α = O(log(|M|/δ)/n by Eq. (2).498

Combining Eqs. (15) and (16), we obtain499

J(π†)− J(π̂) ≲
[√

CM(π†) +
√
CM(πref)

]
· Vmax

1− γ

√
log(|M|/,δ)

n
.

This completes the proof.500

Proof of Theorem 3.

J(πref)− J(π̂) = J(πref)− J(πref)− [J(π̂)− J(πref)]
≤ − min

M∈Mα

[JM (π̂)− JM (πref)] (by Lemma 5, we have M⋆ ∈Mα)

= −max
π∈Π

min
M∈Mα

[JM (π)− JM (πref)] (by the optimality of π̂ from Eq. (1))

≤ − min
M∈Mα

[JM (πref)− JM (πref)] (πref ∈ Π)

= 0.

501

B Proofs for Section 6502

Proof of Lemma 9. We prove the result by contradiction. First notice minM∈M JM (π′) −503

JM (π′) = 0. Suppose there is π ∈ Π such that minM∈Mα
JM (π̄) − JM (π′) > 0, which im-504

plies that JM (π̄) > JM (π′), ∀M ∈Mα. SinceM⊆Mα, we have505

min
M∈M

JM (π̄) + ψ(M) > min
M∈M

JM (π′) + ψ(M) = max
π∈Π

min
M∈M

JM (π) + ψ(M)
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which is a contradiction of the maximin optimality. Thus maxπ∈Π minM∈Mα JM (π̄)− JM (π′) =506

0, which means π′ is a solution.507

For the converse statement, suppose π is a fixed point. We can just let ψ(M) = −JM (π). Then this508

pair of π and ψ by definition of the fixed point satisfies Eq. (20).509

C Connection Between Theoretical Formulation and Empirical Algorithm510

We now provide the detailed discussion about the connection between the theoretical version,511

Eq. (1),512

π̂ = argmax
π∈Π

min
M∈Mα

JM (π)− JM (πref)

where Mα = {M ∈M : ED(M)− min
M ′∈M

ED(M ′) ≤ α}

and empirical version,513

π̃ ∈ argmax
π

LD̄(π, f) (17)

s.t. fπ ∈ argmin
M,f

LD̄(π, f) + β (ED̄(π, f,M) + λED(M)) ,

where ED(M) =
∑

D − logPM (s′|s, a)+(RM (s,a)−r)2/V 2
max, LD̄(π, f) := ED̄[f(s, π)−f(s, πref)],514

and ED̄(π, f,M) denotes the estimator of squared Bellman error.515

First, by using the fact that JM (π) = Ed0
[Qπ

M (s, π)] and the Bellman equation Qπ
M (s, a) =516

rM (s, a) + γEs′∼PM (s,a)[Q
π
M (s′, π)], we can rewrite Eq. (1) as517

max
π∈Π

min
M,f

Ed
πref
M

[f(s, π)− f(s, πref)]. (18)

s.t. ED(M) ≤ α+ min
M ′∈M

ED(M ′)

∀s, a f(s, a) = rM (s, a) + γEs′∼PM (s,a)[f(s
′, π)]

This constrained optimization can be relaxed to a regularized version by Xie et al. (2021a); Cheng518

et al. (2022)519

π̃ ∈ argmax
π

Ld
πref
M

(π, f) (19)

s.t. fπ ∈ argmin
M,f

Ld
πref
M

(π, f) + β (ED̃(π, f,M) + λED(M))

where D̃ is a state-action set, covering those running π after πref would visit in the MDP model520

M 6 and β, λ play the role of Lagrange multipliers. Comparing Eq. (17) and Eq. (19), we see that521

Eq. (17) simply replaces dπref

M and D̃ in Eq. (19) with a state-action dataset D̄. Ideally, if we can522

ensure that D̄ has a larger coverage than both dπref

M and D̃ in Eq. (19), the optimization defined523

in Eq. (17) is consistent with the objective in Eq. (1). In practice, we do so by modelling D̄ by the524

model replay buffer Dmodel in Algorithm 1, which is constructed by repeatedly rolling out π and πref525

with the adversarially trained MDP model M to provide a diverse training set of state-action tuples.526

D Related Work527

There has been an extensive line of works on reinforcement with offline/batch data, especially for528

the case with the data distribution is rich enough to capture the state-action distribution for any529

given policy (Munos, 2003; Antos et al., 2008; Munos and Szepesvári, 2008; Farahmand et al.,530

2010; Lange et al., 2012; Chen and Jiang, 2019; Liu et al., 2020a; Xie and Jiang, 2020, 2021).531

However, this assumption is not practical since the data distribution is typically restricted by factors532

such as the quality of available policies, safety concerns, and existing system constraints, leading to533

6Technically, the Bellman equation in Eq. (18) does not to be defined by for all states and actions for Eq. (18)
to be equivalent to Eq. (1). The equality is needed only for states-actions that first rolling in πref and the rolling
out π in M would visit.
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narrower coverage. As a result, recent offline RL works in both theoretical and empirical literature534

have focused on systematically addressing datasets with inadequate coverage.535

Modern offline reinforcement learning approaches can be broadly categorized into two groups for536

the purpose of learning with partial coverage. The first type of approaches rely on behavior regu-537

larization, where the learned policy is encouraged to be close to the behavior policy in states where538

there is insufficient data (e.g., Fujimoto et al., 2018; Laroche et al., 2019; Kumar et al., 2019; Siegel539

et al., 2020). These algorithms ensure that the learned policy performs at least as well as the behav-540

ior policy while striving to improve it when possible, providing a form of safe policy improvement541

guarantees. These and other studies (Wu et al., 2019; Fujimoto and Gu, 2021; Kostrikov et al., 2021)542

have provided compelling empirical evidence for the benefits of these approaches.543

The second category of approaches that has gained prevalence relies on the concept of pessimism544

under uncertainty to construct lower-bounds on policy performance without explicitly constraining545

the policy. Recently, there have been several model-free and model-based algorithms based on546

this concept that have shown great empirical performance on high dimensional continuous control547

tasks. Model-free approaches operate by constructing lower bounds on policy performance and548

then optimizing the policy with respect to this lower bound (Kumar et al., 2020; Kostrikov et al.,549

2021). The model-based counterparts first learn a world model and the optimize a policy using550

model-based rollouts via off-the-shelf algorithms such as Natural Policy Gradient (Kakade, 2001)551

or Soft-Actor Critic (Haarnoja et al., 2018). Pessimism is introduced by either terminating model552

rollouts using uncertainty estimation from an ensemble of neural network models (Kidambi et al.,553

2020) or modifying the reward function to penalize visiting uncertain regions (Yu et al., 2020). Yu554

et al. (2021) propose a hybrid model-based and model-free approach that integrates model-based555

rollouts into a model-free algorithm to construct tighter lower bounds on policy performance. On556

the more theoretical side, the offline RL approaches built upon the pessimistic concept (e.g., Liu557

et al., 2020b; Jin et al., 2021; Rashidinejad et al., 2021; Xie et al., 2021a; Zanette et al., 2021; Uehara558

and Sun, 2021; Shi et al., 2022) also illustrate desired theoretical efficacy under various of setups.559

Another class of approaches employs an adversarial training framework, where offline RL is posed560

a two player game between an adversary that chooses the worst-case hypothesis (e.g., a value func-561

tion or an MDP model) from a hypothesis class, and a policy player that tried to maximize the562

adversarially chosen hypothesis. Xie et al. (2021a) propose the concept of Bellman-consistent pes-563

simism to constrain the class of value functions to be Bellman consistent on the data. Cheng et al.564

(2022) extend this framework by introducing a relative pessimism objective which allows for robust565

policy improvement over the data collection policy µ for a wide range of hyper-parameters. Our566

approach can be interpreted as a model-based extension of Cheng et al. (2022). These approaches567

provide strong theoretical guarantees even with general function approximators while making mini-568

mal assumptions about the function class (realizability and Bellman completeness). There also exist569

model-based approaches based on the same principle (Uehara and Sun, 2021; Rigter et al., 2022) for570

optimizing the absolute performance. Of these, Rigter et al. (2022) is the closest to our approach,571

as they also aim to find an adversarial MDP model that minimizes policy performance. They use572

a policy gradient approach to train the model, and demonstrate great empirical performance. How-573

ever, their approach is based on absolute pessimism and does not enjoy the same RPI property as574

ARMOR.575

E A Deeper Discussion of Robust Policy Improvement576

E.1 How to formally define RPI?577

Improving over some reference policy has been long studied in the literature. To highlight the578

advantage of ARMOR, we formally give the definition of different policy improvement properties.579

Definition 2 (Robust policy improvement). Suppose π̂ is the learned policy from an algorithm.580

We say the algorithm has the policy improvement (PI) guarantee if J(πref) − J(π̂) ≤ o(N)/N is581

guaranteed for some reference policy πref with offline data D ∼ µ, where N = |D|. We use the582

following two criteria w.r.t. πref and µ to define different kinds PI:583

(i) The PI is strongstrong if πref can be selected arbitrarily from policy class Π regardless of the584

choice data-collection policy µ; otherwise, PI is weakweak (i.e., πref ≡ µ is required).585

(ii) The PI is robustrobust if it can be achieved by a range of hyperparameters with a known subset.586
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Weak policy improvement is also known as safe policy improvement in the literature (Fujimoto587

et al., 2019; Laroche et al., 2019). It requires the reference policy to be also the behavior policy that588

collects the offline data. In comparison, strong policy improvement imposes a stricter requirement,589

which requires policy improvement regardless of how the data were collected. This condition is590

motivated by the common situation where the reference policy is not the data collection policy.591

Finally, since we are learning policies offline, without online interactions, it is not straightforward to592

tune the hyperparameter directly. Therefore, it is desirable that we can design algorithms with these593

properties in a robust manner in terms of hyperparameter selection. Formally, Definition 2 requires594

the policy improvement to be achievable by a set of hyperparameters that is known before learning.595

Theorem 3 indicates the robust strong policy improvement of ARMOR. On the other hand, algo-596

rithms with robust weak policy improvement are available in the literature (Fujimoto et al., 2019;597

Kumar et al., 2019; Wu et al., 2019; Laroche et al., 2019; Fujimoto and Gu, 2021; Cheng et al., 2022);598

this is usually achieved by designing the algorithm to behave like IL for a known set of hyperpa-599

rameter (e.g., behavior regularization algorithms have a weight that can turn off the RL behavior600

and regress to IL). However, deriving guarantees of achieving the best data-covered policy of the601

IL-like algorithm is challenging due to its imitating nature. To our best knowledge, ATAC (Cheng602

et al., 2022) is the only algorithm that achieves both robust (weak) policy improvement as well as603

guarantees absolute performance.604

E.2 When RPI actually improves?605

Given ARMOR’s ability to improve over an arbitrary policy, the following questions naturally arise:606

Can ARMOR nontrivially improve the output policy of other algorithms (e.g., such as those based607

on absolute pessimism (Xie et al., 2021a)), including itself? Note that outputting πref itself always608

satisfies RPI, but such result is trivial. By “nontrivially” we mean a non-zero worst-case improve-609

ment. If the statement were true, we would be able to repeatedly run ARMOR to improve over itself610

and then obtain the best policy any algorithm can learn offline.611

Unfortunately, the answer is negative. Not only ARMOR cannot improve over itself, but it also612

cannot improve over a variety of algorithms. In fact, the optimal policy of an arbitrary model613

in the version space is unimprovable (see Corollary 10)! Our discussion reveals some interesting614

observations (e.g., how equivalent performance metrics for online RL can behave very differently in615

the offline setting) and their implications (e.g., how we should choose πref for ARMOR). Despite616

their simplicity, we feel that many in the offline RL community are not actively aware of these facts617

(and the unawareness has led to some confusion), which we hope to clarify below.618

Setup We consider an abstract setup where the learner is given a version spaceMα that contains619

the true model and needs to choose a policy π ∈ Π based onMα. We use the same notationMα620

as before, but emphasize that it does not have to be constructed as in Eqs. (2) and (3). In fact, for621

the purpose of this discussion, the data distribution, sample size, data randomness, and estimation622

procedure for constructing Mα are all irrelevant, as our focus here is how decisions should be623

made with a givenMα. This makes our setup very generic and the conclusions widely applicable.624

To facilitate discussion, we define the fixed point of ARMOR’s relative pessimism step:625

Definition 3. Consider Eq. (1) as an operator that maps an arbitrary policy πref to π̂. A626

fixed point of this relative pessimism operator is, therefore, any policy π ∈ Π such that π ∈627

argmaxπ′∈Π minM∈Mα JM (π′)− JM (π).628

Given the definition, relative pessimism cannot improve over a policy if it is already a fixed point.629

Below we show a sufficient and necessary condition for being a fixed point, and show a number of630

concrete examples (some of which may be surprising) that are fixed points and thus unimprovable.631

Lemma 9 (Fixed-point Lemma). For anyM⊆Mα and any ψ :M→ R, consider the policy632

π ∈ argmax
π′∈Π

min
M∈M

JM (π′) + ψ(M) (20)

Then π is a fixed point in Definition 3. Conversely, for any fixed point π in Definition 3, there is a633

ψ :M→ R such that π is a solution to Eq. (20).634

Corollary 10. The following are fixed points of relative pessimism (Definition 3):635

1. Absolute-pessimism policy, i.e., ψ(M) = 0.636
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2. Relative-pessimism policy for any reference policy, i.e., ψ(M) = −JM (πref).637

3. Regret-minimization policy, i.e., ψ(M) = −JM (π⋆
M ), where π⋆

M ∈ argmaxπ∈Π JM (π).638

4. Optimal policy of an arbitrary model M ∈ Mα, π⋆
M , i.e.,M = {M}. This would include639

the optimistic policy, that is, argmaxπ∈Π,M∈Mα
JM (π)640

Return maximization and regret minimization are different in offine RL We first note that641

these four examples generally produce different policies, even though some of them optimize for642

objectives that are traditionally viewed as equivalent in online RL (the “worst-case overMα” part643

of the definition does not matter in online RL), e.g., absolute pessimism optimizes for JM (π), which644

is the same as minimizing the regret JM (π⋆
M )− JM (π) for a fixed M . However, their equivalence645

in online RL relies on the fact that online exploration can eventually resolve any model uncertainty646

when needed, so we only need to consider the performance metrics w.r.t. the true model M = M⋆.647

In offline RL with an arbitrary data distribution (since we do not make any coverage assumptions),648

there will generally be model uncertainty that cannot be resolved, and worst-case reasoning over649

such model uncertainty (i.e.,Mα) separates apart the definitions that are once equivalent.650

Moreover, it is impossible to compare return maximization and regret minimization and make a651

claim about which one is better. They are not simply an algorithm design choice, but are definitions652

of the learning goals and the guarantees themselves—thus incomparable: if we care about obtaining653

a guarantee for the worst-case return, the return maximization is optimal by definition; if we are654

more interested in obtaining a guarantee for the worst-case regret, then again, regret minimization is655

trivially optimal. We also note that analyzing algorithms under a metric that is different from the one656

they are designed for can lead to unusual conclusions. For example, Xiao et al. (2021) show that op-657

timistic/neutral/pessimistic algorithms7 are equally minimax-optimal in terms of their regret guaran-658

tees in offline multi-armed bandits. However, the algorithms they consider are optimistic/pessimistic659

w.r.t. the return—as commonly considered in the offline RL literature—not w.r.t. the regret which is660

the performance metric they are interested in analyzing.661

πref is more than a hyperparameter—it defines the performance metric and learning goal662

Corollary 10 shows that ARMOR (with relative pessimism) has many different fixed points, some of663

which may seem quite unreasonable for offline learning, such as greedy w.r.t. an arbitrary model or664

even optimism (#4). From the above discussion, we can see that this is not a defect of the algorithm.665

Rather, in the offline setting with unresolvable model uncertainty, there are many different perfor-666

mance metrics/learning goals that are generally incompatible/incomparable with each other, and the667

agent designer must make a choice among them and convey the choice to the algorithm. In ARMOR,668

such a choice is explicitly conveyed by the choice of πref , which subsumes return maximization and669

regret minimization as special cases (#2 and #3 in Corollary 10)670

F A More Comprehensive Toy Example for RPI671

We illustrate with a simple toy example why ARMOR intuitively demonstrates the RPI property672

even when πref is not covered by the data D. ARMOR achieves this by 1) learning an MDP Model,673

and 2) adversarially training this MDP model to minimize the relative performance difference to πref674

during policy optimization. Consider a one-dimensional discrete MDP with five possible states as675

shown in Figure 4. The dynamics is deterministic, and the agent always starts in the center cell. The676

agent receives a lower reward of 0.1 in the left-most state and a high reward of 1.0 upon visiting the677

right-most state. Say, the agent only has access to a dataset from a sub-optimal policy that always678

takes the left action to receive the 0.1 reward. Further, let’s say we have access to a reference policy679

that demonstrates optimal behavior on the true MDP by always choosing the right action to visit680

the right-most state. However, it is unknown a priori that the reference policy is optimal. In such a681

case, typical offline RL methods can only recover the sub-optimal policy from the dataset as it is the682

best-covered policy in the data. Now, for the sake of clarity, consider the current learner policy is683

same as the behavior policy, i.e it always takes the left action.684

ARMOR can learn to recover the expert reference policy in this example by performing rollouts with685

the adversarially trained MDP model. From the realizability assumption we know that the version686

7Incidentally, optimistic/neutral policies correspond to #4 in Corollary 10.
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Figure 4: A toy MDP illustrating the RPI property of ARMOR. (Top) The true MDP has deter-
ministic dynamics where taking the left (al) or right (ar) actions takes the agent to corresponding
states; start state is in yellow. The suboptimal behavior policy only visits only the left part of the
state space. (Bottom) A subset of possible data-consistent MDP models (dynamics + rewards) in the
version space. The adversary always chooses the MDP that makes the reference maximally outper-
form the learner. In response, the learner will learn to mimic the reference outside data support to
be competitive.

space of models contains the true model (i.e., M⋆ ∈ Mα). The adversary can then choose a model687

from this version space where the reference policy πref maximally outperforms the learner. Note,688

that ARMOR does not require the true reward function to be known. In this toy example, the model689

selected by the adversary would be the one that not only allows the expert policy to reach the right-690

most state, but also predicts the highest reward for doing so. Now, optimizing to maximize relative691

performance difference with respect to this model will ensure that the learner can recover the expert692

behavior, since the only way for the learner to stay competitive with the reference policy is to mimic693

the reference policy in the region outside data support. In other words, the reason why ARMOR has694

RPI to πref is that its adversarial model training procedure can augment the original offline data with695

new states and actions that would cover those generated by running the reference policy in the true696

environment, even though ARMOR does not have knowledge of M⋆.697

G Further Experimental Details698

G.1 Experimental Setup and Hyper-parameters699

We represent our policy π, Q-functions f1, f2 and MDP modelM as standard fully connected neural700

networks. The policy is parameterized as a Gaussian with a state-dependent covariance, and we use701

a tanh transform to limit the actions to the action space bound similar to Haarnoja et al. (2018).702

The MDP model learns to predict the next state distribution, rewards and terminal states, where703

the reward and next-state distributions part are parameterized as Gaussians with state-dependent704

covariances. The model fitting loss consists of negative log-likelihood for the next-state and reward705
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and binary cross entropy for the terminal flags. In all our experiments we use the same model706

architecture and a fixed value of λ. We use Adam optimizer (Kingma and Ba, 2015) with fixed707

learning rates ηfast and ηslow similar to Cheng et al. (2022). Also similar to prior work (Kidambi708

et al., 2020), we let the MDP model network predict delta differences to the current state. The709

rollout horizon is always set to the maximum episode steps per environment. A complete list of710

hyper-parameters can be found in Table 3.711

Compute: Each run of ARMOR has access to 4CPUs with 28GB RAM and a single Nvidia T4 GPU712

with 16GB memory. With these resources each run taks around 6-7 hours to complete. Including all713

runs for 4 seeds, and ablations this amounts to approximately 2500 hours of GPU compute.714

Hyperparameter Value
model_num_layers 3
model_hidden_size 512
model_nonlinearity swish
policy_num_layers 3
policy_hidden_size 256
policy_nonlinearity relu

f_num_layers 3
f_hidden_size 256
f_nonlinearity relu

Table 2: Model Architecture Details

Hyperparameter Value
critic learning rate ηfast 5e-4

policy learning rate ηslow 5e-7
discount factor 0.99
rollout horizon max episode steps

model buffer size 106

batch size 125
model batch size 125

num warmstart steps 105

τ 5e− 3

Table 3: List of Hyperparameters.

715

G.2 Detailed Performance Comparison and RPI Ablations716

In Table 4 we show the performance of ARMOR compared to model-free and model-based offline717

RL baselines with associatate standard deviations over 8 seeds. For ablation, here we also include718

ARMOR†, which is running ARMOR in Algorithm 1 but without the model optimizing for the719

Bellman error (that is, the model is not adversarial). Although ARMOR† does not have any theo-720

retical guarantees (and indeed in the worst case its performance can be arbitrarily bad), we found721

that ARMOR† in these experiments is performing surprisingly well. Compared with ARMOR,722

ARMOR† has less stable performance when the dataset is diverse (e.g. -med-replay datasets) and723

larger learning variance. Nonetheless, ARMOR† using a single model is already pretty competi-724

tive with other algorithms. We conjecture that this is due to that Algorithm 1 also benefits from725

pessimism due to adversarially trained critics. Since the model buffer would not cover all states726

and actions (they are continuous in these problems), the adversarially trained critic still controls the727

pessimism for actions not in the model buffer, as a safe guard. As a result, the algorithm can tolerate728

the model quality more.729

Dataset ARMOR ARMOR† ARMORre MoREL MOPO RAMBO COMBO ATAC CQL IQL BC
hopper-med 101.4 ± 0.3 100.4 ± 1.7 65.3 ± 4.8 95.4 28.0 ± 12.4 92.8 ± 6.0 97.2 ± 2.2 85.6 86.6 66.3 29.0

walker2d-med 90.7 ± 4.4 91.0 ± 10.4 79.0 ± 2.2 77.8 17.8 ± 19.3 86.9 ± 2.7 81.9 ± 2.8 89.6 74.5 78.3 6.6
halfcheetah-med 54.2 ± 2.4 56.3 ± 0.5 45.2 ± 0.2 42.1 42.3 ± 1.6 77.6 ± 1.5 54.2 ± 1.5 53.3 44.4 47.4 36.1

hopper-med-replay 97.1 ± 4.8 82.7 ± 23.1 68.4 ± 5.2 93.6 67.5 ± 24.7 96.6 ± 7.0 89.5 ± 1.8 102.5 48.6 94.7 11.8
walker2d-med-replay 85.6 ± 7.5 78.4 ± 1.9 50.3 ± 5.7 49.8 39.0 ± 9.6 85.0 ± 15.0 56.0 ± 8.6 92.5 32.6 73.9 11.3

halfcheetah-med-replay 50.5 ± 0.9 49.5 ± 0.9 36.8 ± 1.5 40.2 53.1 ± 2.0 68.9 ± 2.3 55.1 ± 1.0 48.0 46.2 44.2 38.4
hopper-med-exp 103.4 ± 5.9 100.1 ± 10.0 89.3 ± 3.2 108.7 23.7 ± 6.0 83.3 ± 9.1 111.1 ± 2.9 111.9 111.0 91.5 111.9

walker2d-med-exp 112.2 ± 1.7 110.5 ± 1.4 105.8 ± 1.4 95.6 44.6 ± 12.9 68.3 ± 15.0 103.3 ± 5.6 114.2 98.7 109.6 6.4
halfcheetah-med-exp 93.5 ± 0.5 93.4 ± 0.3 61.8 ± 3.75 53.3 63.3 ± 38.0 93.7 ± 10.5 90.0 ± 5.6 94.8 62.4 86.7 35.8

pen-human 72.8 ± 13.9 50.0 ± 15.6 62.3 ± 8.35 - - - - 53.1 37.5 71.5 34.4
hammer-human 1.9 ± 1.6 1.1 ± 1.4 3.1 ± 1.9 - - - - 1.5 4.4 1.4 1.5

door-human 6.3 ± 6.0 3.9 ± 2.4 5.9 ± 2.75 - - - - 2.5 9.9 4.3 0.5
relocate-human 0.4 ± 0.4 0.4 ± 0.6 0.3 ± 0.25 - - - - 0.1 0.2 0.1 0.0

pen-cloned 51.4 ± 15.5 45.2 ± 15.8 40.0 ± 8.25 - - - - 43.7 39.2 37.3 56.9
hammer-cloned 0.7 ± 0.6 0.3 ± 0.0 2.7 ± 0.15 - - - - 1.1 2.1 2.1 0.8

door-cloned -0.1 ± 0.0 -0.1 ± 0.1 0.5 ± 0.4 - - - - 3.7 0.4 1.6 -0.1
relocate-cloned -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 - - - - 0.2 -0.1 -0.2 -0.1

pen-exp 112.2 ± 6.3 113.0 ± 11.8 92.8 ± 9.25 - - - - 136.2 107.0 - 85.1
hammer-exp 118.8 ± 5.6 115.3 ± 9.3 51.0 ± 11.05 - - - - 126.9 86.7 - 125.6

door-exp 98.7 ± 4.1 97.1 ± 4.9 88.4 ± 3.05 - - - - 99.3 101.5 - 34.9
relocate-exp 96.0 ± 6.8 90.7 ± 6.3 64.2 ± 7.3 - - - - 99.4 95.0 - 101.3

Table 4: Performance comparison of ARMOR against baselines on the D4RL datasets. The values
for ARMOR denote last iteration performance averaged over 4 random seeds along with standard
deviations, and baseline values were taken from their respective papers. Boldface denotes perfor-
mance within 10% of the best performing algorithm.
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Figure 5: Comparison of different policy initializations for RPI with varying pessimism hyper-
parameter β . ORL denotes the performance of offline RL with ARMOR ( Table 1), and REF
is the performance of reference policy. Purple represents residual policy initialization and pink is
initialization using behavior cloning of the reference on the suboptimal offline RL dataset.

G.3 Effect of Residual Policy730

In Figure 5, we show the effect on RPI of different schemes for initializing the learner for several731

D4RL datasets. Specifically, we compare using a residual policy( Section 5) versus behavior cloning732

the reference policy on the provided offline dataset for learner initialization. Note that this offline733

dataset is the suboptimal one used in offline RL and is different from the expert-level dataset used to734

train and produce the reference policy. We observe that using a residual policy (purple) consistently735

shows RPI across all datasets. However, with behavior cloning initialization (pink), there is a large736

variation in performance across datasets. While RPI is achieved with behavior cloning initialization737

on hopper, walker2d and hammer datasets, performance can be arbitrarily bad compared to the738

reference on other problems. As an ablation, we also study the effect of using a residual policy in739

the offline RL case where no explicit reference is provided, and the behavior cloning policy is used740

as the reference similar to Section 5.1. We include the results in Table 4 as ARMORre, where we741

observe that using a residual policy overall leads to worse performance across all datasets. This742

lends evidence to the fact that using a residual policy is a comprimise in instances where initializing743

the learner exactly to the reference policy is not possible.744

G.4 Connection to Imitation Learning745

Dataset ARMOR-IL BC
hopper-exp 111.6 111.7

walker2d-exp 108.1 108.5
halfcheetah-exp 93.9 94.7

Table 5: ARMOR-IL on expert datasets.
By setting λ = 0, β > 0 we recover IL.

As mentioned in Section 4.1, IL is a special case of746

ARMOR with λ = 0. In this setting, the Q-function747

can fully affect the adversarial MDP model, so the best748

strategy of the policy is to mimic the reference. We test749

this on the expert versions of the D4RL locomotion750

tasks in Table 5, and observe that ARMOR can indeed751

perform IL to match expert performance.752
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